Grammosolen (Solanaceae - Anthocercideae) Revisited L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title ALKALOID BIOSYNTHESIS in CULTURED TISSUES OF
ALKALOID BIOSYNTHESIS IN CULTURED TISSUES OF Title DUBOISIA( Dissertation_全文 ) Author(s) Endo, Tsuyoshi Citation 京都大学 Issue Date 1989-03-23 URL https://doi.org/10.14989/doctor.k4307 Right Type Thesis or Dissertation Textversion author Kyoto University ALKALOID BIOSYNTHESIS IN C;ULTURED TISSUES OF DUBOISIA . , . ; . , " 1. :'. '. o , " ::,,~./ ~ ~';-~::::> ,/ . , , .~ - '.'~ . / -.-.........."~l . ~·_l:""· .... : .. { ." , :: I i i , (, ' ALKALOID BIOSYNTHESIS IN CULTURED TISSUES OF DUBOISIA TSUYOSHIENDO 1989 CONTENTS INTRODUCTION ----------1 CHAPTER I ALKALOID PRODUCTION IN CULTURED DUBOISIA TISSUES. INTRODUCTION ----------6 SECTION 1 Alkaloid Production and Plant Regeneration from ~ leichhardtii Calluses. ----------8 SECTION 2 Alkaloid Production in Cultured Roots of Three Species of Duboisia. ---------16 SECTION 3 Non-enzymatic Synthesis of Hygrine from Acetoacetic Acid and from Acetonedicar- boxylic Acid. ---------25 CHAPTER II SOMATIC HYBRIDIZATION OF DUBOISIA AND NICOTIANA. INTRODUCTION ---------35 SECTION 1 Establishment of an Intergeneric Hybrid Cell Line of ~ hopwoodii and ~ tabacum. ---------38 SECTION 2 Genetic Diversity Originating from a Single Somatic Hybrid Cell. ---------47 SECTION 3 Alkaloid Biosynthesis in Somatic Hybrids, D. leichhardtii + ~ tabacum ---------59 CONCLUSIONS ---------76 ACKNOWLEDGMENTS ---------79 REFERENCES ---------80 PUBLICATIONS ---------90 ABBREVIATIONS BA 6-benzyladenine OAPI 4',6-diamino-2-phenylindoledihydrochloride EDTA ethylenediaminetetraacetic acid GC-MS gas chromatography - mass spectrometry -
Duboisia Myoporoides R.Br. Family: Solanaceae Brown, R
Australian Tropical Rainforest Plants - Online edition Duboisia myoporoides R.Br. Family: Solanaceae Brown, R. (1810) Prodromus Florae Novae Hollandiae : 448. Type: New South Wales, Port Jackson, R. Brown, syn: BM, K, MEL, NSW, P. (Fide Purdie et al. 1982.). Common name: Soft Corkwood; Mgmeo; Poison Corkwood; Poisonous Corkwood; Corkwood Tree; Eye-opening Tree; Eye-plant; Duboisia; Yellow Basswood; Elm; Corkwood Stem Seldom exceeds 30 cm dbh. Bark pale brown, thick and corky, blaze usually darkening to greenish- brown on exposure. Leaves Leaf blades about 4-12 x 0.8-2.5 cm, soft and fleshy, indistinctly veined. Midrib raised on the upper surface. Flowers. © G. Sankowsky Flowers Small bell-shaped flowers present during most months of the year. Calyx about 1 mm long, lobes short, less than 0.5 mm long. Corolla induplicate-valvate in the bud. Induplicate sections of the corolla and inner surfaces of the corolla lobes clothed in somewhat matted, stellate hairs. Corolla tube about 4 mm long, lobes about 2 mm long. Fruit Fruits globular, about 6-8 mm diam. Seed and embryo curved like a banana or sausage. Seed +/- reniform, about 3-3.5 x 1 mm. Testa reticulate. Habit, leaves and flowers. © Seedlings CSIRO Cotyledons narrowly elliptic to almost linear, about 5-8 mm long. First pair of true leaves obovate, margins entire. At the tenth leaf stage: leaf blade +/- spathulate, apex rounded, base attenuate; midrib raised in a channel on the upper surface; petiole with a ridge down the middle. Seed germination time 31 to 264 days. Distribution and Ecology Occurs in CYP, NEQ, CEQ and southwards as far as south-eastern New South Wales. -
Phytochemicals, Pharmacological Properties and Biotechnological Aspects of Highly Medicinal Plant: Datura Stramonium
