Identification of Clustered Organellar Short (Cos) Rnas and of A

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Clustered Organellar Short (Cos) Rnas and of A Published online 8 August 2018 Nucleic Acids Research, 2018, Vol. 46, No. 19 10417–10431 doi: 10.1093/nar/gky710 Identification of clustered organellar short (cos) RNAs and of a conserved family of organellar RNA-binding proteins, the heptatricopeptide repeat proteins, in the malaria parasite Arne Hillebrand1, Joachim M. Matz2, Martin Almendinger1,KatjaMuller¨ 2, Kai Matuschewski2 and Christian Schmitz-Linneweber1,* Downloaded from https://academic.oup.com/nar/article/46/19/10417/5068241 by guest on 26 September 2021 1Humboldt University Berlin, Molecular Genetics, Berlin, Germany and 2Humboldt University, Department of Molecular Parasitology, Berlin, Germany Received December 12, 2017; Revised July 20, 2018; Editorial Decision July 23, 2018; Accepted July 24, 2018 ABSTRACT malaria globally, resulting in almost half a million deaths (1). While some antimalarial treatments are available, para- Gene expression in mitochondria of Plasmodium site resistance is a continuing challenge. Plasmodium spp. falciparum is essential for parasite survival. The belong to the family of apicomplexan parasites, most of molecular mechanisms of Plasmodium organellar which contain a non-photosynthetic plastid called the api- gene expression remain poorly understood. This coplast (2). As a remnant of a red algae chloroplast, the api- includes the enigmatic assembly of the mitochon- coplast contains its own DNA, as does the Plasmodium mi- drial ribosome from highly fragmented rRNAs. Here, tochondrion. The Plasmodium nuclear genome has a size we present the identification of clustered organellar of 24 MB and contains >5000 genes; by contrast, the api- short RNA fragments (cosRNAs) that are possible coplast and mitochondrial genomes are small––35 and 6 kb, footprints of RNA-binding proteins (RBPs) in Plas- respectively. modium organelles. In plants, RBPs of the pentatri- In keeping with the descendance of the apicoplast from cyanobacteria, the apicoplast genome is organized similarly copeptide repeat (PPR) class produce footprints as a to bacterial chromosomes. Genes are organized into oper- consequence of their function in processing organel- ons and transcribed as polycistronic precursors, which are lar RNAs. Intriguingly, many of the Plasmodium cos- heavily processed post-transcriptionally (3,4). Blocking api- RNAs overlap with 5 -ends of rRNA fragments. We hy- coplast gene expression with inhibitors of transcription or pothesize that these are footprints of RBPs involved translation leads to an immediate or a ‘delayed’ death phe- in assembling the rRNA fragments into a functioning notype, depending on the drug used (5). ribosome. A bioinformatics search of the Plasmod- The mitochondrial genome organization in Apicomplexa ium nuclear genome identified a hitherto unrecog- is unique. With a very small genome size of 6 kb and only nized organellar helical-hairpin-repeat protein family three protein-coding genes, it is one of the smallest genomes that we term heptatricopeptide repeat (HPR) proteins. discoveredtodate(6). In addition to the protein-coding We demonstrate that selected HPR proteins are tar- genes, the genome contains highly fragmented rRNA genes instead of full-length rRNA genes. There is strong evidence geted to mitochondria in P. berghei and that one of for translational activity in Plasmodium mitochondria (7,8), them, PbHPR1, associates with RNA, but not DNA in suggesting that these rRNA fragments are assembled into vitro. A phylogenetic search identified HPR proteins functional ribosomes. This inference is based on the es- in a wide variety of eukaryotes. We hypothesize that sential nature of the electron transport chain in mitochon- HPR proteins are required for processing and stabi- dria (7) and the finding that mutations underlying resis- lizing RNAs in Apicomplexa and other taxa. tance to atovaquone, a specific inhibitor of the respiratory chain, map to a mitochondrial protein-coding gene (9). Fur- INTRODUCTION thermore, tRNAs are imported into mitochondria in Toxo- plasma gondii and P.falciparum, providing indirect evidence The protozoan parasite Plasmodium spp. is the causative for mitochondrial translation (10,11). agent of malaria in humans. A 2016 report by the World Health Organization showed 214 million infections with *To whom correspondence should be addressed. Tel: +49 30 2093 49700; Fax: +49 30 2093 49701; Email: [email protected] C The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] 10418 Nucleic Acids Research, 2018, Vol. 46, No. 19 Transcription of the mitochondrial genome has been As a first step toward understanding RNA degrada- shown to lead to polycistronic transcripts, with mRNAs tion in P. falciparum, we searched for potential binding and rRNA fragments transcribed together as one precur- sites of helical-hairpin-repeat proteins in Plasmodium or- sor molecule (12,13). Even transcripts representing the en- ganelle RNA metabolism by creating small-RNA sequenc- tire genome have been detected (12). This expression organi- ing libraries. This effort was complemented by a search zation suggests that post-transcriptional regulatory events, for helical-hairpin-repeat proteins. We discovered a novel such as RNA processing, RNA stabilization, and RNA helical-hairpin-repeat protein family distinct from PPR and degradation, play an important role in mitochondria, simi- OPR proteins, which we termed heptatricopeptide repeat lar to post-transcriptional gene regulation in the apicoplast (HPR) proteins, and demonstrated that individual HPRs (3). Indeed, monocistronic mRNAs have been found for are targeted to Plasmodium mitochondria. Although these CYTB and COXI (14), which are likely derived from poly- proteins seem particularly abundant in apicomplexan para- cistronic precursors via RNA processing. Notably, mito- sites, they were also found in other species within the Alve- chondrial mRNAs directly abut their neighboring mRNAs olata. In fact, while they were not dected in bacteria, HPR Downloaded from https://academic.oup.com/nar/article/46/19/10417/5068241 by guest on 26 September 2021 or rRNAs, a relationship that has been taken as evidence proteins are found in most eukaryotic groups analyzed, in- that polycistronic precursors are precisely cleaved to yield cluding humans. individual mature transcripts (12,13). These processes are expected to require a large number of RNA-binding pro- teins (RBPs), but most of the components and mechanisms MATERIALS AND METHODS of the RNA-processing machinery remain unknown even Ethical statement in human mitochondria (15,16). All organellar RBPs must originate from the nuclear genome and be transferred to This study was carried out in strict accordance with the Ger- man ‘Tierschutzgesetz in der Fassung vom 22. Juli 2009’ the organelles post-translationally. Few nuclear factors for / / Plasmodium RNA processing have been characterized to and the Directive 2010 63 EU of the European Parliament date, and how RNA metabolism is regulated remains largely and Council ‘On the protection of animals used for scien- unknown. tific purposes’. The protocol was approved by the ethics Because Plasmodium, with its apicoplast, has also au- committee of the Berlin state authority (Landesamt f¨ur Gesundheit und Soziales Berlin, permit numbers G0469/09 totrophic organisms among its ancestry, a comparison with / organellar gene expression in plants and algae can shed light and G0294 15). Female NMRI mice were used for all ex- on RNA-processing mechanisms in the organelles of this periments and purchased from Charles River Laboratories parasite. RNA metabolism in plant organelles is character- (Sulzfeld, Germany). ized by a massive expansion of nuclear-encoded RBPs. The largest class of organellar RBPs is helical-hairpin-repeat Cultivation and harvest of Plasmodium falciparum asexual proteins called pentatricopeptide repeat proteins (PPRs) stages (17). These proteins contain a tandem-repeat motif with up to 35 repetitions. Structurally, each repeat forms two Plasmodium falciparum NF54 was cultivated as described alpha-helical elements that fold back onto each other. Al- by Trager and Jensen (23). Cultures were split every 2–3 pha helices from consecutive repeats are stacked to form days. Cultures were not synchronized. an extended RNA-interacting surface. Within this surface, each repeat is responsible for binding one base in a single- Total RNA extraction from Plasmodium falciparum asexual stranded RNA molecule. Two dedicated amino acids