Chapter 3N Che

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3N Che CHAPTER 3: PHASE EQUILIBRIA 3.1 Introduction Multiphase and solution thermodynamics deal with the composition of two or more phases in equilibrium. Thus, the maximum concentration of a species in an aqueous stream in contact with an organic stream can be estimated by these calculations. This can establish the contaminant levels obtained in various wastewater streams. A second major application is in partitioning of a pollutant into various phases in the environment. These multiphase thermodynamic calculations are important in design of heterogeneous reactors. In this section, we provide some basic definitions and illustrate the applications of thermodynamic models to waste minimization. First, we provide various definitions for thermodynamic equilibrium and then illustrate them with applications. 3.2 Vapor-Liquid Equilibrium The ratio of the composition measure such as (mole fraction) in the vapor phase to that in the liquid phase at equilibrium is referred to as the K-value. Note that K y is dimensionless. y K i (1) yi x i eq where yi is the mole fraction of species i in the vapor phase and xi is the liquid. For ideal solutions, the Raoults law applies. This can be stated as follows. At equilibrium the partial pressure of a species in the gas phase, Pi , is equal to the mole fraction of the species in the liquid vap phase, , multiplied by its vapor pressure, Pi , at the given temperature. It is also equal to the product of the mole fraction in the gas phase, , and total pressure, P. vap Pi xi Pi yi P (2) Hence, Raoults law can also be stated as: P vap y x i (3) i i P Therefore, the K-factor for ideal mixtures is: Pvap K i (4) yi P For non-ideal solutions, the K-factors can be calculated using the activity coefficients. However, for many environmental applications, one can use experimentally reported K-factors. These calculations are, for example, useful to find the composition of the vapor phase in contact with the liquid in the reactor. If there is a fugitive emission, then we can estimate the amount of the toxic chemicals that has inadvertently escaped to the atmosphere. Vapor-liquid equilibrium is also useful in estimating the maximum concentration of VOC in a mixture. For dilute solutions, or for gaseous species, Henry’s law, given by Eq. (5) is more convenient. xi Hi yi P (5) -1 where Hi is the Henry’s law constant, (atm ) and P (atm) is the total pressure. With this definition, we find that Ky-factor is 1 1 K yi (6) H i P Vapor pressure data is often needed to estimate the levels of VOC emissions at various temperatures. The data for pure liquids are well represented by the Antoine equation. B log P* A (7a) 10 T C or by an empirical extended Antoine is equation: k vap 2 k7 ln P k1 k4T k5 ln T k6T (7b) k3 T 3.3 Gas-Liquid Systems Phase equilibrium between a dissolving gas, A, and its dissolved concentration, A H2 O or A , in water is often expressed (for dilute systems) through the equilibrium constant KA A H 2O 1 1 K A mol L atm (8) PA which is a function of temperature H d nKA Aab dT RT 2 (9) where HHHis the heat of absorption. Typically H 0 Aab Asolution A gas Aab so that as temperature increases the equilibrium constant decreases. Actually, this equilibrium constant is called Henry's constant in environmental chemistry and is independent of composition for dilute solutions. 1 A H2 O HAAA P H M atm (10) Note that the units of H A are now (mole/L atm) and M means mole/liter. Large HA implies a very soluble gas. Low HA is a slightly soluble gas. (Attention: some books define the reciprocal of HA as Henry's constant). The solubility of various gases is indicated in Table 3.1. ˆ A dimensionless Henry's constant, H A , is obtained if gas concentration is used in its definition instead of partial pressure, i.e [A]g = P A /R T AHO HHRTˆ 2 (11) AA A g Note that depending on the composition measures used to define equilibrium, Henry’s constants appear 1 1 ˆ with different units e.g. H A atm , H A M atm , H . It is unfortunate that the chemical engineering and