Journal of Plant Sciences 2020; 8(2): 29-40 http://www.sciencepublishinggroup.com/j/jps doi: 10.11648/j.jps.20200802.12 ISSN: 2331-0723 (Print); ISSN: 2331-0731 (Online) Review Article Phytochemicals, Pharmacological Properties and Biotechnological Aspects of Highly Medicinal Plant: Datura stramonium Aamana Batool, Zahra Batool, Rahmatullah Qureshi, Naveed Iqbal Raja Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan Email address: To cite this article: Aamana Batool, Zahra Batool, Rahmatullah Qureshi, Naveed Iqbal Raja. Phytochemicals, Pharmacological Properties and Biotechnological Aspects of Highly Medicinal Plant: Datura stramonium . Journal of Plant Sciences. Vol. 8, No. 2, 2020, pp. 29-40. doi: 10.11648/j.jps.20200802.12 Received : June 20, 2016; Accepted : March 31, 2020; Published : April 28, 2020 Abstract: Plants are the backbone of the life on earth. They are essential resource for human well- being and among them Datura stramonium is one of highly important plants commonly known as Jimson weed. It is an annual herb found in temperate and sub-tropical areas. Its medicinal significance is mainly because of higher amounts of tropane alkaloids and traditionally used throughout the world. It possesses many phytoconstituents including alkaloids, flavonoids, amino acids, tannins, saponins, carbohydrates, terpenoids, steroidal glycosides and phenols. Various pharmacological activities i.e. anti-asthmatic, antimicrobial, antioxidant, anticancer and anti-inflammatory are exhibited by the plant. Secondary metabolites obtained from species of Datura genus produce tropane alkaloids which have influence on human nervous system and are used in medicines. Despite of its medicinal importance it is a potentially poisonous plant and known as plant hallucinogen. -
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
Redalyc.Growth and Nutrient Uptake Patterns in Plants of Duboisia Sp
Semina: Ciências Agrárias ISSN: 1676-546X [email protected] Universidade Estadual de Londrina Brasil Cagliari Fioretto, Conrado; Tironi, Paulo; Pinto de Souza, José Roberto Growth and nutrient uptake patterns in plants of Duboisia sp Semina: Ciências Agrárias, vol. 37, núm. 4, julio-agosto, 2016, pp. 1883-1895 Universidade Estadual de Londrina Londrina, Brasil Available in: http://www.redalyc.org/articulo.oa?id=445749546016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DOI: 10.5433/1679-0359.2016v37n4p1883 Growth and nutrient uptake patterns in plants of Duboisia sp Crescimento e marcha de absorção de nutrientes em plantas de Duboisia sp Conrado Cagliari Fioretto1*; Paulo Tironi2; José Roberto Pinto de Souza3 Abstract Characterizing growth and nutrient uptake is important for the establishment of plant cultivation techniques that aim at high levels of production. The culturing of Duboisia sp., although very important for world medicine, has been poorly studied in the field, since the cultivation of this plant is restricted to a few regions. The objective of this paper is to characterize growth and nutrient absorption during development in Duboisia sp. under a commercial cultivation system, and in particular to assess the distribution of dry matter and nutrients in the leaves and branches. Our work was performed on a commercial production farm located in Arapongas, Paraná, Brazil, from March 2009 to February 2010. A total of 10 evaluations took place at approximately 10-day intervals, starting 48 days after planting and ending at harvesting, 324 days after planting. -
Regulation and Evolution of Alternative Splicing in Plants
Regulation and evolution of alternative splicing in plants DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Zhihao Ling, M.S. geboren am 10.08.1988 in China Max-Planck-Institut für chemische Ökologie Gutachter: Prof. Ian T. Baldwin, Max Planck Institut für Chemische Ökologie, Jena Prof. Günter Theissen, Friedrich Schiller Universität Jena Prof. Dorothee Staiger, Universität Bielefeld Beginn der Promotion: 26. September 2012 Dissertation eingereicht am: 25. November 2016 Tag der Verteidigung: 28. June 2017 Table of Contents 1. General Introduction ................................................................................................................ 