Chlamydiales and Hemotropic Mycoplasma in Captive and Free- Living Bats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich
Bertelli, C; Collyn, F; Croxatto, A; Rückert, C; Polkinghorne, A; Kebbi-Beghdadi, C; Goesmann, A; Vaughan, L; Greub, G (2010). The Waddlia genome: a window into chlamydial biology. PloS one, 5(5):e10890. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: PloS one 2010, 5(5):e10890. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2010 The Waddlia genome: a window into chlamydial biology Bertelli, C; Collyn, F; Croxatto, A; Rückert, C; Polkinghorne, A; Kebbi-Beghdadi, C; Goesmann, A; Vaughan, L; Greub, G Bertelli, C; Collyn, F; Croxatto, A; Rückert, C; Polkinghorne, A; Kebbi-Beghdadi, C; Goesmann, A; Vaughan, L; Greub, G (2010). The Waddlia genome: a window into chlamydial biology. PloS one, 5(5):e10890. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: PloS one 2010, 5(5):e10890. The Waddlia Genome: A Window into Chlamydial Biology Claire Bertelli1., Franc¸ois Collyn1., Antony Croxatto1, Christian Ru¨ ckert2, Adam Polkinghorne3,4, Carole Kebbi-Beghdadi1, Alexander Goesmann2, Lloyd Vaughan4, Gilbert Greub1* 1 Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland, 2 Center for Biotechnology, Bielefeld University, Bielefeld, Germany, 3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia, 4 Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland Abstract Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. -
Expanding the Chlamydiae Tree
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2040 Expanding the Chlamydiae tree Insights into genome diversity and evolution JENNAH E. DHARAMSHI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1203-3 UPPSALA urn:nbn:se:uu:diva-439996 2021 Dissertation presented at Uppsala University to be publicly examined in A1:111a, Biomedical Centre (BMC), Husargatan 3, Uppsala, Tuesday, 8 June 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Prof. Dr. Alexander Probst (Faculty of Chemistry, University of Duisburg-Essen). Abstract Dharamshi, J. E. 2021. Expanding the Chlamydiae tree. Insights into genome diversity and evolution. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2040. 87 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1203-3. Chlamydiae is a phylum of obligate intracellular bacteria. They have a conserved lifecycle and infect eukaryotic hosts, ranging from animals to amoeba. Chlamydiae includes pathogens, and is well-studied from a medical perspective. However, the vast majority of chlamydiae diversity exists in environmental samples as part of the uncultivated microbial majority. Exploration of microbial diversity in anoxic deep marine sediments revealed diverse chlamydiae with high relative abundances. Using genome-resolved metagenomics various marine sediment chlamydiae genomes were obtained, which significantly expanded genomic sampling of Chlamydiae diversity. These genomes formed several new clades in phylogenomic analyses, and included Chlamydiaceae relatives. Despite endosymbiosis-associated genomic features, hosts were not identified, suggesting chlamydiae with alternate lifestyles. Genomic investigation of Anoxychlamydiales, newly described here, uncovered genes for hydrogen metabolism and anaerobiosis, suggesting they engage in syntrophic interactions. -
Infections of Cats with Blood Mycoplasmas in Various Contexts
ACTA VET. BRNO 2021, 90: 211–219; https://doi.org/10.2754/avb202190020211 Infections of cats with blood mycoplasmas in various contexts Dana Lobová1, Jarmila Konvalinová2, Iveta Bedáňová2, Zita Filipejová3, Dobromila Molinková1 University of Veterinary Sciences Brno, 1Faculty of Veterinary Medicine, Department of Infectious Diseases and Microbiology, 2Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection, Welfare and Ethology, 3Faculty of Veterinary Medicine, Small Animal Clinic, Brno, Czech Republic Received April 1, 2020 Accepted May 26, 2021 Abstract Haemotropic microorganisms are the most common bacteria that infect erythrocytes and are associated with anaemia of varying severity. The aim of this study was to focus on the