Bohr and the Measurement Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Degruyter Opphil Opphil-2020-0010 147..160 ++Open Philosophy 2020; 3: 147–160 Object Oriented Ontology and Its Critics Simon Weir* Living and Nonliving Occasionalism https://doi.org/10.1515/opphil-2020-0010 received November 05, 2019; accepted February 14, 2020 Abstract: Graham Harman’s Object-Oriented Ontology has employed a variant of occasionalist causation since 2002, with sensual objects acting as the mediators of causation between real objects. While the mechanism for living beings creating sensual objects is clear, how nonliving objects generate sensual objects is not. This essay sets out an interpretation of occasionalism where the mediating agency of nonliving contact is the virtual particles of nominally empty space. Since living, conscious, real objects need to hold sensual objects as sub-components, but nonliving objects do not, this leads to an explanation of why consciousness, in Object-Oriented Ontology, might be described as doubly withdrawn: a sensual sub-component of a withdrawn real object. Keywords: Graham Harman, ontology, objects, Timothy Morton, vicarious, screening, virtual particle, consciousness 1 Introduction When approaching Graham Harman’s fourfold ontology, it is relatively easy to understand the first steps if you begin from an anthropocentric position of naive realism: there are real objects that have their real qualities. Then apart from real objects are the objects of our perception, which Harman calls sensual objects, which are reduced distortions or caricatures of the real objects we perceive; and these sensual objects have their own sensual qualities. It is common sense that when we perceive a steaming espresso, for example, that we, as the perceivers, create the image of that espresso in our minds – this image being what Harman calls a sensual object – and that we supply the energy to produce this sensual object.
- 
												![Arxiv:1511.01069V1 [Quant-Ph]](https://docslib.b-cdn.net/cover/2272/arxiv-1511-01069v1-quant-ph-202272.webp)  Arxiv:1511.01069V1 [Quant-Ph]To appear in Contemporary Physics Copenhagen Quantum Mechanics Timothy J. Hollowood Department of Physics, Swansea University, Swansea SA2 8PP, U.K. (September 2015) In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950’s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schr¨odinger cat states are the norm rather than curiosities generated in physicists’ laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr’s quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.
- 
												  A Simple Proof That the Many-Worlds Interpretation of Quantum Mechanics Is InconsistentA simple proof that the many-worlds interpretation of quantum mechanics is inconsistent Shan Gao Research Center for Philosophy of Science and Technology, Shanxi University, Taiyuan 030006, P. R. China E-mail: [email protected]. December 25, 2018 Abstract The many-worlds interpretation of quantum mechanics is based on three key assumptions: (1) the completeness of the physical description by means of the wave function, (2) the linearity of the dynamics for the wave function, and (3) multiplicity. In this paper, I argue that the combination of these assumptions may lead to a contradiction. In order to avoid the contradiction, we must drop one of these key assumptions. The many-worlds interpretation of quantum mechanics (MWI) assumes that the wave function of a physical system is a complete description of the system, and the wave function always evolves in accord with the linear Schr¨odingerequation. In order to solve the measurement problem, MWI further assumes that after a measurement with many possible results there appear many equally real worlds, in each of which there is a measuring device which obtains a definite result (Everett, 1957; DeWitt and Graham, 1973; Barrett, 1999; Wallace, 2012; Vaidman, 2014). In this paper, I will argue that MWI may give contradictory predictions for certain unitary time evolution. Consider a simple measurement situation, in which a measuring device M interacts with a measured system S. When the state of S is j0iS, the state of M does not change after the interaction: j0iS jreadyiM ! j0iS jreadyiM : (1) When the state of S is j1iS, the state of M changes and it obtains a mea- surement result: j1iS jreadyiM ! j1iS j1iM : (2) 1 The interaction can be represented by a unitary time evolution operator, U.