1 1.1 Alternative splicing is widespread in plants .......................................................................... 1 1.2 AS contributes to biological regulation processes in plants .................................................. 2 1.3 Abiotic stresses induced AS changes in plants ..................................................................... 4 1.4 Biotic stresses induced AS changes in plants ....................................................................... 7 1.5 The splicing code and determinants of AS in plants is largely unknown ............................. 8 1.6 The rapid evolution of AS ................................................................................................... 10 1.7 Thesis outline ..................................................................................................................... -
Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp. -
A Molecular Phylogeny of the Solanaceae
TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae. -
Floral Ecology of Oreocharis Acaulis (Gesneriaceae): an Exceptional Case Of
Flora 208 (2013) 58–67 Contents lists available at SciVerse ScienceDirect Flora j ournal homepage: www.elsevier.com/locate/flora Floral ecology of Oreocharis acaulis (Gesneriaceae): An exceptional case of “preanthetic” protogyny combined with approach herkogamy a a,∗ b Yan-Feng Guo , Ying-Qiang Wang , Anton Weber a Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China b University of Vienna, Faculty Centre of Biodiversity, Department of Structural and Functional Botany, Rennweg 14, 1030 Vienna, Wien, Austria a r t i c l e i n f o a b s t r a c t Article history: Protogyny is supposed to represent the ancestral form of dichogamy in the angiosperms, but is rare in Received 13 September 2012 advanced groups such as the Asteridae, in which protandry prevails by far. Here we report on an unusual Accepted 2 December 2012 form of protogyny combined with herkogamy in a Chinese species of Gesneriaceae (Asteridae–Lamiales): Available online 12 January 2013 Oreocharis acaulis (formerly Opithandra acaulis). This is characterized by a conspicuous protrusion of the style from the flower bud and the stigma becoming receptive before corolla opening (female-only stage; Keywords: preanthetic protogyny) and both sexes staying functional during anthesis (hermaphroditic stage), with Opithandra acaulis the stigma presented above the anther level (approach herkogamy). The plants studied were found to be Flower morphology Protogyny self-compatible, but autonomous self-pollination and apomixis were not observed. Successful pollination Herkogamy was found to depend fully on the presence of insect pollinators (Bombus sp.). -
PDF File Created from a TIFF Image by Tiff2pdf
~ I~m~III~111 200608197 CSIRO PUBLISHING www.publish.csiro.au/joumals/hras His/orical Records oJAus/ralian Science, 2006, 17, 31-69 Duboisia myoporoides: The Medical Career of a Native Australian Plant Paul Foley Prince ofWales Medical Research Institute, Barker Street, Randwick, NSW 2031, Australia. Email: [email protected] Alkaloids derived from solanaceous plants were the subject ofintense investigations by European chemists, pharmacologi~ts and clinicians in the second half ofthe nineteenth century. Some surprise was expressed when it was discovered in the 1870s that an Australian bush, Duboisia myoporoides, contained an atropine like alkaloid" 'duboisine'. A complicated and colourful history followed. Duboisine was adopted in Australia, Europe and the United States as an alternative to atropine as an ophthalmologic agent; shortly afterwards, it was also estecmed as a potent sedative in the management ofpsychiatric patients, and as an alternative to other solanaceous alkaloids in the treatment ofparkinsonism. The Second World War led to renewed interest in Duboisia species as sources of scopolamine, required