Functional Classification of Protein Domain Superfamilies for Protein

Total Page:16

File Type:pdf, Size:1020Kb

Functional Classification of Protein Domain Superfamilies for Protein Functional classification of protein domain superfamilies for protein function annotation Sayoni Das A thesis submitted for the degree of Doctor of Philosophy October 2016 Institute of Structural and Molecular Biology University College London Declaration I, Sayoni Das, confirm that the work presented in this thesis is my own except where otherwise stated. Where the thesis is based on work done by myself jointly with others or where information has been derived from other sources, this has been indicated in the thesis. Sayoni Das October 2016 Abstract Proteins are made up of domains that are generally considered to be indepen- dent evolutionary and structural units having distinct functional properties. It is now well established that analysis of domains in proteins provides an effective approach to understand protein function using a ‘domain grammar’. Towards this end, evolutionarily-related protein domains have been classified into homol- ogous superfamilies in CATH and SCOP databases. An ideal functional sub- classification of the domain superfamilies into ‘functional families’ can not only help in function annotation of uncharacterised sequences but also provide a use- ful framework for understanding the diversity and evolution of function at the do- main level. This work describes the development of a new protocol (FunFHMMer) for identifying functional families in CATH superfamilies that makes use of sequence patterns only and hence, is unaffected by the incompleteness of function annota- tions, annotation biases or misannotations existing in the databases. The result- ing family classification was validated using known functional information and was found to generate more functionally coherent families than other domain-based protein resources. A protein function prediction pipeline was developed exploiting the functional annotations provided by the domain families which was validated by a database rollback benchmark set of proteins and an independent assessment by CAFA 2. The functional classification was found to capture the functional diversity of superfamilies well in terms of sequence, structure and the protein-context. This aided studies on evolution of protein domain function both at the superfamily level and in specific proteins of interest. The conserved positions in the functional family alignments were found to be enriched in catalytic site residues and ligand- binding site residues which led to the development of a functional site prediction tool. Lastly, the function prediction tools were assessed for annotation of moon- lighting functions of proteins and a classification of moonlighting proteins was proposed based on their structure-function relationships. Acknowledgements The last four years of my life as a PhD student has been a remarkable experience. It would not have been possible for me to finish my doctoral research without the support and guidance that I received from many people. First and foremost, I would like to express my sincere gratitude to my super- visor, Prof. Christine Orengo for her invaluable guidance, patience and encour- agement throughout the period of my doctoral research and for giving me the opportunity to work in such a friendly and prestigious group. I am very grateful to her for being an excellent teacher and mentor. I would like to acknowledge UCL for the UCL Overseas Research Scholarship. I would like to thank my Thesis committee members, Dr. Andrew Martin and Prof. Snezana Djordjevic for their for their valuable insights and support during my thesis committee meetings. I would also like to thank Ishita Khan and Prof. Daisuke Kihara for helpful discussions on moonlighting proteins. I would like to thank all the past and present members of the Orengo group for always being kind and helpful and for making my stay in the group such a pleasant experience. In particular, thanks to Dr. Ian Sillitoe and Dr. Natalie Dawson for their help and advice throughout my research. Special thanks to Dr. David Lee and Dr. Jon Lewis for their help and support during CAFA 2. Thanks to Dr. Tony Lewis, Dr. Romain Studer and Dr. Paul Ashford for their help and advice with any computational or programming questions. Thanks are also due to Dr. Rob Rentzsch for his help when I first started with my research work. Special thanks to Francesco Carbone, Ivana Pilizota, Su Datt Lam, Tom Northy, Sonja Lehtinen, Saba Ferdous, Avneet Saini, Millie Pang for many amazing times. I would like also like to thank Jesse from the Biosciences IT and David Gregory and Tristan Clark from the CS Cluster Support for their timely support and help throughout my research work. Finally, a