- 
												  Demnächst Auch in Ihrem Laptop?The Measurement Problem Johannes Kofler Quantum Foundations Seminar Max Planck Institute of Quantum Optics Munich, December 12th 2011 The measurement problem Different aspects: • How does the wavefunction collapse occur? Does it even occur at all? • How does one know whether something is a system or a measurement apparatus? When does one apply the Schrödinger equation (continuous and deterministic evolution) and when the projection postulate (discontinuous and probabilistic)? • How real is the wavefunction? Does the measurement only reveal pre-existing properties or “create reality”? Is quantum randomness reducible or irreducible? • Are there macroscopic superposition states (Schrödinger cats)? Where is the border between quantum mechanics and classical physics? The Kopenhagen interpretation • Wavefunction: mathematical tool, “catalogue of knowledge” (Schrödinger) not a description of objective reality • Measurement: leads to collapse of the wavefunction (Born rule) • Properties: wavefunction: non-realistic randomness: irreducible • “Heisenberg cut” between system and apparatus: “[T]here arises the necessity to draw a clear dividing line in the description of atomic processes, between the measuring apparatus of the observer which is described in classical concepts, and the object under observation, whose behavior is represented by a wave function.” (Heisenberg) • Classical physics as limiting case and as requirement: “It is decisive to recognize that, however far the phenomena transcend the scope of classical physical explanation, the
- 
												  Abstract for Non Ideal Measurements by David Albert (Philosophy, Columbia) and Barry Loewer (Philosophy, Rutgers)Abstract for Non Ideal Measurements by David Albert (Philosophy, Columbia) and Barry Loewer (Philosophy, Rutgers) We have previously objected to "modal interpretations" of quantum theory by showing that these interpretations do not solve the measurement problem since they do not assign outcomes to non_ideal measurements. Bub and Healey replied to our objection by offering alternative accounts of non_ideal measurements. In this paper we argue first, that our account of non_ideal measurements is correct and second, that even if it is not it is very likely that interactions which we called non_ideal measurements actually occur and that such interactions possess outcomes. A defense of of the modal interpretation would either have to assign outcomes to these interactions, show that they don't have outcomes, or show that in fact they do not occur in nature. Bub and Healey show none of these. Key words: Foundations of Quantum Theory, The Measurement Problem, The Modal Interpretation, Non_ideal measurements. Non_Ideal Measurements Some time ago, we raised a number of rather serious objections to certain so_called "modal" interpretations of quantum theory (Albert and Loewer, 1990, 1991).1 Andrew Elby (1993) recently developed one of these objections (and added some of his own), and Richard Healey (1993) and Jeffrey Bub (1993) have recently published responses to us and Elby. It is the purpose of this note to explain why we think that their responses miss the point of our original objection. Since Elby's, Bub's, and Healey's papers contain excellent descriptions both of modal theories and of our objection to them, only the briefest review of these matters will be necessary here.
- 
												  Advanced Quantum Theory AMATH473/673, PHYS454Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, September 2017 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 9 1.1 The classical period . 9 1.2 Planck and the \Ultraviolet Catastrophe" . 9 1.3 Discovery of h ................................ 10 1.4 Mounting evidence for the fundamental importance of h . 11 1.5 The discovery of quantum theory . 11 1.6 Relativistic quantum mechanics . 13 1.7 Quantum field theory . 14 1.8 Beyond quantum field theory? . 16 1.9 Experiment and theory . 18 2 Classical mechanics in Hamiltonian form 21 2.1 Newton's laws for classical mechanics cannot be upgraded . 21 2.2 Levels of abstraction . 22 2.3 Classical mechanics in Hamiltonian formulation . 23 2.3.1 The energy function H contains all information . 23 2.3.2 The Poisson bracket . 25 2.3.3 The Hamilton equations . 27 2.3.4 Symmetries and Conservation laws . 29 2.3.5 A representation of the Poisson bracket . 31 2.4 Summary: The laws of classical mechanics . 32 2.5 Classical field theory . 33 3 Quantum mechanics in Hamiltonian form 35 3.1 Reconsidering the nature of observables . 36 3.2 The canonical commutation relations . 37 3.3 From the Hamiltonian to the equations of motion . 40 3.4 From the Hamiltonian to predictions of numbers . 44 3.4.1 Linear maps . 44 3.4.2 Choices of representation . 45 3.4.3 A matrix representation . 46 3 4 CONTENTS 3.4.4 Example: Solving the equations of motion for a free particle with matrix-valued functions .
