An Overview of Studies on Trophic Ecology in the Marine Environment: Achievements and Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of Studies on Trophic Ecology in the Marine Environment: Achievements and Perspectives Neotropical Biology and Conservation 6(3):143-155, september-december 2011 © by Unisinos - 10.4013/nbc.2011.63.01 An overview of studies on trophic ecology in the marine environment: Achievements and perspectives Um panorama sobre os estudos de ecologia trófica em ambientes marinhos: Resultados e perspectivas Martin Lindsey Christoffersen1* [email protected] Abstract Classical approaches to trophic ecology of marine species has focused on trophic struc- Maria Elisabeth de Araújo2 ture, trophodynamics, dominant and keystone species, ecosystem maturity, energy [email protected] transfer, and anthropic effects. A recent breakthrough for evaluating the structure of com- munities has been the application of phylogenetic methods to community ecology. This Joaquim Olinto Branco3 recent approach is known as community phylogenetics. Although this perspective is still [email protected] not common in trophic studies, phylogenetic methods promise new insights into the old ecological question on how communities are assembled in time. Integrating phylogene- tics and ecosystem function creates the possibility of predicting ecological consequen- ces of biodiversity shifts in a changing world. Once we understand the structure and functioning of the ecosystem in a historical context, we should be able to avoid human or natural disturbances that draw a system away from its state of maximum complexity. Key words: trophic structure, trophodynamics, keystone species, ecosystem maturity, energy transfer, anthropic effects, community phylogenetics. Resumo Abordagens clássicas para estudos de ecologia trófica de species marinhas focam a es- trutura trófica, a trofodinâmica, espécies dominantes e espécies-chave, maturidade de ecossistemas, transferência de energia, e efeitos antrópicos. Um avanço recente para avaliar a estrutura de comunidades foi a aplicação de métodos filogenéticos à ecologia de comunidades. Esta abordagem recente é conhecida como filogenia de comunida- des. Embora esta perspectiva ainda não seja comum em estudos tróficos, métodos filogenéticos prometem novas abordagens à velha questão ecológica de como entender a organização de comunidades ao longo do tempo. A integração de filogenia com o funcionamneto de ecossistemas cria a possibilidade de prever as consequências de alterações na biodiversidade num mundo em mudança. Uma vez entendida a estrutura e o funcionamento do ecossitema num contexto histórico, deveremos poder evitar alte- 1 Universidade Federal da Paraíba, De- rações naturais ou humanas que tendem a desviar o sistema ecológico do seu estado partamento de Sistemática e Ecologia, Cidade Universitária, 58.059-900, João de complexidade máxima. Pessoa, PB, Brazil. 2 Universidade Federal de Pernambuco, Palavras-chave: estrutura trófica, trofodinâmica, espécies-chave, maturidade de ecossis- Departamento de Oceanografia, Av. temas, transferência de energia, efeitos antrópicos, filogenia de comunidades. Arquitetura, s/n, Cidade Universitária, 50.740-550, Recife, PE, Brazil. 3 Centro de Ciências Tecnológicas da Terra e do Mar, Universidade Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Cx. P 360, CEP 88302-202, Itajaí, SC, Brazil. * Corresponding author Martin Lindsey Christoffersen, Maria Elisabeth de Araújo, Joaquim Olinto Branco Introduction trophic functions in coastal systems between basal and top species. Chains represent the best way the communi- involving more than six species are Most studies on marine macrobenthic ties can adapt to exploit the existing rare (Hutchinson, 1959; Pimm, 1982; communities have been conducted resources as a response to physical Cohen et al., 1986). The knowledge in north temperate regions. Tropical gradients (Carvalho et al., 2010). of diet is important for the establish- and subtropical macrobenthos is less Marine biodiversity is higher in ben- ment of its nutritional needs and of known, especially the South Atlantic thic rather than pelagic systems. The the interactions with other organisms fauna (Santos and Pires-Vanin, 2004). best way to conserve marine diversity (Albertoni et al., 2003). W. Odum and In relation to temperate regions, tropi- is to conserve habitat and landscape Heald (1975) used effective trophic cal systems are typically dominated diversity in the coastal area. Feeding level to group various taxa into com- by smaller species (Froese et al., 2004, relationships may cause invasions, mon feeding categories. The emphasis 2005). There is a reduced biomass in extirpations, and population fluctua- in all of these studies has been at the low latitudes, compared to middle tions of a species that dramatically ecosystem level (Christian and Lucz- and high