big thank you to everyone in the Room 627 and the rest of Institute of Structural and Molecular Biology for always being friendly and helpful. My fellow PhD student and best friend Priscilla has also played a big role in ACKNOWLEDGEMENTS 5 making my stay in London an enjoyable experience. I am ever so grateful to her for being there for me and for always being a source of hope and positivity. Special thanks to Arghya for being patient, understanding, encouraging and for his efforts for teaching me to be more pragmatic. Thanks to Ambalika and Kalpana for their love, understanding and support throughout my research work. I would like to thank Prateek, Pavi, Challenger, Abhishek, Anjul and Tanvi for many a wonderful times in the last four years. Also, thanks to all my other friends for their best wishes. I would like to thank my cousin, aunt and uncle for their love and for making me feel at home in London. Last but not the least, heartfelt thanks to my parents, my brother and my sister-in-law for their unwavering love and support at the most difficult times. Special thanks to the little bundle of joy in our family, Tara, who is growing up at an alarming rate and makes me smile whenever I see her latest picture or video. I am grateful to them for having faith in me. Finally, I would like to dedicate this thesis to my family. Contents Contents 6 List of Figures 12 List of Tables 18 List of Abbreviations 19 List of Publications 21 1 Introduction 22 1.1 Protein function . 23 1.1.1 Multi-faceted function of proteins . 25 1.1.2 Function annotation resources . 25 1.1.2.1 Enzyme Commission number . 26 1.1.2.2 Gene Ontology . 26 1.1.3 Widening function annotation gap . 30 1.2 Bioinformatics methods and protocols . 31 1.2.1 Protein sequence analysis . 31 1.2.1.1 Sequence alignments . 32 1.2.1.2 Identification of conserved residues . 36 1.2.1.3 Identification of specificity or functional determinants 39 1.2.1.4 Database searching methods . 41 1.2.1.5 Sequence alignment profiles . 42 1.2.2 Protein structure analysis . 44 1.2.2.1 Structural alignments . 44 1.2.3 Protein classification resources . 45 1.2.3.1 Sequence-based protein classifications . 46 1.2.3.2 Structure-based protein classifications . 47 1.3 Functional diversity in domain superfamilies . 52 1.3.1 Mechanisms of functional divergence . 52 CONTENTS 7 1.3.1.1 Structural mechanisms . 53 1.3.1.2 Molecular tinkering . 55 1.3.1.3 Different multi-domain contexts . 56 1.3.1.4 Promiscuity and moonlighting . 59 1.3.1.5 Combination of mechanisms . 59 1.3.2 Capturing diversity in superfamilies . 60 1.4 Overview of thesis . 60 2 FunFHMMer: functional classification of domain superfamilies 62 2.1 Background . 62 2.1.1 Clustering methods for protein sequences . 62 2.1.1.1 Hierarchical clustering . 63 2.1.1.2 Partitioning clustering . 63 2.1.1.3 Graph-based clustering . 64 2.1.1.4 Greedy incremental clustering . 65 2.1.2 Automated classification of protein families . 65 2.1.3 Quality assessment of automated classification methods . 67 2.1.3.1 Structure-Function Linkage Database (SFLD) . 68 2.1.4 Functional classification of CATH superfamilies . 70 2.1.4.1 GeMMA algorithm for clustering domain sequences 71 2.1.4.2 DFX protocol for functional classification . 74 2.2 Aims and Objectives . 75 2.3 Implementation . 75 2.3.1 Development of a protocol for functional classification using sequence patterns . 75 2.3.1.1 TPP-dependent enzyme superfamily as a prelimi- nary test case . 76 2.3.1.2 Exploiting specificity-determining positions in MSAs 76 2.3.1.3 Prediction of SDPs in TPP-dependent enzyme families . 78 CONTENTS 8 2.3.2 FunFHMMer algorithm . 79 2.3.2.1 Parameters affecting analysis of functional coher- ence of alignments . 81 2.3.2.2 Functional Coherence Index (FC)......... 86 2.3.3 Modification of the GeMMA tree . 88 2.3.4 Generation of CATH FunFams using FunFHMMer . 90 2.3.5 FunFam model generation and mapping of FunFam sequence and structural relatives . 90 2.3.6 Assessment of Functional Purity of FunFams . 92 2.3.6.1 TPP-dependent enzyme superfamily . 92 2.3.6.2 Structure-Function Linkage Database (SFLD) su- perfamilies . 93 2.3.6.3 Quality of functional classification based on EC annotations. 95 2.3.7 Functionally important residues highly conserved in FunFams 97 2.4 Conclusion . 100 3 Protein function annotation using FunFHMMer 102 3.1 Background . 102 3.1.1 Current approaches for protein function prediction . 102 3.1.1.1 Sequence homology . 102 3.1.1.2 Protein family resources . 104 3.1.1.3 Gene Ontology-based prediction methods . 106 3.1.1.4 Phylocogenomics . 107 3.1.1.5 Structural homology . 108 3.1.1.6 Combination of heterogenous data . 109 3.1.2 Assessment of function prediction methods . 110 3.1.3 Critical Assessment of Function Annotation (CAFA) . 113 3.1.3.1 CAFA evaluation metrics . 113 3.1.3.2 CAFA 1, 2010-2012 .
