Ethylene Induces De Novo Synthesis of Chlorophyllase, a Chlorophyll

Total Page:16

File Type:pdf, Size:1020Kb

Ethylene Induces De Novo Synthesis of Chlorophyllase, a Chlorophyll Proc. Natl. Acad. Sci. USA Vol. 90, pp. 9441-9445, October 1993 Plant Biology Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel (ripening/senescence/gibbereilin A3/N6-benzyladenine) TOVA TREBITSH, ELIEZER E. GOLDSCHMIDT, AND JOSEPH Riov The Kennedy-Leigh Centre for Horticultural Research, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel Communicated by Kenneth V. Thimann, July 15, 1993 ABSTRACT Chlorophyllase (Chlase; EC 3.1.1.14) was to induce a severalfold increase in Chlase activity (8-10). It extracted from plastid fractions of ethylene-treated orange is not known, however, whether this increase involves de fruit peel and purified 400-fold to homogeneity by gel iftration, novo synthesis of the enzyme protein or activation of a hydrophobic chromatography, and preparative SDS/PAGE of constitutive enzyme. Gibberellin A3 (GA) and N6-benzylad- nonheated protein. SDS/PAGE of nonheated purified enzyme enine (BA) delay the senescent pigment changes and oppose indicated that Chlase activity is associated with a single protein the ethylene-induced loss of Chl (6, 7, 11), but their effect on band migrating at an apparent molecular mass of 25 kDa Chlase activity has not yet been determined. Thus, little is whereas the heated purified enzyme had a molecular mass of35 known about the hormonal and molecular regulation of the kDa. The N-terminal sequence of the purified protein was Chlase enzyme system. determined. The purified enzyme was used as an immunogen While attempting to study the overall regulation of Chlase, for raising antibodies in rabbits. The antiserum was highly we found it essential to adopt an immunological approach. specific and on Western blots recognized both the heated and Chlase has been partially purified and characterized previ- the nonheated form of Chlase. The antibodies also recognized ously from various plant materials (12-16). Citrus Chlase has the solubilized enzyme, as shown by an immunoprecipitation been purified from ethylene-treated Citrus unshiu by assay and by antigen-antibody capture assays in microtiter Shimokawa (17). The Chlase preparations obtained using plates. Treatment with ethylene, which enhances degreening, Shimokawa's procedure (17) were not pure enough, how- increased Chlase activity 12-fold. Immunoblot analyses of ever, for raising anti-Chlase antibodies. The aim of the crude extracts from ethylene-treated fruit detected a strong present study was, therefore, (i) to purify Chlase to homo- protein, while only a trace level of the geneity, (ii) to obtain specific anti-Chlase antibodies, and (iii) signal of the Chlase to examine whether the enhancement of Chlase activity by enzyme protein could be detected in air. Gibberellin A3 and ethylene and its counteraction by GA and BA involve control N6-benzyladenine partly counteracted the ethylene-induced the of the enzyme increase in Chlase activity as well as the immunodetected of synthesis protein. upsurge ofthe Chlase protein. Ethylene appears to enhance the degreening of citrus fruit through de novo synthesis of the MATERIALS AND METHODS Chlase protein, which in turn is inhibited by the senescence- Plant Material. Mature green orange (Citrus sinensis L. delaying regulators, gibberellin A3 and N6-benzyladenine. The Osbeck, cv. Valencia) fruit was harvested from trees grown Chlase enzyme protein may, therefore, serve as a model system in Rehovot, Israel. Fruit was treated with a stream of for studying the hormonal molecular regulation of fruit rip- humidified air with or without ethylene at 80 Al/liter for 72 h ening and senescence. at 25°C in the dark. When indicated, fruit was dipped in GA or BA in water containing 5% (vol/vol) ethanol and 0.02% Senescence of green plant tissues involves breakdown of the Tween 20 for two 30-s periods. After 24 h at room temper- photosynthetic apparatus and destruction of chlorophyll ature, fruit was treated with ethylene or air as above. (Chl). Loss of Chl occurs during senescence of vegetative Enzyme Extraction. The flavedo (the outer colored layer of tissues as well as during fruit ripening. Despite the central Citrus fruit peel) was removed, homogenized in ice-cold 50 role ofChl in the life processes ofplants, little is known about mM Tris-HCl, pH 8.0/0.4 M sucrose, and centrifuged at its catabolism (1). The chlorophyllase (Chlase) system (Chl 12,000 x g for 10 min. The floating chloroplast pellet was chlorophyllidohydrolase, EC 3.1.1.14) was discovered 80 homogenized in the same buffer without sucrose and the years ago by Willstatter and Stoll (2), who suggested that resultant floating pellet was homogenized in acetone at removal of the phytol could be the first step in Chl catabo- -15°C for the