are stages key for specific RNA base recognition (18). Of the ∼450 predicted PPR proteins in Arabidopsis, approximately two- Asexual stages of P.falciparum NF54 in red blood cells were thirds are localized to the mitochondria, with the remainder harvested as described above. Cell pellets were resuspended are found in the plastid (19). PPR proteins play an impor- in AIM-Buffer (24) containing 0.1% saponin. After incu- tant role in RNA processing and transcript stabilization. bation for 5 minutes on ice, cells were centrifuged at 2500 Binding of a number of PPR proteins to mRNAs acts as × g for 10 min. Pelleted parasites were washed twice with a roadblock against exonucleolytic
Recommended publications
  • Organellar Signaling Expands Plant Phenotypic Variation and Increases the Potential for Breeding the Epigenome
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research in Agronomy and Horticulture Agronomy and Horticulture Department 10-2012 Organellar Signaling Expands Plant Phenotypic Variation and Increases the Potential for Breeding the Epigenome Roberto De la Rosa Santamaria University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/agronhortdiss Part of the Agriculture Commons, and the Genetics Commons De la Rosa Santamaria, Roberto, "Organellar Signaling Expands Plant Phenotypic Variation and Increases the Potential for Breeding the Epigenome" (2012). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 57. https://digitalcommons.unl.edu/agronhortdiss/57 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORGANELLAR SIGNALING EXPANDS PLANT PHENOTYPIC VARIATION AND INCREASES THE POTENTIAL FOR BREEDING THE EPIGENOME By Roberto De la Rosa Santamaria A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Agronomy (Plant Breeding and Genetics) Under the Supervision of Professor Sally A. Mackenzie Lincoln, Nebraska October, 2012 ORGANELLAR SIGNALING EXPANDS PLANT PHENOTYPIC VARIATION AND INCREASES THE POTENTIAL FOR BREEDING THE EPIGENOME Roberto De la Rosa Santamaria, Ph.D. University of Nebraska, 2012 Adviser: Sally A. Mackenzie MUTS HOMOLOGUE 1 (MSH1) is a nuclear gene unique to plants that functions in mitochondria and plastids, where it confers genome stability.
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • ABSTRACT NI, SIHUI. RNA Translocation
    ABSTRACT NI, SIHUI. RNA Translocation into Chloroplasts. (Under the direction of Dr. Heike Inge Sederoff). Plastids and mitochondria are known as semi-autonomous organelles because they can encode and synthesize proteins that are essential for metabolism. They are both derived from endosymbiotic events. The bacterial ancestor of plastids was cyanobacteria, while the bacterial ancestor of mitochondria was a proteobacteria. During their evolution, most of the ancestral bacterial DNA was translocated into the nuclear genome DNA. The current plastid genome encodes proteins for the photosynthetic apparatus, the transcription/translation system, and various biosynthetic processes. The current mitochondrial genome mainly encodes proteins for electron transport, ATP synthesis, translation, protein import and metabolism. Plastids and mitochondria are not self-sufficient; they import the majority of their proteins, which are synthesized in the cytosol. For plastids, a transit peptide at the N-terminus of protein precursors can be recognized by TOC/TIC complex and mediate their import. Similarly, for mitochondria, a piece of β-signal at the N-terminal of protein precursors can be recognized by TOM/TIM complex and mediate the import of the protein precursors. It worth noting that plastids also encode a suite of transfer RNAs while mitochondria need to import certain types of tRNAs. In most angiosperms, plastids and mitochondria are inherited maternally and can only be passed down from the maternal plant organs through seed to the next generation. Maternal inheritance has benefits for organellar genetic engineering such as stable inheritance of genes over generations, absence of out-crossing, absence of contamination by pollen and minimal pleiotropic effects. The tradition methodology of plastid genomic engineering is biolistic transformation, where DNA covered gold particles parent cell walls of tissue or protoplasts at high velocity, leading to integration of DNA into chromosome(s) through recombination.