for surgical anaesthesia and to manage sea-sickness, a major problem in the naval part ofthe war. As a consequence ofthe efforts of the CSIR and of Wilfrid Russell Grimwade (1879-1955), this led to the establishment of plantations in Queensland that today still supply the bulk of the world's raw scopolamine. Following the War, however, government support for commercial alkaloid extraction waned, and it was the interest ofthe German firm Boehringer Ingelheim and its investment in the industry that rescued the Duboisia industry in the mid I950s, and that continues to maintain it at a relatively low but stable level today. -
Plant Portraits
J. Adelaide Bot. Gard. 7(3): 307-313 (1985) PLANT PORTRAITS 17. Acacia araneosa Whibley (Leguminosae) Acacia araneosa Whibley, Contrib. Herb. Aust. 14: 1 (1976); Acacias of South Australia 94 (1980). Illustration: Based on fresh material preserved under Whibley 9687 from a plant grown in the Mallee section of the Adelaide Botanic Gardens. Small erect wispy trees 3-8 m high; trunks slender 4-7 cm in diameter, solitary or dividing at about 1 m above ground level. Branches smooth, flexuose towards their apices; bark smooth, a grey reddish brown on juvenile branches. Phyllodes slender, terete, 18-35 cm or sometimes up to 69 cm long, 1-1.8 mm in diameter, becoming almost tetragonous when dry, obscurely 4-nerved, glabrous, light green, sometime scurfy, tapered at the apex into a non-pungent point. Glands small, orbicular and situated near the base of the phyllode. Inflorescence axillary racemes which become paniculate at the ends of branches due to phyllode reduction; racemes with 5-9 sparsely arranged heads; flower heads yellow, compact globose with 50-70 flowers; petal 5, free, sparsely golden hairy on the acute tips. Legumes stipitate, linear, straight or slightly curved, 6-14.5 cm long, 4-6 mm broad, coriaceous, undulate, glabrous, olive green, becoming brown when mature; margins prominent, nerve-like and somewhat constricted between seeds. Seeds longitudinal or slightly oblique in legume; funicle a yellow reddish brown, extending c. three-quarters around the seeds and terminating in a yellowish clavate aril. Acacia araneosa occurs in a small area of the northern Flinders Range from Balcanoona along the range into the Arkaroola Sanctuary. -
Native Species
Birdlife Australia Gluepot Reserve PLANT SPECIES LIST These are species recorded by various observers. Species in bold have been vouchered. The list is being continually updated NATIVE SPECIES Species name Common name Acacia acanthoclada Harrow Wattle Acacia aneura Mulga Acacia brachybotrya Grey Mulga Acacia colletioides Wait a While Acacia hakeoides Hakea leaved Wattle Acacia halliana Hall’s Wattle Acacia ligulata Sandhill Wattle Acacia nyssophylla Prickly Wattle Acacia oswaldii Boomerang Bush Acacia rigens Needle Wattle Acacia sclerophylla var. sclerophylla Hard Leaved Wattle Acacia wilhelmiana Wilhelm’s Wattle Actinobole uliginosum Flannel Cudweed Alectryon oleifolius ssp. canescens Bullock Bush Amphipogon caricinus Long Grey Beard Grass Amyema miquelii Box Mistletoe Amyema miraculosa ssp. boormanii Fleshy Mistletoe Amyema preissii Wire Leaved Acacia Mistletoe Angianthus tomentosus Hairy Cup Flower Atriplex acutibractea Pointed Salt Bush Atriplex rhagodioides Spade Leaved Salt Bush Atriplex stipitata Bitter Salt Bush Atriplex vesicaria Bladder Salt Bush Austrodanthonia caespitosa Wallaby Grass Austrodanthonia pilosa Wallaby Grass Austrostipa elegantissima Elegant Spear Grass Austrostipa hemipogon Half Beard Spear grass Austrostipa nitida Balcarra Spear grass Austrostipa scabra ssp. falcata Rough Spear Grass Austrostipa scabra ssp. scabra Rough Spear Grass Austrostipa tuckeri Tucker’s Spear grass Baeckea crassifolia Desert Baeckea Baeckea ericaea Mat baeckea Bertya tasmanica ssp vestita Mitchell’s Bertya Beyeria lechenaultii Mallefowl