occurrence of Mycoplasma haemofelis, Mycoplasma haemominutum, and Mycoplasma turicensis in cats. We followed infected individuals’ breeding conditions, age, sex, basic haematological indices, and co-infection with one of the feline retroviruses. A total of 73 cats were investigated. Haemoplasmas were detected by PCR and verified by sequencing. Haematology examination was performed focusing on the number of erythrocytes, haemoglobin concentrations and haematocrit. A subset of 40 cat blood samples was examined by a rapid immunochromatography test to detect retroviruses. The following was found in our study group: M. haemofelis in 12.3% of individuals, M. haemominutum in 35.6% of individuals and M. turicensis in 17.8% of individuals. A highly significant difference was found between positive evidence of blood mycoplasmas in cats living only at home (15%) and in cats with access to the outside (69.8%). There was also a highly significant difference in the incidence of mycoplasma in cats over 3 years of age compared to 1–3 years of age and up to 1 year of age. -
Product Description EN Bactoreal® Kit Chlamydiaceae
Product Description BactoReal® Kit Chlamydiaceae For research only, not for diagnostic use BactoReal® Kit Chlamydiaceae Order no. Reactions Pathogen Internal positive control DVEB03113 100 FAM channel Cy5 channel DVEB03153 50 FAM channel Cy5 channel DVEB03111 100 FAM channel VIC/HEX channel DVEB03151 50 FAM channel VIC/HEX channel Kit contents: Detection assay for Chlamydia and Chlamydophila species Detection assay for internal positive control (control of amplification) DNA reaction mix (contains uracil-N glycosylase, UNG) Positive control for Chlamydiaceae Water Background: The Chlamydiaceae family currently includes two genera and one candidate genus: genus Chlamydia (including the species Chlamydia muridarum, Chlamydia suis, Chlamydia trachomatis), genus Chlamydophila (including the species Chlamydophila abortus, Chlamydophila caviae Chlamydophila felis, Chlamydia pecorum, Chlamydophila pneumoniae, Chlamydophila psittaci), and candidatus Clavochlamydia. All Chlamydiaceae are obligate intracellular Gram-negative bacteria that cause diseases in humans and animals worldwide. Description: BactoReal® Kit Chlamydiaceae is based on the amplification and detection of the 23S rRNA gene of C. muridarum, C. suis, C. trachomatis, C. abortus, C. caviae, C. felis, C. pecorum, C. pneumoniae and C. psittaci using real-time PCR. It allows the rapid and sensitive detection of the 23S rRNA gene of Chlamydiaceae from DNA samples purified from different sample material (e.g. with the QIAamp DNA Mini Kit). For subtyping please contact ingenetix. PCR-platforms: BactoReal® Kit Chlamydiaceae is developed and validated for the ABI PRISM® 7500 instrument (Life Technologies), LightCycler® 480 (Roche) and Mx3005P® QPCR System (Agilent), but is also suitable for other real-time PCR instruments. Sensitivity and specificity: BactoReal® Kit Chlamydiaceae detects at least 10 copies/reaction. -
Genome Published Outside of SIGS, January – June 2011 Methylovorus Sp
Standards in Genomic Sciences (2011) 4:402-417 DOI:10.4056/sigs.2044675 Genome sequences published outside of Standards in Genomic Sciences, January – June 2011 Oranmiyan W. Nelson1 and George M. Garrity1 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA The purpose of this table is to provide the community with a citable record of publications of on- going genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publica- tions added to this subsequent versions of this list are invited to provide the bibliometric data for such references to the SIGS editorial office. Phylum Crenarchaeota “Metallosphaera cuprina” Ar-4, sequence accession CP002656 [1] Thermoproteus uzoniensis 768-20, sequence accession CP002590 [2] “Vulcanisaeta moutnovskia” 768-28, sequence accession CP002529 [3] Phylum Euryarchaeota Methanosaeta concilii, sequence accession CP002565 (chromosome), CP002566 (plasmid) [4] Pyrococcus sp. NA2, sequence accession CP002670 [5] Thermococcus barophilus MP, sequence accession CP002372 (chromosome) and CP002373 plasmid) [6] Phylum Chloroflexi Oscillochloris trichoides DG-6, sequence accession ADVR00000000 [7] Phylum Proteobacteria Achromobacter xylosoxidans A8, sequence accession CP002287 (chromosome), CP002288 (plasmid pA81), and CP002289 -