preparation of an acetone powder. Acetone lism. Evidence accumulated in recent years points indeed to powders were lyophilized and stored at -20°C. the critical role ofChlase in the initial steps ofChl catabolism. For determination of Chlase in crude extracts, 30 mg of Accumulation of chlorophyllide, which is the immediate acetone powder was stirred with 5 ml of 5 mM potassium product of the Chlase reaction, has been demonstrated in phosphate, pH 7.0/50 mM KCl/0.24% Triton X-100 for 60 senescing Citrus fruit (3); in leaves of Citrus, Melia, and min at 30°C. The extract was filtered through glass wool and Pisum (4); and in a nonyellowing Festuca mutant (5). Recent centrifuged at 12,000 x g for 10 min. The supernatant was in vivo and in vitro studies of Chl breakdown in various used for Chlase assay and immunodetection. species revealed the presence of additional catabolic prod- Enzyme Assay and Protein Determination. Aliqots of en- ucts that could be derived only from chlorophyllide (3, 5). zyme were incubated at 37°C in 100 mM sodium phosphate, The effect of exogenous growth regulators on the loss of pH 7.0/0.24% Triton X-100/0.2 ,umol of Chl-a dissolved in Chl in senescing Citrus fruit peel is well documented (6-9). 100% acetone. The reaction was stopped by transferring 0.5 Ethylene, which accelerates the loss of Chl, has been shown ml of the reaction mixture to centrifuge tubes containing acetone/hexane/10 mM KOH, 4:6:1 (vol/vol). The mixture The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviations: BA, N6-benzyladenine; Chl, chlorophyll; Chlase, in accordance with 18 U.S.C. §1734 solely to indicate this fact. chlorophyllase; GA, gibberellin A3; BSA, bovine serum albumin. 9441 Downloaded by guest on September 29, 2021 9442 Plant Biology: Trebitsh et al. Proc. Natl. Acad Sci. USA 90 (1993) was shaken and centrifuged at 8000 x g for 5 min to separate anhydrase (29 kDa) were used as the standard proteins the phases. Chlorophyllide a was determined in the acetone (Sigma) for determining the molecular mass. The void volume phase spectrophotometrically, using an extinction coefficient of the column was determined with blue dextran. of 74.9 mM-1cm-1 at 667 nm (18). N-Terminal Sequencing. The purified Chlase was trans- One unit of enzyme activity was defined as the amount of ferred into a Problott membrane (Applied Biosystems). enzyme hydrolyzing 1 umol of Chl-a per min at 37°C. N-terminal sequencing was conducted with an Applied Bio- Protein concentration of enzyme extracts containing Tri- systems model 475A system, which includes a gas-phase ton X-100 was determined by the Biuret method (19); other- protein sequencer (model 470A) and a synchronized phenyl- wise, it was determined with the Bradford dye-binding assay thiohydantoin analyzer (model 120A) driven by a control and (Bio-Rad), using bovine serum albumin (BSA) as a standard. data analysis module (model 900A). Determination of Chl Content. Chl content was measured Preparation of Antigen and Antibody Production. Purified according to Moran and Porath (20). Five flavedo disks (11 enzyme (20 ,ug) was incubated for 10 min at 100°C in sample mm in diameter) were incubated overnight in 5 ml of N,N- buffer/5% (vol/vol) 2-mercaptoethanol/1% SDS and then dimethylformamide at 4°C and the Chl content was deter- separated by SDS/PAGE. After electrophoresis, the gel was mined spectrophotometrically. washed with deionized water, stained for 10 min with 0.05% Enzyme Purification. Soluble proteins were extracted by Coomassie brilliant blue R-250, and destained with several homogenizing and stirring 10 g ofacetone powder with 300 ml changes ofwater. The appropriate protein band was cut from of 10 mM potassium phosphate, pH 7.0/4% (vol/vol) the gel and stored at -20°C. (NH4)2SO4 for 60 min at 30°C. After centrifugation at 20,000 Prior to injection, the gel was fragmented by repeatedly x g for 20 min, no Chlase activity was detected in the passing it through a syringe in the presence of phosphate- supernatant. The precipitate was resuspended in 300 ml of 10 buffered saline (PBS) (21). Antibodies to Chlase were gen- mM potassium phosphate, pH 7.0/1% sodium cholate/10% erated in female rabbits by subcutaneous injection of20 jig of (vol/vol) glycerol and stirred for 60 min at 30°C. After protein, followed by several booster injections every 4-6 pelleting insoluble material at 20,000 x g for 20 min, Chlase weeks. Finally, to enhance sera activity against the active was precipitated out from the supernatant by adding solid enzyme, 20 ,ug of solubilized enzyme was again injected (NH4)2SO4 to a final concentration of 80% saturation, dia- followed by additional booster injections. After the second lyzed overnight against 1 mM potassium phosphate (pH 7.0) and each ofthe following injections, rabbits were bled and the (dialysis buffer), and concentrated by lyophilization.