    [Show full text]
  • Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species
    Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species Yrin Eldfjell Bachelor’s Thesis in Computer Science at Stockholm University, Sweden, 2018 Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species Yrin Eldfjell Bachelor’s Thesis in Computer Science (15 ECTS credits) Single Subject Course Stockholm University year 2018 Supervisor at the Department of Mathematics was Lars Arvestad Examiner was Jens Lagergren, KTH EECS Department of Mathematics Stockholm University SE-106 91 Stockholm, Sweden Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species Abstract Sequencing e↵orts for gymnosperm genomes typically focus on nuclear and chloroplast DNA, with only three complete mitochondrial genomes published as of 2017. The availability of additional mitochondrial genomes would aid biological and evolutionary understanding of gymnosperms. Identifying mtDNA from existing whole genome sequencing (WGS) data (i.e. contigs) negates the need for additional experimental work but pre- vious classification methods show limitations in sensitivity or accuracy, particularly in difficult cases. In this thesis I present a classification pipeline based on (1) kmer probability scoring and (2) SVM classifica- tion applied to the available contigs. Using this pipeline the mitochon- drial genomes of six gymnosperm specias were obtained: Abies sibirica, Gnetum gnemon, Juniperus communis, Picea abies, Pinus sylvestris and Taxus baccata. Cross-validation experiments showed a satisfying and for some species excellent degree of accuracy. Identifiering av mitokondriers arvsmassa fr˚anprelimin¨ara versioner av arvsmassan f¨or sex gymnospermer Sammanfattning Vid sekvensering av gymnospermers arvsmassa har fokus oftast lagts p˚a k¨arn- och kloroplast-DNA.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Downloaded from the Uni- [76] and Kept Only the Best Match with the Delta-Filter Protkb [85] Databank (9/2014) Were Aligned to the Gen- Command
    Farhat et al. BMC Biology (2021) 19:1 https://doi.org/10.1186/s12915-020-00927-9 RESEARCH ARTICLE Open Access Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp Sarah Farhat1,2† , Phuong Le,3,4† , Ehsan Kayal5† , Benjamin Noel1† , Estelle Bigeard6, Erwan Corre5 , Florian Maumus7, Isabelle Florent8 , Adriana Alberti1, Jean-Marc Aury1, Tristan Barbeyron9, Ruibo Cai6, Corinne Da Silva1, Benjamin Istace1, Karine Labadie1, Dominique Marie6, Jonathan Mercier1, Tsinda Rukwavu1, Jeremy Szymczak5,6, Thierry Tonon10 , Catharina Alves-de-Souza11, Pierre Rouzé3,4, Yves Van de Peer3,4,12, Patrick Wincker1, Stephane Rombauts3,4, Betina M. Porcel1* and Laure Guillou6* Abstract Background: Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. Results: We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism.