- 
												  Perceived Reality, Quantum Mechanics, and Consciousness7/28/2015 Cosmology About Contents Abstracting Processing Editorial Manuscript Submit Your Book/Journal the All & Indexing Charges Guidelines & Preparation Manuscript Sales Contact Journal Volumes Review Order from Amazon Order from Amazon Order from Amazon Order from Amazon Order from Amazon Cosmology, 2014, Vol. 18. 231-245 Cosmology.com, 2014 Perceived Reality, Quantum Mechanics, and Consciousness Subhash Kak1, Deepak Chopra2, and Menas Kafatos3 1Oklahoma State University, Stillwater, OK 74078 2Chopra Foundation, 2013 Costa Del Mar Road, Carlsbad, CA 92009 3Chapman University, Orange, CA 92866 Abstract: Our sense of reality is different from its mathematical basis as given by physical theories. Although nature at its deepest level is quantum mechanical and nonlocal, it appears to our minds in everyday experience as local and classical. Since the same laws should govern all phenomena, we propose this difference in the nature of perceived reality is due to the principle of veiled nonlocality that is associated with consciousness. Veiled nonlocality allows consciousness to operate and present what we experience as objective reality. In other words, this principle allows us to consider consciousness indirectly, in terms of how consciousness operates. We consider different theoretical models commonly used in physics and neuroscience to describe veiled nonlocality. Furthermore, if consciousness as an entity leaves a physical trace, then laboratory searches for such a trace should be sought for in nonlocality, where probabilities do not conform to local expectations. Keywords: quantum physics, neuroscience, nonlocality, mental time travel, time Introduction Our perceived reality is classical, that is it consists of material objects and their fields. On the other hand, reality at the quantum level is different in as much as it is nonlocal, which implies that objects are superpositions of other entities and, therefore, their underlying structure is wave-like, that is it is smeared out.
- 
												  1 Does Consciousness Really Collapse the Wave Function?Does consciousness really collapse the wave function?: A possible objective biophysical resolution of the measurement problem Fred H. Thaheld* 99 Cable Circle #20 Folsom, Calif. 95630 USA Abstract An analysis has been performed of the theories and postulates advanced by von Neumann, London and Bauer, and Wigner, concerning the role that consciousness might play in the collapse of the wave function, which has become known as the measurement problem. This reveals that an error may have been made by them in the area of biology and its interface with quantum mechanics when they called for the reduction of any superposition states in the brain through the mind or consciousness. Many years later Wigner changed his mind to reflect a simpler and more realistic objective position, expanded upon by Shimony, which appears to offer a way to resolve this issue. The argument is therefore made that the wave function of any superposed photon state or states is always objectively changed within the complex architecture of the eye in a continuous linear process initially for most of the superposed photons, followed by a discontinuous nonlinear collapse process later for any remaining superposed photons, thereby guaranteeing that only final, measured information is presented to the brain, mind or consciousness. An experiment to be conducted in the near future may enable us to simultaneously resolve the measurement problem and also determine if the linear nature of quantum mechanics is violated by the perceptual process. Keywords: Consciousness; Euglena; Linear; Measurement problem; Nonlinear; Objective; Retina; Rhodopsin molecule; Subjective; Wave function collapse. * e-mail address: [email protected] 1 1.
- 
												  Collapse TheoriesView metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Collapse Theories Peter J. Lewis The collapse postulate in quantum mechanics is problematic. In standard presentations of the theory, the state of a system prior to a measurement is a sum of terms, with one term representing each possible outcome of the measurement. According to the collapse postulate, a measurement precipitates a discontinuous jump to one of these terms; the others disappear. The reason this is problematic is that there are good reasons to think that measurement per se cannot initiate a new kind of physical process. This is the measurement problem, discussed in section 1 below. The problem here lies not with collapse, but with the appeal to measurement. That is, a theory that could underwrite the collapse process just described without ineliminable reference to measurement would constitute a solution to the measurement problem. This is the strategy pursued by dynamical (or spontaneous) collapse theories, which differ from standard presentations in that they replace the measurement-based collapse postulate with a dynamical mechanism formulated in terms of universal physical laws. Various dynamical collapse theories of quantum mechanics have been proposed; they are discussed in section 2. But dynamical collapse theories face a number of challenges. First, they make different empirical predictions from standard quantum mechanics, and hence are potentially empirically refutable. Of course, testability is a virtue, but since we have no empirical reason to think that systems ever undergo collapse, dynamical collapse theories are inherently empirically risky. Second, there are difficulties reconciling the dynamical collapse mechanism with special relativity.