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Peroxidase Activity As an Indicator of the Iron Deficiency in Banana
    IndianJ Plant Physiol., Vol. 5, No.4, (N.S.) pp. 389-391 (Oct.-Dec., 2000) SHORT COMMUNICATION PEROXIDASE ACTIVITY AS AN INDICATOR OF THE IRON DEFICIENCY IN BANANA K. BALAKRISHNAN Department ofCrop Physiology, Horticultural College and Research Institute, Periyakulam - 625 604 Received on 30 Sept., 1998, Revised on 30 Nov., 2000 Effect oflime induced iron chlorosis on enzyme activities was studied in Banana cv. Rasthali. Iron content decreased progressively as the intensity of chlorosis increased. Iron content had positive correlation with catalase, peroxidase, acid phosphatase, polyphenol oxidase and nitrate reductase. Among the enzymes, the activityofperoxidasehad highest positivesignificant(r=997**) associationwith Fecontent. Hence, peroxidase activity could serve as a diagnostic tool to indentify the Fe deficiency/Fe status in Banana. Key words: Banana, chlorosis, iron, peroxidase Among the micrountrients, Fe deficiency is the most ofgreenness in sixmonths old crop. This leafwas used for widespread in ourcountry(Takkar, 1996). Iron deficiency all the physiological analysis viz chlorophyll (Yoshida et is very common in calcareous soils and hence termed as al., 1976) chlorophyllase (Almela et al., 1990), catalase, lime induced iron chlorosis. In a normal green plant 60% peroxidase and polyphenol oxidase (Kar and Mishra, ofall leafiron is present in the chlorophyIl and hence any 1976), acid phosphatase (Parida and Mishra, 1980) and reduction in Fe contentcauses chlorosis (Chen and Barak, nitrate reductase (Klepperetal., 1973). The Fe content of 1982). Iron deficiency in plant not only causes chlorosis the plant sample was estimated using atomic absorption because of its involvement in chlorophyll synthesis, but spectrophotometry. Data were subjected to simple also reduces the activity ofcertain enzymes viz., catalase correlation co-efficient.
    [Show full text]
  • Phospholipases, Nucleic Acids Encoding Them and Methods for Making and Using Them
    (19) TZZ¥_Z_ _T (11) EP 3 190 182 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 12.07.2017 Bulletin 2017/28 C12N 9/20 (2006.01) C12N 1/20 (2006.01) C12N 15/00 (2006.01) C07H 21/04 (2006.01) (21) Application number: 16184319.8 (22) Date of filing: 08.03.2005 (84) Designated Contracting States: • FIELDING, Roderick AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Diego, CA 92109 (US) HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR • BROWN, Robert C. San Diego, CA 92130 (US) (30) Priority: 08.03.2004 US 796907 • VASAVADA, Amit Poway, CA 92064 (US) (62) Document number(s) of the earlier application(s) in • TAN, Xuqiu accordance with Art. 76 EPC: San Diego, CA 92130 (US) 05727242.9 / 1 748 954 • BADILLO, Adrian Poway, CA 92064 (US) (27) Previously filed application: • VAN HOEK, Wilhelmus P. 08.03.2005 PCT/US2005/007908 San Diego, CA 92126 (US) • JANSSEN, Giselle (71) Applicant: DSM IP Assets B.V. San Diego, CA 92121 (US) 6411 TE Heerlen (NL) • ISAAC, Charles Carlsbad, CA 92008 (US) (72) Inventors: • BURK, Mark J. • GRAMATIKOVA, Svetlana San Diego, CA 92130 (US) San Diego, CA 92122 (US) • HAZLEWOOD, Geoff (74) Representative: Cazemier, Anne Engeline et al San Diego, CA 92130 (US) DSM Intellectual Property •LAM,David P.O. Box 4 Encinitas, CA 92024 (US) 6100 AA Echt (NL) • BARTON, Nelson R. San Diego, CA 92131 (US) Remarks: • STURGIS, Blake G. •A request for correction of the description has been Solana Beach, CA 92075 (US) filed pursuant to Rule 139 EPC.