Experimental Challenge of Pregnant Cattle with the Putative Abortifacient
Experimental challenge of pregnant cattle with the putative abortifacient Waddlia chondrophila Author List Nicholas Wheelhouse1# & *, Allen Flockhart1# &, Kevin Aitchison1, Morag Livingstone1, Jeanie Finlayson1, Virginie Flachon2, Eric Sellal2, Mark P. Dagleish1 & David Longbottom1 Affiliations 1 Moredun Research Institute, Edinburgh, Midlothian, United Kingdom. 2 Biosellal, 317 Avenue Jean Jaurès, 69007 Lyoncedex, France # Current address: School of Life, Sport and Social Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, United Kingdom *Corresponding author: E:mail: [email protected] &These authors contributed equally to this manuscript 1 Waddlia chondrophila is a Gram-negative intracellular bacterial organism that is related to classical chlamydial species and has been implicated as a cause of abortion in cattle. Despite an increasing number of observational studies linking W. chondrophila infection to cattle abortion, little direct experimental evidence exists. Given this paucity of direct evidence the current study was carried out to investigate whether experimental challenge of pregnant cattle with W. chondrophila would result in infection and abortion. Nine pregnant Friesian-Holstein heifers received 2 x 108 inclusion forming units (IFU) W. chondrophila intravenously on day 105-110 of pregnancy, while four negative-control animals underwent mock challenge. Only one of the challenged animals showed pathogen-associated lesions, with the organism being detected in the diseased placenta. Importantly, -
Lists of Names of Prokaryotic Candidatus Taxa
NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code. -
INFECTIOUS DISEASES of HAITI Free
INFECTIOUS DISEASES OF HAITI Free. Promotional use only - not for resale. Infectious Diseases of Haiti - 2010 edition Infectious Diseases of Haiti - 2010 edition Copyright © 2010 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-090-4 ISBN-10: 1-61755-090-6 Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. © 2010 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 2 of 314 Free. Promotional use only - not for resale. Infectious Diseases of Haiti - 2010 edition Introduction: The GIDEON e-book series Infectious Diseases of Haiti is one in a series of GIDEON ebooks which summarize the status of individual infectious diseases, in every country of the world. -
Thesis Reference
Thesis Targeting Waddlia chondrophila development cycle using genetic tools and metabolomics WALTER, Chantal Abstract All members of the Chlamydiae, including Waddlia chondrophila share the same unique intracellular development cycle, which is the focus of this work in the search for anti-chlamydial targets and drugs. Strategies using high throughput screening, genetic complementation, and metabolomics were explored to investigate and try to block the W. chondrophila development cycle. First, a generic high throughput screening procedure was developed in a heterologous system, Escherichia coli, to search for inhibitors of chlamydial transcription factors. Then, the function of DksA, a transcription factor, was investigated by genetic complementation of E. coli and Pseudomonas aeruginosa mutants. Finally, metabolomics was adopted to observe changes in metabolites associated with progress through the chlamydial developmental cycle. It revealed the presence of putative novel metabolites differentially expressed in the various stages. Altogether, the results of this work present putative new therapeutic approaches to understand and circumvent the infection process of this pathogen. Reference WALTER, Chantal. Targeting Waddlia chondrophila development cycle using genetic tools and metabolomics. Thèse de doctorat : Univ. Genève, 2019, no. Sc. 5337 DOI : 10.13097/archive-ouverte/unige:119059 URN : urn:nbn:ch:unige-1190597 Available at: http://archive-ouverte.unige.ch/unige:119059 Disclaimer: layout of this document may differ from the published -
