Infinitesimals-Based Registers for Reasoning with Definite Integrals

Total Page:16

File Type:pdf, Size:1020Kb

Infinitesimals-Based Registers for Reasoning with Definite Integrals Infinitesimals-based registers for reasoning with definite integrals Rob Ely University of Idaho Abstract: Two representation registers are described that support student reasoning with definite integral notation: adding up pieces (AUP) and multiplicatively-based summation (MBS). These registers were developed in a Calculus I class that used an informal infinitesimals approach, through which differentials like dx directly represent infinitesimal quantities rather than serving as notational finesses or vestiges. Student reasoning reveals how the AUP register supports modeling with integral notation and how the MBS register supports sense-making with and evaluation of integrals. Keywords: calculus, integral, register, semiotics, infinitesimal, differential My goal is to examine and illustrate two registers for interpreting and working with definite integral notation, registers that are particularly useful for supporting student modeling and sense- making with integrals. These registers—adding-up-pieces (AUP) and multiplicatively-based summation (MBS)—are situated in a Calculus I course that uses an “informal infinitesimal” approach to calculus. I briefly summarize this general approach to calculus before describing these registers and how students reason with them. Informal Infinitesimals Approach to Calculus For nearly two centuries, Calculus was “the infinitesimal calculus.” For its inventors, G. W. Leibniz and Isaac Newton, it was a set of techniques for systematically comparing infinitesimal quantities in order to determine relationships between the finite quantities that they comprised (and vice versa). In the 19th century, calculus was reformulated in terms of limits rather than infinitesimals, and 20th century calculus textbooks have followed suit. Yet calculus textbooks and courses still use Leibniz’ notation, dx and ∫ , but without the meanings Leibniz assigned to these: dx is an infinitesimal increment and the big S is a sum (“summa”). The notations are now vestiges, and in particular, differentials no longer directly represent quantities that students can manipulate and reason with. The guiding principle of the informal infinitesimals approach is to restore this direct referential meaning to calculus notation. The approach is supported by the work in nonstandard analysis in the 1960s showing that calculus can be founded upon infinitesimals with equal rigor and power, but it uses the informality of Leibniz’ reasoning rather than the formal development of the hyperreal numbers (e.g. Keisler, 1986). For instance, the derivative at a point dy/dx really ! !!! !!(!) is a ratio of two infinitesimal quantities, not code language for lim . The chain !→! ! rule is canceling fractions. And an integral really is a sum of infinitesimal bits, each of which in MBS is given by the product f(x)·dx. By taking differentials seriously, students can develop formulas for volumes of rotation, arclength, work, and many other ideas, formulas, and applications in first-year calculus (Dray & Manogue, 2010), and in vector calculus and physics (Dray & Manogue, 2003). Registers and Signs For Duval (2006), a representation register is a collection of signs and a set of transformations by which some of these signs can be substituted for others. Transformations within the same register are treatments; transformations of signs from one register to another are conversions. Barthes defines a sign as a combination of a signifier and a signified (1957/1972). For instance, a bunch of roses (signifier), together with the concept of passion it is representing (signified), comprise a sign. In our case, when a mathematical representation (e.g., “dx”) signifies a concept (e.g., an infinitesimal increment), the combination of the representation “dx” (signifier) and infinitesimal increment (signified) is a sign. An interpretation is thus a signified concept. So if a representation stays the same but its interpretation changes, it becomes a different sign, since it signifies a different thing or concept. This points to a conversion to a different register, because within a given register interpretation should remain relatively stable. Such a conversion is often accompanied by a new lexicon of signs, interpretations, and treatments that which might support the new purpose or apply to the new context. Consider the following example: We can use infinitesimals to develop the formula for the arclength of a curve in the plane between x = 0 and 1. We imagine a curve to be comprised of infinitesimal segments, each of which is the hypotenuse of a right triangle with legs dx and dy. Then the arclength of the curve would be the sum of these hypotenuse lengths: ! ��! + ��! !!! . So far we have performed a modeling step, treating the dx and dy as quantities representing magnitudes, and have used the adding up pieces (AUP) register (which I detail soon). But this is no