    [Show full text]
  • Legionella Genus Genome Provide Multiple, Independent Combinations for Replication in Human Cells
    Supplemental Material More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells Laura Gomez-Valero1,2, Christophe Rusniok1,2, Danielle Carson3, Sonia Mondino1,2, Ana Elena Pérez-Cobas1,2, Monica Rolando1,2, Shivani Pasricha4, Sandra Reuter5+, Jasmin Demirtas1,2, Johannes Crumbach1,2, Stephane Descorps-Declere6, Elizabeth L. Hartland4,7,8, Sophie Jarraud9, Gordon Dougan5, Gunnar N. Schroeder3,10, Gad Frankel3, and Carmen Buchrieser1,2,* Table S1: Legionella strains analyzed in the present study Table S2: Type IV secretion systems predicted in the genomes analyzed Table S3: Eukaryotic like domains identified in the Legionella proteins analyzed Table S4: Small GTPases domains detected in the genus Legionella as defined in the CDD ncbi domain database Table S5: Eukaryotic like proteins detected in the Legionella genomes analyzed in this study Table S6: Aminoacid identity of the Dot/Icm components in Legionella species with respect to orthologous proteins in L. pneumophila Paris Table S7: Distribution of seventeen highly conserved Dot/Icm secreted substrates Table S8: Comparison of the effector reperotoire among strains of the same Legionella species Table S9. Number of Dot/Icm secreted proteins predicted in each strain analyzed Table S10: Replication capacity of the different Legionella species analyzed in this study and collection of literature data on Legionella replication Table S11: Orthologous table for all genes of the 80 analyzed strains based on PanOCT. The orthologoss where defined with the program PanOCT using the parameters previously indicated in material and methods.) Figure S1: Distribution of the genes predicted to encode for the biosynthesis of flagella among all Legionella species.
    [Show full text]
  • „ WO 2Ull/15O2u3 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau „ (10) International Publication Number (43) International Publication Date 22 December 2011 (22.12.2011) WO 2Ull/15o2U3 Al (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C12N 9/18 (2006.0 1) A23L 1/2 77 (2006.0 1) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, A23K 1/165 (2006.01) CUB 3/00 (2006.01) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (21) International Application Number: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, PCT/IB20 11/052623 SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (22) International Filing Date: TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 16 June 201 1 (16.06.201 1) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (26) Publication Language: English ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 61/356,031 17 June 2010 (17.06.2010) EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 10166495. 1 18 June 2010 (18.06.2010) LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (71) Applicant (for all designated States except US): DANIS- GW, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Localization of Chlorophyllase in the Chloroplast Envelope
    Planta (1997)201:96-99 Planta © Springer-Verlag 1997 Rapid communication Localization of chlorophyllase in the chloroplast envelope Philippe Matile, Maya Schellenberg, Fabrizio Vicentini Department of Plant Biology, University of Ztirich, Zollikerstrasse 107, CH-8008 Ztirich, Switzerland Received: 29 April 1996 / Accepted: 3 July 1996 Abstract. Chlorophyllase catalyzes the first step in the Krossing (1940) was first in demonstrating the pres- catabolic pathway of chlorophyll. It is a constitutive en- ence of chlorophyllase in a chloroplast fraction and since zyme located in chloroplast membranes. In isolated plas- then the association of chlorophyllase with particles and tids the hydrolysis of the endogenous chlorophyll does pigment-protein complexes prepared in various ways not take place unless the membranes are solubilized in from chloroplast membranes has been confirmed repeat- the presence of detergent. The structural latency of chlo- edly (Ardao and Vennesland 1960; Terpstra 1974; 1976; rophyllase activity appears to be due to the differential Tarasenko et al. 1986). It has also been observed that locations of substrate and enzyme