Recommended publications
  • Evolution of Biomolecular Structure Class II Trna-Synthetases and Trna
    University of Illinois at Urbana-Champaign Luthey-Schulten Group Theoretical and Computational Biophysics Group Evolution of Biomolecular Structure Class II tRNA-Synthetases and tRNA MultiSeq Developers: Prof. Zan Luthey-Schulten Elijah Roberts Patrick O’Donoghue John Eargle Anurag Sethi Dan Wright Brijeet Dhaliwal September 25, 2006. A current version of this tutorial is available at http://www.scs.uiuc.edu/˜schulten/tutorials/evolution/ CONTENTS 2 Contents 1 Introduction 4 1.1 The MultiSeq Bioinformatic Analysis Environment . 4 1.2 Aminoacyl-tRNA Synthetases: Role in translation . 4 1.3 Getting Started . 7 1.3.1 Requirements . 7 1.3.2 Copying the tutorial files . 7 1.3.3 Configuring MultiSeq . 7 1.3.4 Configuring BLAST for MultiSeq . 10 1.4 The Aspartyl-tRNA Synthetase/tRNA Complex . 12 1.4.1 Loading the structure into MultiSeq . 12 1.4.2 Selecting and highlighting residues . 13 1.4.3 Domain organization of the synthetase . 14 1.4.4 Nearest neighbor contacts . 14 2 Evolutionary Analysis of AARS Structures 17 2.1 Loading Molecules . 17 2.2 Multiple Structure Alignments . 18 2.3 Structural Conservation Measure: Qres . 19 2.4 Structure Based Phylogenetic Analysis . 21 2.4.1 Limitations of sequence data . 21 2.4.2 Structural metrics look further back in time . 23 3 Complete Evolutionary Profile of AspRS 26 3.1 BLASTing Sequence Databases . 26 3.1.1 Importing the archaeal sequences . 26 3.1.2 Now the other domains of life . 27 3.2 Organizing Your Data . 28 3.3 Finding a Structural Domain in a Sequence . 29 3.4 Aligning to a Structural Profile using ClustalW .
    [Show full text]
  • The Architecture of the Protein Domain Universe
    The architecture of the protein domain universe Nikolay V. Dokholyan Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599 ABSTRACT Understanding the design of the universe of protein structures may provide insights into protein evolution. We study the architecture of the protein domain universe, which has been found to poses peculiar scale-free properties (Dokholyan et al., Proc. Natl. Acad. Sci. USA 99: 14132-14136 (2002)). We examine the origin of these scale-free properties of the graph of protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does not consist of modules with uniform properties. Instead, we find the PDUG to be self-similar at all scales. We further characterize the PDUG architecture by studying the properties of the hub nodes that are responsible for the scale-free connectivity of the PDUG. We introduce a measure of the betweenness centrality of protein domains in the PDUG and find a power-law distribution of the betweenness centrality values. The scale-free distribution of hubs in the protein universe suggests that a set of specific statistical mechanics models, such as the self-organized criticality model, can potentially identify the principal driving forces of molecular evolution. We also find a gatekeeper protein domain, removal of which partitions the largest cluster into two large sub- clusters. We suggest that the loss of such gatekeeper protein domains in the course of evolution is responsible for the creation of new fold families. INTRODUCTION The principles of molecular evolution remain elusive despite fundamental breakthroughs on the theoretical front 1-5 and a growing amount of genomic and proteomic data, over 23,000 solved protein structures 6 and protein functional annotations 7-9.
    [Show full text]
  • Molecular Markers of Serine Protease Evolution
    The EMBO Journal Vol. 20 No. 12 pp. 3036±3045, 2001 Molecular markers of serine protease evolution Maxwell M.Krem and Enrico Di Cera1 ment and specialization of the catalytic architecture should correspond to signi®cant evolutionary transitions in the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St Louis, history of protease clans. Evolutionary markers encoun- MO 63110-1093, USA tered in the sequences contributing to the catalytic apparatus would thus give an account of the history of 1Corresponding author e-mail: [email protected] an enzyme family or clan and provide for comparative analysis with other families and clans. Therefore, the use The evolutionary history of serine proteases can be of sequence markers associated with active site structure accounted for by highly conserved amino acids that generates a model for protease evolution with broad form crucial structural and chemical elements of applicability and potential for extension to other classes of the catalytic apparatus. These residues display non- enzymes. random dichotomies in either amino acid choice or The ®rst report of a sequence marker associated with serine codon usage and serve as discrete markers for active site chemistry was the observation that both AGY tracking changes in the active site environment and and TCN codons were used to encode active site serines in supporting structures. These markers categorize a variety of enzyme families (Brenner, 1988). Since serine proteases of the chymotrypsin-like, subtilisin- AGY®TCN interconversion is an uncommon event, it like and a/b-hydrolase fold clans according to phylo- was reasoned that enzymes within the same family genetic lineages, and indicate the relative ages and utilizing different active site codons belonged to different order of appearance of those lineages.