some environmental engineering literature use the reciprocal of the above defined Henry’s constant under the same name! We have adopted here the definitions prevalent in the 2 environmental chemistry literature although the chemical engineering approach is the older and the better established one. A website posted as part of the course gives the various definitions and conversion factors (http://www.mpch-mainz.mpg.de/~sander/res/henry.html). The following relationship holds between the above constants ˆ K A H A H A H A (12) CL TOT CL TOT CL TOT RT Where CL TOT is the total liquid molar concentration. TABLE 3.1: Henry’s Law coefficients of atmospheric gases dissolving in liquid watera 3.3.1 Water Ionization The ionization or recombination reaction for water is for all practical purposes infinitely fast H2O H OH (13) so that equilibrium is always established ' 16 Kw H OH/ H2 O 1.82 x 10 M at 298 K (14) Since molar concentration of water is constant, we get 14 2 Kw H OH1.0 x 10 M at 298 K (15) 3 For pure water [H + ] = [O H - ] = 1.0 -7 M. Recall that p H = - log [H + ] (16) so that p H = 7 for pure water at 298K. 3.3.2 Carbon Dioxide/Water Equilibria Carbon dioxide is prevalent in the atmosphere and undergoes the following equilibrations in water (with equilibrium constant for each step indicated in parentheses) CO 2 (g) H 2O CO 2 H 2O (KCh) (17a) CO2 H 2O H HCO3 (KC1) (17b) 2 HCO3 H CO3 (KC2) (KC2) (17c) We can express now the concentration of dissolved carbon containing species (ions) in terms of these constants CO H O K p H p (18a) 22 ch CO2 CO 2 CO 2 K CO H O H K p HCO C1 2 2 CO22 C1 CO 3 HH (18b) K HCO H K K p 2 C 23CO22 C12 C CO CO 3 2 H H (18c) We also must always satisfy the electroneutrality relation 2 H HCO332 CO OH (19) Upon substitution of the above expressions into the electroneutrality equation we get: H K p2 H K K p CO2 C1 CO 2 CO 2 C 1 C 2 CO 2 Kw H 2 (19a) HHH Upon rearrangement a cubic equation for [H + ] results 3 H K H K p H20 H K K p (20) w CO2 C1 CO 2 CO 2 C 1 C 2 CO 2 Given the temperature, T, and partial pressure of CO, p , the hydrogen ion concentration [H+ ] can 2 CO2 be calculated from the above equation and pH obtained. (For temperature dependence see Table 3.2). At p = 330 ppm (= 3.3 x 10-4 atm) at 283oK the solution pH = 5.6 ([H +] = 2.51 x 10-6 CO2 (mol/L)). This is often called the pH of 'pure" rain water. 4 TABLE 3.2: Thermodynamic data for calculating temperature dependence of aqueous equilibrium constants 3.3.3 Sulfur Dioxide/Water Equilibrium The scenario is similar as in the case of CO2 absorption (21a) SO g H O SO H O H 2 2 2 2 SO2 (21b) SO2 H 2 O H HSO 3 KS 1 2 HSO3 H SO 3 KS 2 (21c) The concentrations of dissolved species are SO H O H p (22a) 22 SO22 SO H K p SO22 s1 SO HSO 3 H (22b) H K K p 2 SO22 S12 S SO SO 3 2 H (22c) Satisfying the electroneutrality relation requires 3 H K H K p H20 H K K p (23) w SO2 S1 SO 2 SO 2 S 1 S 2 SO 2 The total dissolved sulfur in oxidation state + 4 is S(IV) and its concentration is given by KKKSSS1 1 2 * S IV HSO p SO1 2 H S() IV p SO (24) 2 2H H 2 * where H S() IV is the modified Henry's constant which we can express as *2pH pH HHKKK1 10 10 (25) S( IV ) SO2 S 1 S 1 S 2 5 Clearly the modified constant H * is dependent on pH. The larger the pH, i.e the more alkaline the solution, the larger the equilibrium content of S (IV ). This is illustrated in Figure 3.2 for p =0.2 ppb and 200 ppb. SO2 FIGURE 3.2: Equilibrium dissolved S(IV) as a function of pH, gas-phase partial pressure of SO2 and temperature Let us express now mole fractions of various dissolved sulfur species as function of pH (really these are mole ratios, i.e moles of a particular sulfur species dividied by total moles of S (IV ) or mole fractions on water free basis since water is the dominant component. SO H O 1 (26a) XKKK22 1 10pH 10 2 pH 0SO22 H OS IV S 1 S 1 S 2 HSO (26b) 3 1 pH pH 1 1XKK1SS 1 10 2 10 HSO 3 S IV 2 (26c) SO 1 XKKK3 112 10pH1 10 pH 3SO 2 SSS 2 1 2 3 S IV Common notation for these are 0,, 1 2 in aquatic chemistry. 9 Figure 3.3 illustrates the above three mole fractions for p 10 atm (1 ppb).