latitudes (Chardy and Cla- affect other species within a variety kovich, 1999). vier, 1988). In the tropical zone this of natural habitats (Williams et al., The analysis of the trophic structure kind of study is more complex since 2002). Macrobenthic communities are of benthic communities is also a use- a large number of species are present now used worldwide as bioindicators ful way to determine the main energy and are frequently represented by only (Diaz and Rosenberg, 1995; Belan, flow at the ecosystem level. Most ec- a few individuals. The high biological 2003; Carvalho et al., 2006; Cardoso ological research has relied on trophic diversity obscures the recognition of et al., 2007). groups as a classification scheme for specific food webs responsible for Food webs, descriptions of who eats defining functional diversity (Micheli the larger part of the energy flow whom in ecosystems, provide com- and Halpern, 2005). Food web analy- (Paiva, 1993; Santos and Pires-Vanin, plex yet tractable depictions of bio- sis has also been a well-documented 2004). Trophic structure of tropical diversity, species interactions, and tool to achieve a fisheries ecosys- fish communities in particular con- ecosystem structure and function tem approach and to understand the trast with those from temperate re- (Dunne et al., 2002). Strong and ecosystem under various scenarios gions in terms of more efficient use of weak trophic links are responsible (Abarca-Arenas et al., 2007; Pauly et relatively low-quality food resources for ecological dynamics among di- al., 1998, 2000). (Harmelin-Vivien, 2002; Floeter et verse assemblages of species. The use Both abiotic (temperature, salinity, al., 2004; Ferreira et al., 2004). of trophic groups to characterize the substrate) and biotic factors (compe- Coastal ecosystems are relatively rich role of macrobenthos in marine com- tition, predation) play a role in shap- in nutrients and play a significant role munities is advantageous since it in- ing macrobenthic communities (An- in the development of many species corporates estimates of macrobenthic germeier and Winston, 1998). Food of economic interest. Studies on the community structure, and assesses or availability plays an important role feeding habits of macroinvertebrates infers community functioning (Gaston in the structure of coastal commu- and demersal fish, even those of a et al., 1995; Boaventura et al., 1999). nities in addition to abiotic factors descriptive character, provide basic On the other hand, feeding patterns of (Vaslet et al., 2010). Predation func- information for understanding the macrobenthic organisms have been tions in resource limitation (Verity, trophic relations of species (Rocha et frequently used to distinguish ecologi- 1998). Trophic interactions are one al., 2007; Gasalla and Soares, 2001). cal zones (Pearson and Rosenberg, of the determinants of distribution Coastal systems such as lagoons, sea 1987; Boaventura et al., 1999; Dias and abundance of organisms (Duarte grass banks and estuaries are char- et al., 2001). Knowledge of both web and Garcia 2004). Trophic ecology of acterized by high eco-physiological structure and interaction strengths is a macrobenthic communities in estuar- capacities of biological communities key to understanding how ecological ies may be used not only to infer com- against extremely varying environ- communities function (Berlow et al., munity function, but may also provide mental conditions, in space and time 2004). insights into community responses (Villanueva et al., 2006; Bascompte, The feeding roles of species are thus following disturbances (Gaston et 2009; Ings et al., 2009). The insta- important tools for the evaluation of al., 1998). Trophic structure has thus bility of the coastal zone affects the the structure and functioning of eco- become one of the primary ways by benthic community, determining the systems (Krebs, 1989). Species occur which ecologists organize communi- patterns of distribution and density at top, intermediate and basal trophic ties and ecosystems (Christian and and the trophic relationships among levels (Williams and Martinez, 2000). Luckzkovich, 1999). the species (Santos and Pires-Vanin, Food chains tend to be short, typi- In this paper we overview the accom- 2004). The existence of gradients of cally with only three or four kinds plishments of classical approaches to 144 Volume 6 number 3 september - december 2011 An overview of studies on trophic ecology in the marine environment: Achievements and perspectives the study of trophic structure in ma- Assigning of feeding types to each Luczkovich et al. (2003) defined rine environments, and then point out species is sometimes ambiguous and trophic role similarity as species that present developments and future di- not consensual (Chardy and Clavier, play the same structural roles, even rections in community phylogenetics.