    [Show full text]
  • Structural Basis for the Sheddase Function of Human Meprin Β Metalloproteinase at the Plasma Membrane
    Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane Joan L. Arolasa, Claudia Broderb, Tamara Jeffersonb, Tibisay Guevaraa, Erwin E. Sterchic, Wolfram Boded, Walter Stöckere, Christoph Becker-Paulyb, and F. Xavier Gomis-Rütha,1 aProteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Cientificas, Barcelona Science Park, E-08028 Barcelona, Spain; bInstitute of Biochemistry, Unit for Degradomics of the Protease Web, University of Kiel, D-24118 Kiel, Germany; cInstitute of Biochemistry and Molecular Medicine, University of Berne, CH-3012 Berne, Switzerland; dArbeitsgruppe Proteinaseforschung, Max-Planck-Institute für Biochemie, D-82152 Planegg-Martinsried, Germany; and eInstitute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, D-55128 Mainz, Germany Edited by Brian W. Matthews, University of Oregon, Eugene, OR, and approved August 22, 2012 (received for review June 29, 2012) Ectodomain shedding at the cell surface is a major mechanism to proteolysis” step within the membrane (1). This is the case for the regulate the extracellular and circulatory concentration or the processing of Notch ligand Delta1 and of APP, both carried out by activities of signaling proteins at the plasma membrane. Human γ-secretase after action of an α/β-secretase (11), and for signal- meprin β is a 145-kDa disulfide-linked homodimeric multidomain peptide peptidase, which removes remnants of the secretory pro- type-I membrane metallopeptidase that sheds membrane-bound tein translocation from the endoplasmic membrane (13). cytokines and growth factors, thereby contributing to inflammatory Recently, human meprin β (Mβ) was found to specifically pro- diseases, angiogenesis, and tumor progression.
    [Show full text]
  • Documentation and Localization of Force-Mediated Filamin a Domain
    ARTICLE Received 29 May 2014 | Accepted 10 Jul 2014 | Published 14 Aug 2014 DOI: 10.1038/ncomms5656 Documentation and localization of force-mediated filamin A domain perturbations in moving cells Fumihiko Nakamura1, Mia Song1, John H. Hartwig1 & Thomas P. Stossel1 Endogenously and externally generated mechanical forces influence diverse cellular activities, a phenomenon defined as mechanotransduction. Deformation of protein domains by application of stress, previously documented to alter macromolecular interactions in vitro, could mediate these effects. We engineered a photon-emitting system responsive to unfolding of two repeat domains of the actin filament (F-actin) crosslinker protein filamin A (FLNA) that binds multiple partners involved in cell signalling reactions and validated the system using F-actin networks subjected to myosin-based contraction. Expressed in cultured cells, the sensor-containing FLNA construct reproducibly reported FLNA domain unfolding strikingly localized to dynamic, actively protruding, leading cell edges. The unfolding signal depends upon coherence of F-actin-FLNA networks and is enhanced by stimulating cell contractility. The results establish protein domain distortion as a bona fide mechanism for mechanotransduction in vivo. 1 Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02445, USA. Correspondence and requests for materials should be addressed to F.N. (email: [email protected]). NATURE COMMUNICATIONS | 5:4656 | DOI: 10.1038/ncomms5656
    [Show full text]
  • Lipid-Targeting Pleckstrin Homology Domain Turns Its Autoinhibitory Face Toward the TEC Kinases
    Lipid-targeting pleckstrin homology domain turns its autoinhibitory face toward the TEC kinases Neha Amatyaa, Thomas E. Walesb, Annie Kwonc, Wayland Yeungc, Raji E. Josepha, D. Bruce Fultona, Natarajan Kannanc, John R. Engenb, and Amy H. Andreottia,1 aRoy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011; bDepartment of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115; and cInstitute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 Edited by Natalie G. Ahn, University of Colorado Boulder, Boulder, CO, and approved September 17, 2019 (received for review May 3, 2019) The pleckstrin homology (PH) domain is well known for its phos- activation loop phosphorylation site are also controlled by noncatalytic pholipid targeting function. The PH-TEC homology (PHTH) domain domains (17). In addition to the N-terminal PHTH domain, the within the TEC family of tyrosine kinases is also a crucial component TEC kinases contain a proline-rich region (PRR) and Src ho- of the autoinhibitory apparatus. The autoinhibitory surface on the mology 3 (SH3) and Src homology 2 (SH2) domains that impinge PHTH domain has been previously defined, and biochemical investi- on the kinase domain to alter the conformational ensemble and gations have shown that PHTH-mediated inhibition is mutually thus the activation status of the enzyme. A crystal structure of the exclusive with phosphatidylinositol binding. Here we use hydrogen/ BTK SH3-SH2-kinase fragment has been solved (10) showing that deuterium exchange mass spectrometry, nuclear magnetic resonance the SH3 and SH2 domains of BTK assemble onto the distal side of (NMR), and evolutionary sequence comparisons to map where and the kinase domain (the surface opposite the activation loop), how the PHTH domain affects the Bruton’s tyrosine kinase (BTK) stabilizing the autoinhibited form of the kinase in a manner similar domain.