Recommended publications
  • Modelling and Numerical Simulation of Phase Separation in Polymer Modified Bitumen by Phase- Field Method
    http://www.diva-portal.org Postprint This is the accepted version of a paper published in Materials & design. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Zhu, J., Lu, X., Balieu, R., Kringos, N. (2016) Modelling and numerical simulation of phase separation in polymer modified bitumen by phase- field method. Materials & design, 107: 322-332 http://dx.doi.org/10.1016/j.matdes.2016.06.041 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188830 ACCEPTED MANUSCRIPT Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method Jiqing Zhu a,*, Xiaohu Lu b, Romain Balieu a, Niki Kringos a a Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden b Nynas AB, SE-149 82 Nynäshamn, Sweden * Corresponding author. Email: [email protected] (J. Zhu) Abstract In this paper, a phase-field model with viscoelastic effects is developed for polymer modified bitumen (PMB) with the aim to describe and predict the PMB storage stability and phase separation behaviour. The viscoelastic effects due to dynamic asymmetry between bitumen and polymer are represented in the model by introducing a composition-dependent mobility coefficient. A double-well potential for PMB system is proposed on the basis of the Flory-Huggins free energy of mixing, with some simplifying assumptions made to take into account the complex chemical composition of bitumen.
    [Show full text]
  • Solutes and Solution
    Solutes and Solution The first rule of solubility is “likes dissolve likes” Polar or ionic substances are soluble in polar solvents Non-polar substances are soluble in non- polar solvents Solutes and Solution There must be a reason why a substance is soluble in a solvent: either the solution process lowers the overall enthalpy of the system (Hrxn < 0) Or the solution process increases the overall entropy of the system (Srxn > 0) Entropy is a measure of the amount of disorder in a system—entropy must increase for any spontaneous change 1 Solutes and Solution The forces that drive the dissolution of a solute usually involve both enthalpy and entropy terms Hsoln < 0 for most species The creation of a solution takes a more ordered system (solid phase or pure liquid phase) and makes more disordered system (solute molecules are more randomly distributed throughout the solution) Saturation and Equilibrium If we have enough solute available, a solution can become saturated—the point when no more solute may be accepted into the solvent Saturation indicates an equilibrium between the pure solute and solvent and the solution solute + solvent solution KC 2 Saturation and Equilibrium solute + solvent solution KC The magnitude of KC indicates how soluble a solute is in that particular solvent If KC is large, the solute is very soluble If KC is small, the solute is only slightly soluble Saturation and Equilibrium Examples: + - NaCl(s) + H2O(l) Na (aq) + Cl (aq) KC = 37.3 A saturated solution of NaCl has a [Na+] = 6.11 M and [Cl-] =
    [Show full text]
  • Chapter 2: Basic Tools of Analytical Chemistry
    Chapter 2 Basic Tools of Analytical Chemistry Chapter Overview 2A Measurements in Analytical Chemistry 2B Concentration 2C Stoichiometric Calculations 2D Basic Equipment 2E Preparing Solutions 2F Spreadsheets and Computational Software 2G The Laboratory Notebook 2H Key Terms 2I Chapter Summary 2J Problems 2K Solutions to Practice Exercises In the chapters that follow we will explore many aspects of analytical chemistry. In the process we will consider important questions such as “How do we treat experimental data?”, “How do we ensure that our results are accurate?”, “How do we obtain a representative sample?”, and “How do we select an appropriate analytical technique?” Before we look more closely at these and other questions, we will first review some basic tools of importance to analytical chemists. 13 14 Analytical Chemistry 2.0 2A Measurements in Analytical Chemistry Analytical chemistry is a quantitative science. Whether determining the concentration of a species, evaluating an equilibrium constant, measuring a reaction rate, or drawing a correlation between a compound’s structure and its reactivity, analytical chemists engage in “measuring important chemical things.”1 In this section we briefly review the use of units and significant figures in analytical chemistry. 2A.1 Units of Measurement Some measurements, such as absorbance, A measurement usually consists of a unit and a number expressing the do not have units. Because the meaning of quantity of that unit. We may express the same physical measurement with a unitless number may be unclear, some authors include an artificial unit. It is not different units, which can create confusion. For example, the mass of a unusual to see the abbreviation AU, which sample weighing 1.5 g also may be written as 0.0033 lb or 0.053 oz.