form to be evaluated for any particular curve, however. To be evaluated, the integral must first be converted by imagining all the dx’s as uniform in size and then being ! !" factored from the integrand, to get 1 + ( )! �� (if y is a function of x, say g(x)). Now the !!! !" ! �(�) �� 1 + �′(�)! integral is of the form !!! (where f(x) is ). So the integral can be evaluated by F(1) – F(0), for some F as an antiderivative of f. Thus using algebraic manipulations we have converted to a new register that is suited for evaluating integrals. The [ ]! + [ ]! structure lost ! �(�) �� significance and the ! structure gained salience, and it became important for the original curve to be seen with y as a function of x. The Adding Up Pieces (AUP) and Multiplicatively-Based Summation (MBS) Registers The elements of the AUP and MBS registers are based on the work of Jones (2013, 2015a, 2015b). The interpretations involved in both registers are summarized in Figures 1 and 2, and the strange numbering on these (I2, etc.) draws from the learning progression in my class through which they emerge, which I reference elsewhere in detail (Ely, in review). The interpretations in the AUP register (Figure 1) entail the idea that a definite integral measures how much of some quantity A is accumulated over an interval of a domain, say from t = a to b. This domain is partitioned into infinitely many infinitesimal increments of uniform size dt. For each infinitesimal increment dt there corresponds an infinitesimal increment of A, dA. The integral ! ! adds all of these up to give the total accumulation of A over the interval from t = a to b. In order for this to make sense, one must appeal to conception C5: The sum of infinitely many infinitesimal bits is a finite accumulation of A. The AUP register allows one to transparently represent a general bit of the sought quantity and of the whole quantity as an accumulation of these bits. The treatments in the register include (a) writing a symbolic expression for a generic bit dA and (b) rewriting this expression for dA in terms of other infinitesimal quantities that specify the expression for the domain at hand, usually in terms of its corresponding domain increment dt. These treatments require viewing infinitesimals as legitimate quantities that behave Figure 1 – Interpretive elements normally under algebraic operations (including possibly of integral notation in the adding some additional Leibnizian rules for operating with up pieces (AUP) register infinitesimal quantities). The treatments also rely on two other grounding conceptions: (1) equivalent expressions can be substituted for the same quantity (conception C6), and (2) a foundational understanding of covariation, which in turn relies on the basic understanding that variables vary (Thompson & Carlson, in press). The student must be able to coordinate changes of A with changes of t in order to reason that for each increment dt there is a corresponding increment dA. The MBS register includes many of the same notational interpretations as AUP, but it also adds to these the expression of each piece dA as a product r(t)·dt. This introduces the integrand, which is necessary for the Fundamental Theorem of Calculus (FTC) to apply. We follow Thompson, Byerley, & Hatfield’s (2013) approach to treat the integrand r(t) as a rate at which A accumulates over the increment dt. This ultimately allows us to recognize and use that an accumulation function f for A will have r(t) as its rate-of-change function. Thus, one supporting conception in this interpretation of the product r(t)·dt is the idea that A accumulates at a constant rate r(t) over the dt increment, and that this constant rate is determined by the value of t closest to that dt increment. This relies on conception C4: A concept image for rate of change at a moment (Thompson, Ashbrook, & Musgrave, 2015). This momentary rate of change can vary constantly as t varies. I1 . dA: a generic The second supporting I4i. Sum of all the bits of A, i as t hops along by dt-sized “little bit” of the conception is the increments from a to b quantity A multiplicative structure associated with rate, expressed in conception b I2i. An infinitesimal C1i (see Figure 2). The ∫ r(t)·dt increment of t a Figure 2 – Interpretive I3i. “Rate” at which A accumulates elements of over the dt-sized increment of t C1i. The multiplicative integral notation structure: If A accumulates at in the a rate of r(t) A-units per t-unit, multiplicatively- over an increment of dt t- C5i. The sum of infinitely many units, the product r(t)·dt is the based summation infinitesimal bits is a finite accumulation. accumulated bit of A. (MBS) register word “rate” is used here broadly. It does not necessarily mean that r(t) is measured in a compound unit like miles-per-hour. Rather it means that as t changes, A changes by a proportional amount, and r(t) provides that rate of proportionality (Lobato & Ellis, 2010). Most broadly, r(t) serves as a factor allowing conversion from an increment of t to an increment of A, by dA = r(t)·dt.