Recommended publications
  • Nutrients and Herbivores Impact Grassland Stability Across Multiple
    Nutrients and herbivores impact grassland stability across multiple spatial scales through different pathways Q. Q. Chen1, Shaopeng Wang1, Eric Seabloom2, Andrew MacDougall3, Elizabeth Borer2, Jonathan Bakker4, Ian Donohue5, Johannes Knops6, John Morgan7, Oliver Carroll3, Michael Crawley8, Miguel Bugalho9, Sally A Power3, Anu Eskelinen10, Risto Virtanen11, Anita Risch12, Martin Schuetz13, Carly Stevens14, Maria Caldeira15, Sumanta Bagchi3, Juan Alberti16, and Yann Hautier2 1Peking University 2University of Minnesota 3Affiliation not available 4University of Washington 5Trinity College Dublin 6Xi’an Jiaotong-Liverpool University 7La Trobe University 8Imperial College 9University of Lisbon Centre for Applied Ecology Prof Baeta Neves 10German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig 11University of Oulu 12Swiss Federal Institute for Forest Snow and Landscape Research 13Swiss Federal Institute for Forest, Snow and Landscape research 14Lancaster University 15University of Lisbon 16Instituto de Investigaciones Marinas y Costeras (IIMyC; UNMDP-CONICET) April 16, 2021 Abstract Nutrients and herbivores have independent effects on the temporal stability of aboveground biomass in grasslands; however, their joint effects may not be additive and may also depend on spatial scales. In an experiment adding nutrients and excluding herbivores in 34 globally distributed grasslands, we found that nutrients and herbivores mainly had additive effects. Nutrient addition consistently reduced stability at the local and larger spatial scales (aggregated local communities), while herbivore exclusion weakly reduced stability at these scales. Moreover, nutrient addition reduced stability primarily by causing changes in local community composition over time and by reducing local species richness and evenness. In contrast, herbivore exclusion weakly reduced stability at the larger scale mainly by decreasing asynchronous dynamics among local communities, but also by weakly decreasing local species richness.
    [Show full text]
  • Resilience and Stability of Ecological Systems Author(S): C
    Resilience and Stability of Ecological Systems Author(s): C. S. Holling Reviewed work(s): Source: Annual Review of Ecology and Systematics, Vol. 4 (1973), pp. 1-23 Published by: Annual Reviews Stable URL: http://www.jstor.org/stable/2096802 . Accessed: 08/01/2013 19:27 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annual Reviews is collaborating with JSTOR to digitize, preserve and extend access to Annual Review of Ecology and Systematics. http://www.jstor.org This content downloaded on Tue, 8 Jan 2013 19:27:43 PM All use subject to JSTOR Terms and Conditions Copyright 1973. All rights reserved RESILIENCE AND STABILITY + 4050 OF ECOLOGICALSYSTEMS C. S. Holling Instituteof ResourceEcology, University of BritishColumbia, Vancouver, Canada INTRODUCTION Individualsdie, populationsdisappear, and speciesbecome extinct. That is one view of the world.But anotherview of the worldconcentrates not so much on presence or absenceas upon the numbersof organismsand the degreeof constancyof their numbers.These are two verydifferent ways of viewingthe behaviorof systemsand the usefulnessof the view dependsvery much on the propertiesof the system concerned. If we are examining a particular device designed by the engineer to perform specific tasks under a rather narrow range of predictable external condi- tions, we are likely to be more concerned with consistent nonvariable performance in which slight departuresfrom the performance goal are immediately counteracted.