within the plastids. even in isolated pigment-protein complexes chlorophyll- Envelope membranes prepared from both chloroplasts ase remains latent; indeed, the hydrolysis of the endoge- and gerontoplasts contain chlorophyllase activity. The nous Chl requires the presence of either appropriate de- isolation of envelopes is associated with a marked in- tergents (Amir-Shapira et al. 1986) or acetone (Garcia crease in chlorophyllase activity per unit of protein. and Galindo 1991). Yields of chlorophyllase and of specific envelope mark- Attempts to establish the exact association of chloro- ers in the final preparations are similar, suggesting that phyllase with specific pigment-protein complexes have the enzyme may be located in the envelope.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • 31762103855621.Pdf (3.946Mb)
    Chlorophyll degradation in wheat lines elicited by cereal aphid infestation by Tao Wang A thesis submitted in partial fulfillment. of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Tao Wang (2003) Abstract: The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), is a serious pest of cereal crops and causes chlorosis along with a multiple of other symptoms. Temporal changes of plant and aphid [i.e., D. noxia, Rhopalosiphum padi (L.), the bird cherry-oat aphid] biomass from ‘Tugela’ wheat and three near-isogenic lines (isolines) (i.e., Tugela-Dnl, Tugela-Dn2 and Tugela-Dn5) were tested to assess aphid resistance of the Tugela wheat lines. When infested by D. noxia, all D. u emu-resistant isolines sustained growth. Biomass of D. noxia collected from non-resistant Tugela was significantly higher than those plants with resistant Dn genes. Biomass of D. noxia collected from Tugela-Dn1 and Dn2 plants was not different from each other, but was lower than that from Tugela-Dn5 In contrast, there was no difference in R. padi biomass from the four wheat lines. Photosynthetic pigment (chlorophylls a and b, and carotenoids) concentrations, chlorophyll a/b ratio, and chlorophyll/carotenoid ratio among the four wheat lines were assayed. Concentrations of chlorophylls a and b, and carotenoids were significantly lower in D. noxia-infested plants when compared with R. padi-infested and the uninfested plants. However, no difference was detected in chlorophyll a/b or chlorophylls/carotenoids ratio among Tugela wheat lines with different aphid treatments. When infested by D.
    [Show full text]
  • For the Control of Aedes Aegypti (Diptera: Culicidae) Larvae
    ISSN Printed: 0034-7744 ISSN digital: 2215-2075 DOI 10.15517/rbt.v69i1.41225 Crude extract of the tropical tree Gallesia integrifolia (Phytolaccaceae) for the control of Aedes aegypti (Diptera: Culicidae) larvae Wanessa de Campos Bortolucci1, Herika Line Marko de Oliveira1, Leiluana Roque Oliva2, José Eduardo Gonçalves2,3, Ranulfo Piau Júnior4, Carla Maria Mariano Fernandez1, Nelson Barros Colauto1, Giani Andrea Linde1 & Zilda Cristiani Gazim1* 1. Universidade Paranaense, Umuarama-PR, Brazil; [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 2. UniCesumar, Maringá-PR, Brazil; [email protected], [email protected] 3. Cesumar Institute of Science, Technology and Innovation - ICETI, UniCesumar, Maringá-PR, Brazil. 4. Graduate Program in Animal Science with emphasis on Bioactive Products. Universidade Paranaense, Umuarama-PR, Brazil; [email protected] * Correspondence Received 26-III-2020. Corrected 12-X-2020. Accepted 11-XI-2020. ABSTRACT. Introduction: Phytoinsecticides are alternatives to control insects in different stages, Gallesia integrifolia (Spreng.) Harms, Phytolacaceae family, popularly known as pau d’alho, garlic tree, and guararema in Brazil, is known due to its strong alliaceous odor because of the presence of sulfur molecules in the plant. This species presents biological activity and potential insecticide effect that is still unexploited. Objective: This study aimed to evaluate the biological activity of the ethanolic crude extract from G. integrifolia leaves, flowers, and fruits on the control of Aedes aegypti third-stage larvae and pupae. Methods: The botanical material was collected in city Umuarama, Paraná, Brazil at the coordinates (23º46’16” S & 53º19’38” WO), and altitude of 442 m, the fruits of G.