Author Manuscript Faculty of Biology and Medicine Publication
Serveur Académique Lausannois SERVAL serval.unil.ch Author Manuscript Faculty of Biology and Medicine Publication This paper has been peer-reviewed but dos not include the final publisher proof-corrections or journal pagination. Published in final edited form as: Title: In Chlamydia veritas. Authors: Bavoil P, Kaltenboeck B, Greub G Journal: Pathogens and disease Year: 2013 Mar Volume: 67 Issue: 2 Pages: 89-90 DOI: 10.1111/2049-632X.12026 In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. In Chlamydia veritas Patrik Bavoil1, Bernard Kaltenboeck2, Gilbert Greub* 3 1Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, USA; 2 Department of Pathobiology, Auburn University, Auburn, AL, USA; 3Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland *Corresponding author: Gilbert Greub, MD PhD Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University of Lausanne Lausanne, Switzerland Phone: (00) 41 21 314 49 79 Fax: (00) 41 21 314 40 60 e-mail: [email protected] Word count: 874 Keywords: Chlamydia, taxonomy, genus, species 1 To the Editor: Microbial taxonomy is an essential tool used to classify strains into different clades, i.e. taxonomic units. While such a classification system is essential for both researchers and clinicians, it is often dismissed, or worse mutilated beyond recognition by the very people who should value it most. Indeed, despite the obvious importance of taxonomy, it is often considered by clinical and basic researchers as a useless arbitrary tool without much scientific basis, and to some it is just a painful reminder of years fruitlessly spent learning Latin in high school. -
Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices
Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices Jenna Morgan Lang1,2, Aaron E. Darling1, Jonathan A. Eisen1,2* 1 Department of Medical Microbiology and Immunology and Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America, 2 Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America Abstract Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a ‘‘primary concordance’’ tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes. -
Vertical Transmission of Mycoplasma Haemolamae in Alpacas (Vicugna Pacos)
Vertical transmission of Mycoplasma haemolamae in alpacas (Vicugna pacos) THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Rebecca Lynne Pentecost, D.V.M, B.S. Graduate Program in Comparative and Veterinary Medicine The Ohio State University 2012 Thesis Committee: Jeffrey Lakritz, Advisor Antoinette E. Marsh Andrew J. Niehaus Joshua Daniels Paivi Rajala-Schultz Copyright by Rebecca Lynne Pentecost 2012 Abstract Mycoplasma haemolamae is a parasite with tropism for the red blood cells of alpacas, llamas, and guanacos. Transmission of the parasite likely occurs via an insect vector although the vector has not been elucidated to date. Transmission via blood transfusion has been demonstrated experimentally. In utero infection has been suggested and later demonstrated in a limited number of cases (n≤5). The purpose of this study was to 1) determine the frequency of vertical transmission of Mycoplasma haemolamae from dam to cria; 2) determine whether colostral transmission of M. haemolamae occurs; and 3) provide preliminary data on colostral M. haemolamae specific antibody from pregnant alpacas on a farm with known prevalence of infection. Mycoplasma haemolamae specific PCR was performed on blood and colostrum from pregnant alpacas and their cria (n=52 pairs). Indirect fluorescent antibody testing was performed on a subset (n=43) of these colostrum samples. Total immunoglobulin concentrations of colostrum and cria sera and M. haemolamae specific IgG (prior to and after ingesting colostrum) were determined by turbidometric immunoassay and indirect fluorescence antibody testing, respectively. Sixteen of 52 dams (30.7%) pre-partum and one of 52 cria post-partum (1.9%; prior to ingestion of colostrum) were PCR positive for M.