    [Show full text]
  • Envisioning Present and Future Land-Use Change Under Varying Ecological Regimes and Their Influence on Landscape Stability
    sustainability Commentary Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability Marcela Prokopová 1, Luca Salvati 1,2,*, Gianluca Egidi 3, OndˇrejCudlín 1, Renata Vˇceláková 1, Radek Plch 1 and Pavel Cudlín 1 1 Global Change Research Institute, Czech Academy of Sciences, Lipová 9, CZ-37005 Ceskˇ é Budˇejovice,Czech Republic 2 Council for Agricultural Research and Economics (CREA), Viale S. Margherita 80, I-52100 Arezzo, Italy 3 Department of Agricultural and Forestry Sciences (DAFNE), Tuscia University, Via San Camillo de Lellis, I-01100 Viterbo, Italy * Correspondence: [email protected] Received: 30 July 2019; Accepted: 22 August 2019; Published: 27 August 2019 Abstract: Climate change plays an important role in shaping ecological stability of landscape systems. Increasing weather fluctuations such as droughts threaten the ecological stability of natural and anthropogenic landscapes. Uncertainty exists regarding the validity of traditional landscape assessment schemes under climate change. This commentary debates the main factors that threaten ecological stability, discussing basic approaches to interpret landscape functioning. To address this pivotal issue, the intimate linkage between ecological stability and landscape diversity is explored, considering different approaches to landscape stability assessment. The impact of land-use changes on landscape stability is finally discussed. Assessment methodologies and indicators are reviewed and grouped into homogeneous classes based on a specific nomenclature of stability aspects which include landscape composition, fragmentation and connectivity, thermodynamic and functional issues, biodiversity, soil degradation, and ecological disturbance. By considering land-use change as one of the most important factors underlying climate change, individual components of landscape stability are finally delineated and commented upon.
    [Show full text]
  • Food Webs, Body Size, and Species Abundance in Ecological Community Description
    Food Webs, Body Size, and Species Abundance in Ecological Community Description TOMAS JONSSON, JOEL E. COHEN, AND STEPHEN R. CARPENTER I. Summary ............................................... 2 A. Trivariate Relationships................................ 2 B. Bivariate Relationships ................................ 3 C. Univariate Relationships . ............................ 4 D. EVect of Food Web Perturbation ........................ 4 II. Introduction . ........................................... 4 A. Definitions .......................................... 7 III. Theory: Integrating the Food Web and the Distributions of Body Size and Abundance . ................................... 9 A. Predicting Community Patterns.......................... 10 B. The Distribution of Body Sizes .......................... 13 C. Rank-Abundance and Food Web Geometry . ............. 15 D. Linking the Food Web to the Relationship Between Body Size and Numerical Abundance . ............................ 16 E. Trophic Pyramids and the Relationship Between Consumer and Resource Abundance Across Trophic Levels ............ 18 IV. Data: Tuesday Lake . ................................... 20 A. The Manipulation . ................................... 21 B. The Data ........................................... 22 V. Results: Patterns and Relationships in the Pelagic Community of Tuesday Lake ........................................... 25 A. Trivariate Distributions: Food Web, Body Size, and Abundance 25 B. Bivariate Distributions. ................................ 29 C.
    [Show full text]
  • Stability of Degree Heterogeneous Ecological Networks
    Stability of Degree Heterogeneous Ecological Networks Gang Yan, Neo D. Martinez, and Yang-Yu Liu A classic measure of ecological stability describes the tendency of a community to return to equilibrium after small perturbation. While many advances show how the network structure of these communities severely constrains such tendencies, few if any of these advances address one of the most fundamental properties of network structure: heterogeneity among nodes with different numbers of links. Here we systematically explore this property of “degree heterogeneity” and find that its effects on stability systematically vary with different types of interspecific interactions. Degree heterogeneity is always destabilizing in ecological networks with both competitive and mutualistic interactions while its effects on networks of predator-prey interactions such as food webs depend on prey contiguity, i.e., the extent to which the species consume an unbroken sequence of prey in community niche space. Increasing degree heterogeneity stabilizes food webs except those with the most contiguity. These findings help explain previously unexplained observations that food webs are highly but not completely contiguous and, more broadly, deepens our understanding of the stability of complex ecological networks with important implications for other types of dynamical systems. Understanding the intricate relationship between the structure and dynamics of complex ecological systems has been one of the key issues in ecology [1-4]. Equilibrium stability of ecological systems, a measure that considers an ecological system stable if it returns to its equilibrium after a small perturbation, has been a central research topic for over four decades [1, 5-15]. Empirical observations suggest that communities with more species are more stable, i.e., a positive diversity-stability relationship [16].