    [Show full text]
  • "Regulated Chlorophyll Degradation in Spinach Leaves During Storage"
    J. AMER. SOC. HORT. SCI. 116(1):58-62. 1991. Regulated Chlorophyll Degradation in Spinach Leaves during Storage Naoki Yamauchil and Alley E. Watada2 Horticultural Crops Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, BARC-West, Beltsville, MD 20705 Additional index words. Spinacia olearacea, chlorophyllase, peroxidase, chlorophyll oxidase, quality, senescence, ethylene, pigments, lipids Abstract. Degradation of chlorophyll in spinach (Spinacia olearacea L. cv. Hybrid 612) appeared to be regulated through the peroxidase-hydrogen peroxide pathway, which opens the porphyrin ring, thus resulting in a colorless compound. This conclusion was arrived at from the analysis of chlorophylls (Chls) and their metabolizes by HPLC and of enzyme activities catalyzing the degradative reactions. Chls decreased at 25C but not at 1C. The chlorophyll oxidase pathway was not active, as noted by the lack of accumulation of a reaction product named Chl a-1. Lipid peroxidation increased with storage, but the products of the reaction. did not degrade chlorophyll, as noted by the lack of increase in Chl a-1. Chlorophyllase activity increased, but chlorophyllide, the expected product of the reaction, changed minimally during senescence. Ethylene at 10 ppm did not alter the pathway that degraded chlorophyll in spinach. One of the symptoms of senescence in harvested leafy veg- oxidized by lipoxygenase and form hydroperoxides. Free radi- etables is loss of greenness with the degradation of chlorophyll cals, as one of the end products of unstable hydroperoxides, (Chl). Quantitative changes in Chl and degradation products of have the potential of degrading Chl. Chl and/or the hydrolyzing enzymes have been monitored in In parsley, Chl is degraded by a peroxidase-hydrogen per- vegetables, but the mechanism or pathways of degradation are oxide system containing apigenin, a major flavone required to not clear and appear to differ among commodities.
    [Show full text]
  • Genetic and Molecular Analysis of Two New Loci Controlling Flowering in Garden Pea
    Genetic and molecular analysis of two new loci controlling flowering in garden pea By A S M Mainul Hasan School of Natural Sciences Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania, July 2018 Declaration of originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledge in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Authority of access This thesis may be made available for loan. Copying and communication of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying and communication is permitted in accordance with the Copyright Act 1968. Date: 6-07-2018 A S M Mainul Hasan i Abstract Flowering is one of the key developmental process associated with the life cycle of plant and it is regulated by different environmental factors and endogenous cues. In the model species Arabidopsis thaliana a mobile protein, FLOWERING LOCUS T (FT) plays central role to mediate flowering time and expression of FT is regulated by photoperiod. While flowering mechanisms are well-understood in A. thaliana, knowledge about this process is limited in legume (family Fabaceae) which are the second major group of crops after cereals in satisfying the global demand for food and fodder.
    [Show full text]
  • Electronic Supplementary Information S9
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information S9 . Changes in gene expression due to As III exposure in the contrasting hairy roots. HYBRIDIZATION 1: LIST OF UP-REGULATED GENES Fold Change Probe Set ID ([0.1.HR] vs [0.HR]) Blast2GO description Genbank Accessions Serine/threonine -protein phosphatase 7 long form BT2M444_at 101.525 homolog AJ538927 DV159578_at 67.016 Retrotransposon Tnt1 s231d long terminal repeat DV159578 EB427540_at 49.6314 DNA repair metallo-beta-lactamase family protein EB427540 C3356_at 39.8605 Late embryogenesis abundant domain-containing protein DV157779 C7375_at 39.0452 wall-associated serine threonine kinase BP525596 C11724_at 37.103 5' exonuclease Apollo-like, transcript variant 2 AJ718369 EB682553_at 36.7071 EIF4A-2 EB682553 U92011_at 34.5134 apocytochrome b U92011 C5842_at 33.8783 heat shock protein 90 EB432766 AF211619_at 31.8765 AF211619 BC1M4448_s_at 31.2217 AJ538430 TT39_L17_at 29.7963 lysine-ketoglutarate reductase EB429701_at 29.3945 EB429701 BP137485_at 29.0749 Retrotransposon Tnt1 s231d long terminal repeat BP137485 CV021716_at 28.8452 Plastocyanin-like domain-containing protein CV021716 DW002835_at 27.8539 peroxidase DW002835 EB429725_at 27.6171 Carbonic anhydrase, transcript variant 1 (ca1), mRNA EB429725 TT19_B11_at 26.3284 50s ribosomal protein l16 DV158314_at 24.4108 DV158314 C7180_at 23.668 cytochrome oxidase subunit i BP528067 EB445091_at 22.6679 lysine-ketoglutarate reductase EB445091 GC227C_at
    [Show full text]