Recommended publications
  • Differential Calculus and by Era Integral Calculus, Which Are Related by in Early Cultures in Classical Antiquity the Fundamental Theorem of Calculus
    History of calculus - Wikipedia, the free encyclopedia 1/1/10 5:02 PM History of calculus From Wikipedia, the free encyclopedia History of science This is a sub-article to Calculus and History of mathematics. History of Calculus is part of the history of mathematics focused on limits, functions, derivatives, integrals, and infinite series. The subject, known Background historically as infinitesimal calculus, Theories/sociology constitutes a major part of modern Historiography mathematics education. It has two major Pseudoscience branches, differential calculus and By era integral calculus, which are related by In early cultures in Classical Antiquity the fundamental theorem of calculus. In the Middle Ages Calculus is the study of change, in the In the Renaissance same way that geometry is the study of Scientific Revolution shape and algebra is the study of By topic operations and their application to Natural sciences solving equations. A course in calculus Astronomy is a gateway to other, more advanced Biology courses in mathematics devoted to the Botany study of functions and limits, broadly Chemistry Ecology called mathematical analysis. Calculus Geography has widespread applications in science, Geology economics, and engineering and can Paleontology solve many problems for which algebra Physics alone is insufficient. Mathematics Algebra Calculus Combinatorics Contents Geometry Logic Statistics 1 Development of calculus Trigonometry 1.1 Integral calculus Social sciences 1.2 Differential calculus Anthropology 1.3 Mathematical analysis
    [Show full text]
  • Notes on Calculus II Integral Calculus Miguel A. Lerma
    Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
    [Show full text]
  • Analyzing Applied Calculus Student Understanding of Definite Integrals in Real-Life Applications
    Graduate Theses, Dissertations, and Problem Reports 2021 ANALYZING APPLIED CALCULUS STUDENT UNDERSTANDING OF DEFINITE INTEGRALS IN REAL-LIFE APPLICATIONS CODY HOOD [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation HOOD, CODY, "ANALYZING APPLIED CALCULUS STUDENT UNDERSTANDING OF DEFINITE INTEGRALS IN REAL-LIFE APPLICATIONS" (2021). Graduate Theses, Dissertations, and Problem Reports. 8260. https://researchrepository.wvu.edu/etd/8260 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Graduate Theses, Dissertations, and Problem Reports 2021 ANALYZING APPLIED CALCULUS STUDENT UNDERSTANDING OF DEFINITE INTEGRALS IN REAL-LIFE APPLICATIONS CODY HOOD Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Mathematics Commons, and the Science and Mathematics Education Commons ANALYZING APPLIED CALCULUS STUDENT UNDERSTANDING OF DEFINITE INTEGRALS IN REAL-LIFE APPLICATIONS Cody Hood Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Vicki Sealey, Ph.D., Chair Harvey Diamond, Ph.D.
    [Show full text]
  • 0.999… = 1 an Infinitesimal Explanation Bryan Dawson
    0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder .
    [Show full text]
  • Understanding Student Use of Differentials in Physics Integration Problems
    PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 9, 020108 (2013) Understanding student use of differentials in physics integration problems Dehui Hu and N. Sanjay Rebello* Department of Physics, 116 Cardwell Hall, Kansas State University, Manhattan, Kansas 66506-2601, USA (Received 22 January 2013; published 26 July 2013) This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq). In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second- semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics. DOI: 10.1103/PhysRevSTPER.9.020108 PACS numbers: 01.40.Àd mathematical symbols [3]. For instance, mathematicians I. INTRODUCTION often use x; y asR variables and the integrals are often written Mathematical integration is widely used in many intro- in the form fðxÞdx, whereas in physics the variables ductory and upper-division physics courses.
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Connes on the Role of Hyperreals in Mathematics
    Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V.
    [Show full text]
  • Infinitesimal Calculus
    Infinitesimal Calculus Δy ΔxΔy and “cannot stand” Δx • Derivative of the sum/difference of two functions (x + Δx) ± (y + Δy) = (x + y) + Δx + Δy ∴ we have a change of Δx + Δy. • Derivative of the product of two functions (x + Δx)(y + Δy) = xy + Δxy + xΔy + ΔxΔy ∴ we have a change of Δxy + xΔy. • Derivative of the product of three functions (x + Δx)(y + Δy)(z + Δz) = xyz + Δxyz + xΔyz + xyΔz + xΔyΔz + ΔxΔyz + xΔyΔz + ΔxΔyΔ ∴ we have a change of Δxyz + xΔyz + xyΔz. • Derivative of the quotient of three functions x Let u = . Then by the product rule above, yu = x yields y uΔy + yΔu = Δx. Substituting for u its value, we have xΔy Δxy − xΔy + yΔu = Δx. Finding the value of Δu , we have y y2 • Derivative of a power function (and the “chain rule”) Let y = x m . ∴ y = x ⋅ x ⋅ x ⋅...⋅ x (m times). By a generalization of the product rule, Δy = (xm−1Δx)(x m−1Δx)(x m−1Δx)...⋅ (xm −1Δx) m times. ∴ we have Δy = mx m−1Δx. • Derivative of the logarithmic function Let y = xn , n being constant. Then log y = nlog x. Differentiating y = xn , we have dy dy dy y y dy = nxn−1dx, or n = = = , since xn−1 = . Again, whatever n−1 y dx x dx dx x x x the differentials of log x and log y are, we have d(log y) = n ⋅ d(log x), or d(log y) n = . Placing these values of n equal to each other, we obtain d(log x) dy d(log y) y dy = .