    [Show full text]
  • Page 1 of 6 This Is Henry's Law. It Says That at Equilibrium the Ratio of Dissolved NH3 to the Partial Pressure of NH3 Gas In
    CHMY 361 HANDOUT#6 October 28, 2012 HOMEWORK #4 Key Was due Friday, Oct. 26 1. Using only data from Table A5, what is the boiling point of water deep in a mine that is so far below sea level that the atmospheric pressure is 1.17 atm? 0 ΔH vap = +44.02 kJ/mol H20(l) --> H2O(g) Q= PH2O /XH2O = K, at ⎛ P2 ⎞ ⎛ K 2 ⎞ ΔH vap ⎛ 1 1 ⎞ ln⎜ ⎟ = ln⎜ ⎟ − ⎜ − ⎟ equilibrium, i.e., the Vapor Pressure ⎝ P1 ⎠ ⎝ K1 ⎠ R ⎝ T2 T1 ⎠ for the pure liquid. ⎛1.17 ⎞ 44,020 ⎛ 1 1 ⎞ ln⎜ ⎟ = − ⎜ − ⎟ = 1 8.3145 ⎜ T 373 ⎟ ⎝ ⎠ ⎝ 2 ⎠ ⎡1.17⎤ − 8.3145ln 1 ⎢ 1 ⎥ 1 = ⎣ ⎦ + = .002651 T2 44,020 373 T2 = 377 2. From table A5, calculate the Henry’s Law constant (i.e., equilibrium constant) for dissolving of NH3(g) in water at 298 K and 340 K. It should have units of Matm-1;What would it be in atm per mole fraction, as in Table 5.1 at 298 K? o For NH3(g) ----> NH3(aq) ΔG = -26.5 - (-16.45) = -10.05 kJ/mol ΔG0 − [NH (aq)] K = e RT = 0.0173 = 3 This is Henry’s Law. It says that at equilibrium the ratio of dissolved P NH3 NH3 to the partial pressure of NH3 gas in contact with the liquid is a constant = 0.0173 (Henry’s Law Constant). This also says [NH3(aq)] =0.0173PNH3 or -1 PNH3 = 0.0173 [NH3(aq)] = 57.8 atm/M x [NH3(aq)] The latter form is like Table 5.1 except it has NH3 concentration in M instead of XNH3.
    [Show full text]
  • THE SOLUBILITY of GASES in LIQUIDS Introductory Information C
    THE SOLUBILITY OF GASES IN LIQUIDS Introductory Information C. L. Young, R. Battino, and H. L. Clever INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values are recommended and in some cases a smoothing equation is given to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages. The following paper by E. Wilhelm gives a rigorous thermodynamic treatment on the solubility of gases in liquids. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas-liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the criti­ cal temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.