    [Show full text]
  • Protein Family Classification with Neural Networks
    Protein Family Classification with Neural Networks Timothy K. Lee Tuan Nguyen Program in Biomedical Informatics Department of Statistics Stanford University Stanford University [email protected] [email protected] Abstract Understanding protein function from amino acid sequence is a fundamental prob- lem in biology. In this project, we explore how well we can represent biological function through examination of raw sequence alone. Using a large corpus of protein sequences and their annotated protein families, we learn dense vector rep- resentations for amino acid sequences using the co-occurrence statistics of short fragments. Then, using this representation, we experiment with several neural net- work architectures to train classifiers for protein family identification. We show good performance for a multi-class prediction problem with 589 protein family classes. 1 Introduction Next-generation sequencing technologies generate large amounts of biological sequence informa- tion in the form of DNA/RNA sequences. From DNA sequences we also know the amino acid sequences of proteins, which are the fundamental molecules that perform most biological functions. The functionality of a protein is thus encoded in the amino acid sequence and understanding the sequence-function relationship is a major challenge in bioinformatics. Investigating protein func- tional often involves structural studies (crystallography) or biochemical studies, which require time consuming efforts. Protein families are defined to group together proteins that share similar function, and the aim of our project is to predict protein family from raw sequence. We focus on training infor- mative vector representations for protein sequences and investigate various neural network models for the task of predicting a protein’s family.
    [Show full text]
  • Pyruvate-Phosphate Dikinase of Oxymonads and Parabasalia and the Evolution of Pyrophosphate-Dependent Glycolysis in Anaerobic Eukaryotes† Claudio H
    EUKARYOTIC CELL, Jan. 2006, p. 148–154 Vol. 5, No. 1 1535-9778/06/$08.00ϩ0 doi:10.1128/EC.5.1.148–154.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Pyruvate-Phosphate Dikinase of Oxymonads and Parabasalia and the Evolution of Pyrophosphate-Dependent Glycolysis in Anaerobic Eukaryotes† Claudio H. Slamovits and Patrick J. Keeling* Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada Received 29 September 2005/Accepted 8 November 2005 In pyrophosphate-dependent glycolysis, the ATP/ADP-dependent enzymes phosphofructokinase (PFK) and pyruvate kinase are replaced by the pyrophosphate-dependent PFK and pyruvate phosphate dikinase (PPDK), respectively. This variant of glycolysis is widespread among bacteria, but it also occurs in a few parasitic anaerobic eukaryotes such as Giardia and Entamoeba spp. We sequenced two genes for PPDK from the amitochondriate oxymonad Streblomastix strix and found evidence for PPDK in Trichomonas vaginalis and other parabasalia, where this enzyme was thought to be absent. The Streblomastix and Giardia genes may be related to one another, but those of Entamoeba and perhaps Trichomonas are distinct and more closely related to bacterial homologues. These findings suggest that pyrophosphate-dependent glycolysis is more widespread in eukaryotes than previously thought, enzymes from the pathway coexists with ATP-dependent more often than previously thought and may be spread by lateral transfer of genes for pyrophosphate-dependent enzymes from bacteria. Adaptation to anaerobic metabolism is a complex process (PPDK), respectively (for a comparison of these reactions, see involving changes to many proteins and pathways of critical reference 21).