    [Show full text]
  • AN ABSTRACT of the DISSERTATION of Todd William Miller for the Degree of Doctor of Philosophy in Fisheries Science Presented On
    AN ABSTRACT OF THE DISSERTATION OF Todd William Miller for the degree of Doctor of Philosophy in Fisheries Science presented on May 9, 2006. Title: Trophic Dynamics of Marine Nekton and Zooplankton in the Northern California Current Pelagic Ecosystem. Abstract approved: Hiram W. Li Richard D. Brodeur The Northern California Current (NCC) ecosystem exhibits extreme seasonal, interannual and interdecadal shifts in the abiotic environment and shifts in primary and higher production. This variability is also apparent in the spatial structure of the ecosystem with nearshore-shelf waters (<150 m isobath) being highly productive and having a different community structure relative to more offshore-slope (>150 m) waters. Very little is known of the trophic relationships between primary consumers and higher trophic levels within this system, and the potential influence of spatial gradients in productivity and community composition on trophic structure. This dissertation research covers several important aspects of trophic dynamics within the NCC ecosystem through the use of conventional dietary analysis and stable isotope analysis of multiple trophic levels. From June and August 2000 and 2002 cruises off the shelf-slope ecosystem from Northern California to central Oregon, I collected and analyzed the diets from 25 species of pelagic nekton (Chapter 2). Trophic groups were formed from agglomerative hierarchical cluster analysis of prey contribution to nekton diet, with cluster groups described by indicator species analysis. Seasonal, interannual and interdecadal comparisons in diet were examined for some nekton species. Results from general description of diets and cluster analysis showed clustering based primarily on prey of copepods, euphausiids, decapod larvae and larval-juvenile fishes, representing lower (copepods), middle (euphausiids and decapod larvae) and upper (larval-juvenile fishes) trophic groups, but that many species exhibited omnivory by feeding on prey several levels down the food web.
    [Show full text]
  • Territorial Systems of Ecological Stability in Land Consolidation Projects (Example of Proposal for the Lses of Klasov Village, Slovak Republic)
    Ekológia (Bratislava) Vol. 34, No. 4, p. 356–370, 2015 DOI:10.1515/eko-2015-0032 TERRITORIAL SYSTEMS OF ECOLOGICAL STABILITY IN LAND CONSOLIDATION PROJECTS (EXAMPLE OF PROPOSAL FOR THE LSES OF KLASOV VILLAGE, SLOVAK REPUBLIC) MILENA MOYZEOVÁ, PAVOL KENDERESSY Institute of Landscape Ecology, Slovak Academy of Sciences, Štefánikova 3, 814 99 Bratislava, Slovak Republic; e- -mail: milena.moyzeová@savba.sk, [email protected] Abstract Moyzeová M., Kenderessy P.: Territorial systems of ecological stability in land consolidation pro- jects (Example of proposal for the LSES of Klasov village, Slovak Republic). Ekológia (Bratislava), Vol. 34, No. 4, p. 356–370, 2015. The observation of spatial and functional relations within ecosystems (Forman, Godron, 1993; Míchal, 1994; Jongman, 1995 a,b) and Territorial Systems of Ecological Stability and their design have a successful history not only in the Czech Republic, Germany, Austria, Hungary but also in Slovakia and other countries. The main principle of their design is to create an ecological ne- twork in intensively utilised landscape through revitalisation of the existing natural habitats and creation of new ones along with the proposal of their protection and management. The presen- ted contribution represents an example of the proposed spatial framework of ecological stability and management measures in the cadastral area of Klasov. The cadastral area is characterised by prevailing large-block arable parcels and viticultural history. In spite of the agricultural charac- ter of the landscape, there are also areas with dispersed non-forest woody vegetation, preserved bank vegetation along streams, wetlands with reed associations, forest growths and mosaics of old abandoned orchards and vineyards as the potential elements of the proposed spatial frame- work of ecological stability.