- 
												  Stochastic Quantum Potential Noise and Quantum MeasurementChapter 7 Stochastic Quantum Potential Noise and Quantum Measurement Wei Wen Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.74253 Abstract Quantum measurement is the greatest problem in quantum theory. In fact, different views for the quantum measurement cause different schools of thought in quantum theory. The quandaries of quantum measurement are mainly concentrated in “stochastic measurement space”, “instantaneous measurement process” and “basis-preferred measurement space.” These quandaries are incompatible with classical physical laws and discussed many years but still unsolved. In this chapter, we introduce a new theory that provided a new scope to interpret the quantum measurement. This theory tells us the quandaries of quantum mea- surement are due to the nonlocal correlation and stochastic quantum potential noise. The quantum collapse had been completed by the noised world before we looked, and the moon is here independent of our observations. Keywords: quantum measurement, quantum collapse, quantum potential noise, Feynman path integral 1. Introduction Schrödinger cat was born from the thought experiment of Schrödinger in 1935. However, after more than 80 years, we still do not know whether it is dead or alive in its sealed box. According to the modern quantum mechanics, based on Copenhagen interpretation, the fate of this cat is entangled with the Geiger counter monitor in its box, and the cat is in a “mixed state”—both dead and alive—if we do not open the box to look at it. It is a miserable and mystical cat, which seems its fate depends on our look.
- 
												  The Minimal Modal Interpretation of Quantum TheoryThe Minimal Modal Interpretation of Quantum Theory Jacob A. Barandes1, ∗ and David Kagan2, y 1Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138 2Department of Physics, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (Dated: May 5, 2017) We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture of states and Hilbert-space trajectories to the more realistic case of open quantum systems despite the generic development of entanglement. We provide independent justification for the partial-trace operation for density matrices, reformulate wave-function collapse in terms of an underlying interpolating dynamics, derive the Born rule from deeper principles, resolve several open questions regarding ontological stability and dynamics, address a number of familiar no-go theorems, and argue that our interpretation is ultimately compatible with Lorentz invariance. Along the way, we also investigate a number of unexplored features of quantum theory, including an interesting geometrical structure|which we call subsystem space|that we believe merits further study. We conclude with a summary, a list of criteria for future work on quantum foundations, and further research directions. We include an appendix that briefly reviews the traditional Copenhagen interpretation and the measurement problem of quantum theory, as well as the instrumentalist approach and a collection of foundational theorems not otherwise discussed in the main text.
- 
												  Measurement Problem200 Great Problems in Philosophy and Physics - Solved? Chapter 18 Chapter Measurement Problem This chapter on the web informationphilosopher.com/problems/measurement Measurement 201 The Measurement Problem The “problem of measurement” in quantum mechanics has been defined in various ways, originally by scientists, and more recently by philosophers of science who question the “founda- tions” of quantum mechanics. Measurements are described with diverse concepts in quantum physics such as: • wave functions (probability amplitudes) evolving unitarily and deterministically (preserving information) according to the linear Schrödinger equation, • superposition of states, i.e., linear combinations of wave func- tions with complex coefficients that carry phase information and produce interference effects (the principle of superposition), • quantum jumps between states accompanied by the “collapse of the wave function” that can destroy or create information (Paul Dirac’s projection postulate, John von Neumann’s Process 1), • probabilities of collapses and jumps given by the square of the absolute value of the wave function for a given state, 18 Chapter • values for possible measurements given by the eigenvalues associated with the eigenstates of the combined measuring appa- ratus and measured system (the axiom of measurement), • the indeterminacy or uncertainty principle. The original measurement problem, said to be a consequence of Niels Bohr’s “Copenhagen Interpretation” of quantum mechan- ics, was to explain how our measuring instruments, which are usually macroscopic objects and treatable with classical physics, can give us information about the microscopic world of atoms and subatomic particles like electrons and photons. Bohr’s idea of “complementarity” insisted that a specific experi- ment could reveal only partial information - for example, a parti- cle’s position or its momentum.