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • Arxiv:1404.5658V1 [Math.LO] 22 Apr 2014 03F55
    TOWARD A CLARITY OF THE EXTREME VALUE THEOREM KARIN U. KATZ, MIKHAIL G. KATZ, AND TARAS KUDRYK Abstract. We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementar- ity rather than a rivalry of the approaches. Contents 1. Introduction 2 1.1. A historical re-appraisal 2 1.2. Practice and ontology 3 2. Grades of clarity according to Peirce 4 3. Perceptual continuity 5 4. Constructive clarity 7 5. Counterexample to the existence of a maximum 9 6. Reuniting the antipodes 10 7. Kronecker and constructivism 11 8. Infinitesimal clarity 13 8.1. Nominalistic reconstructions 13 8.2. Klein on rivalry of continua 14 arXiv:1404.5658v1 [math.LO] 22 Apr 2014 8.3. Formalizing Leibniz 15 8.4. Ultrapower 16 9. Hyperreal extreme value theorem 16 10. Approaches and invitations 18 11. Conclusion 19 References 19 2000 Mathematics Subject Classification. Primary 26E35; 00A30, 01A85, 03F55. Key words and phrases. Benacerraf, Bishop, Cauchy, constructive analysis, con- tinuity, extreme value theorem, grades of clarity, hyperreal, infinitesimal, Kaestner, Kronecker, law of excluded middle, ontology, Peirce, principle of unique choice, procedure, trichotomy, uniqueness paradigm. 1 2 KARINU. KATZ, MIKHAILG. KATZ, ANDTARASKUDRYK 1. Introduction German physicist G. Lichtenberg (1742 - 1799) was born less than a decade after the publication of the cleric George Berkeley’s tract The Analyst, and would have certainly been influenced by it or at least aware of it.
    [Show full text]
  • Epistemic Criteria for Designing Limit Tasks on a Real Variable Function
    ISSN 1980-4415 DOI: http://dx.doi.org/10.1590/1980-4415v35n69a09 Epistemic Criteria for Designing Limit Tasks on a Real Variable Function Criterios Epistémicos para el Diseño de Tareas sobre Límite de una función en una variable Real Daniela Araya Bastias* ORCID iD 0000-0002-3395-3348 Luis R. Pino-Fan** ORCID iD 0000-0003-4060-7408 Iván G. Medrano*** ORCID iD 0000-0003-4910-1235 Walter F. Castro**** ORCID iD 0000-0002-7890-681X Abstract This article aims at presenting the results of a historical-epistemological study conducted to identify criteria for designing tasks that promote the understanding of the limit notion on a real variable function. As a theoretical framework, we used the Onto-Semiotic Approach (OSA) to mathematical knowledge and instruction, to identify the regulatory elements of mathematical practices developed throughout history, and that gave way to the emergence, evolution, and formalization of limit. As a result, we present a proposal of criteria that summarizes fundamental epistemic aspects, which could be considered when designing tasks that allow the promotion of each of the six meanings identified for the limit notion. The criteria presented allow us to highlight not only the mathematical complexity underlying the study of limit on a real variable function but also the richness of meanings that could be developed to help understand this notion. Keywords: Limit. Task design. Onto-Semiotic Approach. Resumen El objetivo de este artículo es presentar los resultados de un estudio de tipo histórico-epistemológico, que se llevó a cabo para identificar criterios a considerar en el diseño de tareas para promover la comprensión de la noción de * Magíster en Matemática por la Universidad de Santiago de Chile (USACH).
    [Show full text]