    [Show full text]
  • Gent Forms of Metalloproteinases in Hydra
    Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin.
    [Show full text]
  • Annotation of Glycolysis and Gluconeogenesis Pathways
    A metabolic insight into the Asian citrus psyllid: Annotation of glycolysis and gluconeogenesis pathways Blessy Tamayo, Kyle Kercher, Tom D’Elia, Helen Wiersma-Koch, Surya Saha, Teresa Shippy, Susan J. Brown, and Prashant Hosmani Introduction Glycolysis, as in other animals, is the major metabolic pathway that insects use to extract energy from carbohydrates [1]. This process consists of ten reactions that convert one molecule of glucose into two molecules of pyruvate within the cytosol, generating a net gain of two molecules of ATP. Simple carbohydrates are acquired through the insect diet and processed through glycolysis and the central carbohydrate metabolic steps. Comparative genomic analysis of Apis mellifera, Drosophila melanogaster, and Anopheles gambiae has revealed the presence of genes for metabolic pathways that support dietary habits dependent on sugar-rich substrates ([2]; [3]; [4]; [5]). In addition to processing sugars for energy, glycolysis also serves as a central pathway that serves as both a source of important precursors and destination for key intermediates from many metabolic pathways. Gluconeogenesis is the process through which glucose is synthesized from non- carbohydrate substrates, and is closely associated with glycolysis. Eleven enzymatic reactions occur during gluconeogenesis. Eight of the enzymes involved in the steps also catalyze the reverse reactions in glycolysis and the three remaining enzymes are specific to gluconeogenesis. 1 Gluconeogenesis generated carbohydrates are required as substrate for anaerobic glycolysis, synthesis of chitin, glycoproteins, polyols and glycoside detoxication products [1]. Gluconeogenesis is essential in insects to maintain sugar homeostasis and serves as the initial process towards the generation of glucose disaccharide trehalose, which is the main circulating sugar in the insect hemolymph ([6]; [7]).
    [Show full text]
  • Pleckstrin Homology Domains and the Cytoskeleton
    FEBS 25627 FEBS Letters 513 (2002) 71^76 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Minireview provided by Elsevier - Publisher Connector Pleckstrin homology domains and the cytoskeleton Mark A. Lemmona;Ã, Kathryn M. Fergusona, Charles S. Abramsb;Ã aDepartment of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA bDepartment of Medicine, University of Pennsylvania School of Medicine, 912 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA Received 20 October 2001; revised 30 October 2001; accepted 14 November 2001 First published online 6 December 2001 Edited by Gianni Cesareni and Mario Gimona some 27 di¡erent proteins contain a total of 36 PH domains, Abstract Pleckstrin homology (PH) domains are 100^120 amino acid protein modules best known for their ability to bind making the PH domain the 17th most common yeast domain phosphoinositides. All possess an identical core L-sandwich fold [6]. The sequence characteristics used to identify PH domains and display marked electrostatic sidedness. The binding site for appear to de¢ne a particular protein fold that has now been phosphoinositides lies in the center of the positively charged face. seen in the X-ray crystal structures and/or nuclear magnetic In some cases this binding site is well defined, allowing highly resonance (NMR) structures of some 13 di¡erent PH domains specific and strong ligand binding. In several of these cases the [7^12]. Each of these PH domains possesses an almost iden- PH domains specifically recognize 3-phosphorylated phospho- tical core L-sandwich structure (described below), despite pair- inositides, allowing them to drive membrane recruitment in wise sequence identities between PH domains that range from response to phosphatidylinositol 3-kinase activation.
    [Show full text]
  • Biased Signaling of G Protein Coupled Receptors (Gpcrs): Molecular Determinants of GPCR/Transducer Selectivity and Therapeutic Potential
    Pharmacology & Therapeutics 200 (2019) 148–178 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential Mohammad Seyedabadi a,b, Mohammad Hossein Ghahremani c, Paul R. Albert d,⁎ a Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran b Education Development Center, Bushehr University of Medical Sciences, Iran c Department of Toxicology–Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran d Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada article info abstract Available online 8 May 2019 G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Origi- nally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins Keywords: that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCR GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between Gprotein cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein trans- β-arrestin ducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Selectivity Biased Signaling Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral fac- Therapeutic Potential tors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated ‘biased signaling’. In this regard, receptor sequence alignment and mutagenesis have helped to iden- tify key receptor domains for receptor/transducer specificity.
    [Show full text]