    [Show full text]
  • Introduction to the Solubility of Liquids in Liquids
    INTRODUCTION TO THE SOLUBILITY OF LIQUIDS IN LIQUIDS The Solubility Data Series is made up of volumes of comprehensive and critically evaluated solubility data on chemical systems in clearly defined areas. Data of suitable precision are presented on data sheets in a uniform format, preceded for each system by a critical evaluation if more than one set of data is available. In those systems where data from different sources agree sufficiently, recommended values are pro­ posed. In other cases, values may be described as "tentative", "doubtful" or "rejected". This volume is primarily concerned with liquid-liquid systems, but related gas-liquid and solid-liquid systems are included when it is logical and convenient to do so. Solubilities at elevated and low 'temperatures and at elevated pressures may be included, as it is considered inappropriate to establish artificial limits on the data presented. For some systems the two components are miscible in all proportions at certain temperatures or pressures, and data on miscibility gap regions and upper and lower critical solution temperatures are included where appropriate and if available. TERMINOLOGY In this volume a mixture (1,2) or a solution (1,2) refers to a single liquid phase containing components 1 and 2, with no distinction being made between solvent and solute. The solubility of a substance 1 is the relative proportion of 1 in a mixture which is saturated with respect to component 1 at a specified temperature and pressure. (The term "saturated" implies the existence of equilibrium with respect to the processes of mass transfer between phases) • QUANTITIES USED AS MEASURES OF SOLUBILITY Mole fraction of component 1, Xl or x(l): ml/Ml nl/~ni = r(m.IM.) '/.
    [Show full text]
  • Chapter 15: Solutions
    452-487_Ch15-866418 5/10/06 10:51 AM Page 452 CHAPTER 15 Solutions Chemistry 6.b, 6.c, 6.d, 6.e, 7.b I&E 1.a, 1.b, 1.c, 1.d, 1.j, 1.m What You’ll Learn ▲ You will describe and cate- gorize solutions. ▲ You will calculate concen- trations of solutions. ▲ You will analyze the colliga- tive properties of solutions. ▲ You will compare and con- trast heterogeneous mixtures. Why It’s Important The air you breathe, the fluids in your body, and some of the foods you ingest are solu- tions. Because solutions are so common, learning about their behavior is fundamental to understanding chemistry. Visit the Chemistry Web site at chemistrymc.com to find links about solutions. Though it isn’t apparent, there are at least three different solu- tions in this photo; the air, the lake in the foreground, and the steel used in the construction of the buildings are all solutions. 452 Chapter 15 452-487_Ch15-866418 5/10/06 10:52 AM Page 453 DISCOVERY LAB Solution Formation Chemistry 6.b, 7.b I&E 1.d he intermolecular forces among dissolving particles and the Tattractive forces between solute and solvent particles result in an overall energy change. Can this change be observed? Safety Precautions Dispose of solutions by flushing them down a drain with excess water. Procedure 1. Measure 10 g of ammonium chloride (NH4Cl) and place it in a Materials 100-mL beaker. balance 2. Add 30 mL of water to the NH4Cl, stirring with your stirring rod.