    [Show full text]
  • Resilience, Invariability, and Ecological Stability Across Levels of Organization
    bioRxiv preprint doi: https://doi.org/10.1101/085852; this version posted November 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Resilience, Invariability, and Ecological Stability across Levels of Organization Bart Haegeman1, Jean-Fran¸coisArnoldi1, Shaopeng Wang1;2;3, Claire de Mazancourt1, Jos´eM. Montoya1;4 & Michel Loreau1 1 Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France 2 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leip- zig, Germany 3 Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany 4 Ecological Networks and Global Change Group, Theoretical and Experimental Ecol- ogy Station, CNRS and Paul Sabatier University, Moulis, France Abstract Ecological stability is a bewildering broad concept. The most common stability measures are asymptotic resilience, widely used in theoretical studies, and measures based on tempo- ral variability, commonly used in empirical studies. We construct measures of invariability, defined as the inverse of variability, that can be directly compared with asymptotic re- silience. We show that asymptotic resilience behaves like the invariability of the most variable species, which is often a rare species close to its extinction boundary. Therefore, asymptotic resilience displays complete loss of stability with changes in community composi- tion. In contrast, mean population invariability and ecosystem invariability are insensitive to rare species and quantify stability consistently whether details of species composition are considered or not. Invariability provides a consistent framework to predict diversity- stability relationships that agree with empirical data at population and ecosystem levels.
    [Show full text]
  • Navigating the Complexity of Ecological Stability
    Ecology Letters, (2016) 19: 1172–1185 doi: 10.1111/ele.12648 REVIEW AND SYNTHESIS Navigating the complexity of ecological stability Abstract Ian Donohue,1,2* Human actions challenge nature in many ways. Ecological responses are ineluctably complex, Helmut Hillebrand,3 Jose M. demanding measures that describe them succinctly. Collectively, these measures encapsulate the Montoya,4 Owen L. Petchey,5 Stuart overall ‘stability’ of the system. Many international bodies, including the Intergovernmental L. Pimm,6 Mike S. Fowler,7 Kevin Science-Policy Platform on Biodiversity and Ecosystem Services, broadly aspire to maintain or Healy,1,2 Andrew L. Jackson,1,2 enhance ecological stability. Such bodies frequently use terms pertaining to stability that lack clear Miguel Lurgi,8 Deirdre McClean,1,2 definition. Consequently, we cannot measure them and so they disconnect from a large body of 9 theoretical and empirical understanding. We assess the scientific and policy literature and show Nessa E. O’Connor, Eoin J. that this disconnect is one consequence of an inconsistent and one-dimensional approach that O’Gorman10 and Qiang Yang1,2 ecologists have taken to both disturbances and stability. This has led to confused communication of the nature of stability and the level of our insight into it. Disturbances and stability are multi- dimensional. Our understanding of them is not. We have a remarkably poor understanding of the impacts on stability of the characteristics that define many, perhaps all, of the most important ele- ments of global change. We provide recommendations for theoreticians, empiricists and policy- makers on how to better integrate the multidimensional nature of ecological stability into their research, policies and actions.