    [Show full text]
  • TRANSDIFFERENTATION in Turritopsis Dohrnii (IMMORTAL JELLYFISH)
    TRANSDIFFERENTATION IN Turritopsis dohrnii (IMMORTAL JELLYFISH): MODEL SYSTEM FOR REGENERATION, CELLULAR PLASTICITY AND AGING A Thesis by YUI MATSUMOTO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Maria Pia Miglietta Committee Members, Jaime Alvarado-Bremer Anja Schulze Noushin Ghaffari Intercollegiate Faculty Chair, Anna Armitage December 2017 Major Subject: Marine Biology Copyright 2017 Yui Matsumoto ABSTRACT Turritopsis dohrnii (Cnidaria, Hydrozoa) undergoes life cycle reversal to avoid death caused by physical damage, adverse environmental conditions, or aging. This unique ability has granted the species the name, the “Immortal Jellyfish”. T. dohrnii exhibits an additional developmental stage to the typical hydrozoan life cycle which provides a new paradigm to further understand regeneration, cellular plasticity and aging. Weakened jellyfish will undergo a whole-body transformation into a cluster of uncharacterized tissue (cyst stage) and then metamorphoses back into an earlier life cycle stage, the polyp. The underlying cellular processes that permit its reverse development is called transdifferentiation, a mechanism in which a fully mature and differentiated cell can switch into a new cell type. It was hypothesized that the unique characteristics of the cyst would be mirrored by differential gene expression patterns when compared to the jellyfish and polyp stages. Specifically, it was predicted that the gene categories exhibiting significant differential expression may play a large role in the reverse development and transdifferentiation in T. dohrnii. The polyp, jellyfish and cyst stage of T. dohrnii were sequenced through RNA- sequencing, and the transcriptomes were assembled de novo, and then annotated to create the gene expression profile of each stage.
    [Show full text]
  • Paulinella Micropora KR01 Holobiont Genome Assembly for Studying Primary Plastid Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/794941; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Paulinella micropora KR01 holobiont genome assembly for studying primary plastid evolution Duckhyun Lhee1, JunMo Lee2, Chung Hyun Cho1, Ji-San Ha1, Sang Eun Jeong3, Che Ok Jeon3, Udi Zelzion4, Dana C. Price5, Ya-Fan Chan4, Arwa Gabr4, Debashish Bhattacharya4,*, Hwan Su Yoon1,* 1Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea 2Department of Oceanography, Kyungpook National University, Daegu 41566, Korea 3Department of Life Science, Chung-Ang University, Seoul 06974, Korea 4Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, U.S.A. 5Department of Plant Biology, Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, U.S.A. *Authors for correspondence Key words: Paulinella, primary endosymbiosis, endosymbiotic gene transfer Running title: Analysis of Paulinella draft genome Abstract The widespread algal and plant (Archaeplastida) plastid originated >1 billion years ago, therefore relatively little can be learned about plastid integration during the initial stages of primary endosymbiosis by studying these highly derived species. Here we focused on a unique model for endosymbiosis research, the photosynthetic amoeba Paulinella micropora KR01 (Rhizaria) that underwent a more recent independent primary endosymbiosis about 124 Mya. A total of 149 Gbp of PacBio and 19 Gbp of Illumina data were used to generate the draft assembly that comprises 7,048 contigs with N50=143,028 bp and a total length of 707 Mbp. Genome GC-content was 44% with 76% repetitive sequences.
    [Show full text]
  • Foraminifera and Cercozoa Share a Common Origin According to RNA Polymerase II Phylogenies
    International Journal of Systematic and Evolutionary Microbiology (2003), 53, 1735–1739 DOI 10.1099/ijs.0.02597-0 ISEP XIV Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies David Longet,1 John M. Archibald,2 Patrick J. Keeling2 and Jan Pawlowski1 Correspondence 1Dept of zoology and animal biology, University of Geneva, Sciences III, 30 Quai Ernest Jan Pawlowski Ansermet, CH 1211 Gene`ve 4, Switzerland [email protected] 2Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, #3529-6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4 Phylogenetic analysis of small and large subunits of rDNA genes suggested that Foraminifera originated early in the evolution of eukaryotes, preceding the origin of other rhizopodial protists. This view was recently challenged by the analysis of actin and ubiquitin protein sequences, which revealed a close relationship between Foraminifera and Cercozoa, an assemblage of various filose amoebae and amoeboflagellates that branch in the so-called crown of the SSU rDNA tree of eukaryotes. To further test this hypothesis, we sequenced a fragment of the largest subunit of the RNA polymerase II (RPB1) from five foraminiferans, two cercozoans and the testate filosean Gromia oviformis. Analysis of our data confirms a close relationship between Foraminifera and Cercozoa and points to Gromia as the closest relative of Foraminifera. INTRODUCTION produces an artificial grouping of Foraminifera with early protist lineages. The long-branch attraction phenomenon Foraminifera are common marine protists characterized by was suggested to be responsible for the position of granular and highly anastomosed pseudopodia (granulo- Foraminifera and some other putatively ancient groups of reticulopodia) and, typically, an organic, agglutinated or protists in rDNA trees (Philippe & Adoutte, 1998).