    [Show full text]
  • Lecture 3. the Basic Properties of the Natural Atmosphere 1. Composition
    Lecture 3. The basic properties of the natural atmosphere Objectives: 1. Composition of air. 2. Pressure. 3. Temperature. 4. Density. 5. Concentration. Mole. Mixing ratio. 6. Gas laws. 7. Dry air and moist air. Readings: Turco: p.11-27, 38-43, 366-367, 490-492; Brimblecombe: p. 1-5 1. Composition of air. The word atmosphere derives from the Greek atmo (vapor) and spherios (sphere). The Earth’s atmosphere is a mixture of gases that we call air. Air usually contains a number of small particles (atmospheric aerosols), clouds of condensed water, and ice cloud. NOTE : The atmosphere is a thin veil of gases; if our planet were the size of an apple, its atmosphere would be thick as the apple peel. Some 80% of the mass of the atmosphere is within 10 km of the surface of the Earth, which has a diameter of about 12,742 km. The Earth’s atmosphere as a mixture of gases is characterized by pressure, temperature, and density which vary with altitude (will be discussed in Lecture 4). The atmosphere below about 100 km is called Homosphere. This part of the atmosphere consists of uniform mixtures of gases as illustrated in Table 3.1. 1 Table 3.1. The composition of air. Gases Fraction of air Constant gases Nitrogen, N2 78.08% Oxygen, O2 20.95% Argon, Ar 0.93% Neon, Ne 0.0018% Helium, He 0.0005% Krypton, Kr 0.00011% Xenon, Xe 0.000009% Variable gases Water vapor, H2O 4.0% (maximum, in the tropics) 0.00001% (minimum, at the South Pole) Carbon dioxide, CO2 0.0365% (increasing ~0.4% per year) Methane, CH4 ~0.00018% (increases due to agriculture) Hydrogen, H2 ~0.00006% Nitrous oxide, N2O ~0.00003% Carbon monoxide, CO ~0.000009% Ozone, O3 ~0.000001% - 0.0004% Fluorocarbon 12, CF2Cl2 ~0.00000005% Other gases 1% Oxygen 21% Nitrogen 78% 2 • Some gases in Table 3.1 are called constant gases because the ratio of the number of molecules for each gas and the total number of molecules of air do not change substantially from time to time or place to place.
    [Show full text]
  • Chemistry C3102-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, ANU 5.0 Thermodynamics of Polymer Solution
    Chemistry C3102-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, ANU 5.0 Thermodynamics of Polymer Solutions In this section, we investigate the solubility of polymers in small molecule solvents. Solubility, whether a chain goes “into solution”, i.e. is dissolved in solvent, is an important property. Full solubility is advantageous in processing of polymers; but it is also important for polymers to be fully insoluble - think of plastic shoe soles on a rainy day! So far, we have briefly touched upon thermodynamic solubility of a single chain- a “good” solvent swells a chain, or mixes with the monomers, while a“poor” solvent “de-mixes” the chain, causing it to collapse upon itself. Whether two components mix to form a homogeneous solution or not is determined by minimisation of a free energy. Here we will express free energy in terms of canonical variables T,P,N , i.e., temperature, pressure, and number (of moles) of molecules. The free energy { } expressed in these variables is the Gibbs free energy G G(T,P,N). (1) ≡ In previous sections, we referred to the Helmholtz free energy, F , the free energy in terms of the variables T,V,N . Let ∆Gm denote the free eneregy change upon homogeneous mix- { } ing. For a 2-component system, i.e. a solute-solvent system, this is simply the difference in the free energies of the solute-solvent mixture and pure quantities of solute and solvent: ∆Gm G(T,P,N , N ) (G0(T,P,N )+ G0(T,P,N )), where the superscript 0 denotes the ≡ 1 2 − 1 2 pure component.
    [Show full text]
  • Chemistry 1220 Chapter 17 Practice Exam
    Dr. Fus CHEM 1220 CHEMISTRY 1220 CHAPTER 17 PRACTICE EXAM All questions listed below are problems taken from old Chemistry 123 exams given here at The Ohio State University. Read Chapter 17.4 – 17.7 and complete the following problems. These problems will not be graded or collected, but will be very similar to what you will see on an exam. Ksp and Molar Solubility (Section 17.4) The solubility product expression equals the product of the concentrations of the ions involved in the equilibrium, each raised to the power of its coefficient in the equilibrium expression. For example: PbCl2(s) Pb2+(aq) + 2Cl-(aq) Ksp=[Pb2+] [Cl-]2 Why isn’t the concentration of PbCl2 in the denominator of the Ksp? Recall from Section 15.4 that whenever a pure solid or pure liquid is in a heterogeneous (multiple phases present) equilibrium, its concentration is not included in the equilibrium expression. 1. The solubility product expression for La2(CO3)3 is Ksp = ? First, write the equilibrium expression. The subscript following each atom in the solid is the number of ions of that atom in solution. The total charges must add to zero: La2(CO3)3(s) 2La3+(aq) + 3CO32-(aq) Given the information above and the equilibrium expression: Ksp=[La3+]2 [CO32-]3 2. The solubility product expression for Zn3(PO4)2 is Ksp = ? Zn3(PO4)2(s) 3Zn2+(aq) + 2PO43-(aq) Ksp=[Zn2+]3 [PO43-]2 3. The solubility product expression for Al2(CO3)3 is Ksp = ? Al2(CO3)3(s) 2Al3+(aq) + 3CO32-(aq) Ksp=[Al3+]2 [CO32-]3 4.