    [Show full text]
  • Diversifying Livestock Promotes Multidiversity and Multifunctionality in Managed Grasslands
    Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands Ling Wanga, Manuel Delgado-Baquerizob,c, Deli Wanga,1, Forest Isbelld, Jun Liua, Chao Fenga, Jushan Liua, Zhiwei Zhonga, Hui Zhua, Xia Yuana, Qing Changa, and Chen Liua aKey Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Changchun, 130024 Jilin, China; bCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; cDepartamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, Spain; and dDepartment of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108 Edited by Robin S. Reid, Colorado State University, Fort Collins, CO, and accepted by Editorial Board Member Ruth S. DeFries January 26, 2019 (receivedfor review April 27, 2018) Increasing plant diversity can increase ecosystem functioning, ecosystems worldwide, including in China. Theory predicts that in- stability, and services in both natural and managed grasslands, creasing herbivore diversity could increase the production of herbi- but the effects of herbivore diversity, and especially of livestock vores (27) and there is some evidence that mixed grazing can diversity, remain underexplored. Given that managed grazing is increase livestock production (28, 29). However, the wider impacts of the most extensive land use worldwide,
    [Show full text]
  • Predation Alters Relationships Between Biodiversity and Temporal Stability
    vol. 173, no. 3 the american naturalist march 2009 ൴ Predation Alters Relationships between Biodiversity and Temporal Stability Lin Jiang,* Hena Joshi, and Shivani N. Patel School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332 Submitted July 11, 2008; Accepted October 7, 2008; Electronically published January 20, 2009 Online enhancements: appendixes. sity–temporal stability patterns at different levels of eco- abstract: Ecologists disagree on how diversity affects stability. At logical organization. At the community or ecosystem level, the heart of the controversy is the relationship between diversity and population stability, with conflicting findings from both theoretical theory (Yachi and Loreau 1999; Ives and Hughes 2002; and empirical studies. To help reconcile these results, we propose Thebault and Loreau 2005) and most empirical studies that this relationship may depend on trophic complexity, such that (McNaughton 1977; Dodd et al. 1994; Tilman 1996; positive relations tend to emerge in multitrophic but not single- McGrady-Steed and Morin 2000; Valone and Hoffman trophic communities. This hypothesis is based on the premise that 2003a; Caldeira et al. 2005; Steiner et al. 2005; Romanuk stabilizing weak trophic interactions restrain population oscillations et al. 2006; Tilman et al. 2006; Vogt et al. 2006; Zhang associated with strong trophic interactions in diverse multitrophic communities. We tested this hypothesis using simple freshwater bac- and Zhang 2006; van Ruijven and Berendse 2007; but see terivorous protist communities differing in diversity with and with- Petchey et al. 2002; Gonzalez and Descamps-Julien 2004; out a predatory protist species. Coupling weak and strong trophic Morin and McGrady-Steed 2004; France and Duffy 2006; interactions reduced population temporal variability of the strong- Zhang and Zhang 2006) indicate a positive diversity effect interacting species, supporting the stabilizing role of weak interac- on temporal stability, often attributed to several com- tions.
    [Show full text]
  • A Random Matrix Approach
    www.nature.com/scientificreports OPEN The feasibility and stability of large complex biological networks: a random matrix approach Received: 24 November 2017 Lewi Stone1,2 Accepted: 9 May 2018 In the 70’s, Robert May demonstrated that complexity creates instability in generic models of ecological Published: xx xx xxxx networks having random interaction matrices A. Similar random matrix models have since been applied in many disciplines. Central to assessing stability is the “circular law” since it describes the eigenvalue distribution for an important class of random matrices A. However, despite widespread adoption, the “circular law” does not apply for ecological systems in which density-dependence operates (i.e., where a species growth is determined by its density). Instead one needs to study the far more complicated eigenvalue distribution of the community matrix S = DA, where D is a diagonal matrix of population equilibrium values. Here we obtain this eigenvalue distribution. We show that if the random matrix A is locally stable, the community matrix S = DA will also be locally stable, providing the system is feasible (i.e., all species have positive equilibria D > 0). This helps explain why, unusually, nearly all feasible systems studied here are locally stable. Large complex systems may thus be even more fragile than May predicted, given the difculty of assembling a feasible system. It was also found that the degree of stability, or resilience of a system, depended on the minimum equilibrium population. Network models have become indispensable tools for helping understand the biological processes responsible for the stability and sustainability of biological systems1–21.
    [Show full text]