    [Show full text]
  • A Fossilized Microcenosis in Triassic Amber. Schönborn, W., Dörfelt, H., Foissner, W., Krienitz, L
    J:' Eu.l@ryot. Microbiol., 46(6), 1999 pp. 57 l-584 @ 1999 by the Society of Protozoologists l A Fossilized Microcenosis in Triassic Amber WILFRIED SCTTÖNNONN," HEINIRICH DÖRtr'ELT,O WILHELM FOISSNER," LOTIIAR KRIEMTZd ANd URSULA SCHAF'ER" "Friedrich-schiller-[Jniversität Jeru, Institut fiir ökologie, Arbeitsgruppe Limnologie, Winzerlaer Strafie 10, D-07745 Jena, Germany, and bFriedrich-Schiller-tlniversität Jena,Institut fiir Ernährung und (Jmwelt, Ichrgebiet Landschaftsökologie und Naturschutz, Dornburgerstrat3e 159, D-07743 Jena, Germany, and "Unbersität Salaburg, Institut für Zoologie, HellbrunnerstraJ3e 34, A-5020 Salzburg, Austria, and dlnstitutfür Gewässerökologie und Binnenfischerei, Alte Fischerhütte 2, D-16775 Neuglobsow, Germany ABSTRACT. Detailed data on bacterial and protistan microfossils axe presented from a 0.003 mm3 piece of Ttiassic amber (Schlier- seerit, Upper Tliassic period, 22O-23O million years old). This microcenosis, which actually existed as such within a very small, probably semiaquatic habitat, included the remains of about two bacteria species, four fungi (Palaeodikaryomyces bauerL Pithornyces-like conidia, capillitium-Iike hyphae, yeast cells) two euglenoids, two chlamydomonas (Chlamydomonas sp., Chloromonas sp.), two coccal green microalgae (Chlorell.a sp., Choricystis-like cells), one zooflagellate, three testate amoebae (Centropyxis aculeata var. oblonga-like, Cyclopyxis eurystoma-like, Hyalosphenia baueri n. sp.), seven ciliates (Pseudoplatyophrya nana-l|ke, Mykophagophrys terricola-like, Cyrtolophosis
    [Show full text]
  • Genome-Reconstruction for Eukaryotes from Complex Natural Microbial Communities
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Genome-reconstruction for eukaryotes from complex natural microbial communities ,$ Patrick T. West1, Alexander J. Probst2 , Igor V. Grigoriev1,5, Brian C. Thomas2, Jillian F. Banfield2,3,4* 1Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. 2Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 3Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. 4Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5US Department of Energy Joint Genome Institute, Walnut Creek, California, USA. * Corresponding Author $present address: Group for Aquatic Microbial Ecology, Biofilm Center, Department of Chemistry, University of Duisburg-Essen, Essen, Germany Running title Metagenomic Reconstruction of Eukaryotic Genomes Keywords metagenomics, eukaryotes, genome, gene prediction Corresponding author contact info Jillian Banfield Department of Environmental Science, Policy, & Management UC Berkeley 130 Mulford Hall #3114 Berkeley, CA 94720 [email protected] (510) 643-2155 1 Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Microbial eukaryotes are integral components of natural microbial communities and their inclusion is critical for many ecosystem studies yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k-mer- based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation and prediction of metabolic potential.
    [Show full text]