    [Show full text]
  • Gp-Cpc-01 Units – Composition – Basic Ideas
    GP-CPC-01 UNITS – BASIC IDEAS – COMPOSITION 11-06-2020 Prof.G.Prabhakar Chem Engg, SVU GP-CPC-01 UNITS – CONVERSION (1) ➢ A two term system is followed. A base unit is chosen and the number of base units that represent the quantity is added ahead of the base unit. Number Base unit Eg : 2 kg, 4 meters , 60 seconds ➢ Manipulations Possible : • If the nature & base unit are the same, direct addition / subtraction is permitted 2 m + 4 m = 6m ; 5 kg – 2.5 kg = 2.5 kg • If the nature is the same but the base unit is different , say, 1 m + 10 c m both m and the cm are length units but do not represent identical quantity, Equivalence considered 2 options are available. 1 m is equivalent to 100 cm So, 100 cm + 10 cm = 110 cm 0.01 m is equivalent to 1 cm 1 m + 10 (0.01) m = 1. 1 m • If the nature of the quantity is different, addition / subtraction is NOT possible. Factors used to check equivalence are known as Conversion Factors. GP-CPC-01 UNITS – CONVERSION (2) • For multiplication / division, there are no such restrictions. They give rise to a set called derived units Even if there is divergence in the nature, multiplication / division can be carried out. Eg : Velocity ( length divided by time ) Mass flow rate (Mass divided by time) Mass Flux ( Mass divided by area (Length 2) – time). Force (Mass * Acceleration = Mass * Length / time 2) In derived units, each unit is to be individually converted to suit the requirement Density = 500 kg / m3 .
    [Show full text]
  • Chapter 5 Slides.Pdf
    CHAPTER 5: Solutions, Colloids, and Membranes OUTLINE • 5.1 Mixtures and Solutions • 5.2 Concentration of Solutions • 5.3 Colloids and Suspensions • 5.4 Processes that Maintain Biochemical Balance in Your Body CHAPTER 5: Solutions, Colloids, and Membranes 5.1 MIXTURES AND SOLUTIONS • Pure substances are composed of a single element or compound. • Mixtures contain two or more elements or compounds in any proportion, NOT covalently bound to each other: Ø HeteroGeneous mixtures have an uneven distribution of components. (a chocolate chip cookie) Ø HomoGeneous mixtures have an even distribution of components. (a cup of coffee) CHAPTER 5: Solutions, Colloids, and Membranes SOLUTIONS: DEFINITIONS & COMPONENTS • Solutions are homogeneous mixtures. Ø May be solids, liquids, or gases. • All solutions are composed of two parts: 1. Solvent: the major component 2. Solutes: minor components Solutions containing water as the solvent are aqueous solutions 1 CHAPTER 5: Solutions, Colloids, and Membranes SOLUTIONS & PHYSICAL STATES • Solutions can be composed of any of the three states: solid, liquid, or gas. 1. Solid solutions include metal alloys Examples: brass and dental amalgams 2. Liquid solutions can contain solutes of all three states at the same time: Example: mixed Ø Solids (sugar) drinks such as Ø Liquids (alcohol) “rum-and-coke” Ø Gases (CO2) 3. Gas solutions, such as air, can contain dissolved gases (O2, CO2), liquid (water droplets), and even some solids (some odors). CHAPTER 5: Solutions, Colloids, and Membranes SOLUBILITY RULES • The simplest rule for determining solubility is that “like-dissolves-like”: The polarity of solute & solvent typically match Ø Polar solvents dissolve polar or ionic solutes.
    [Show full text]