Swim Bladder 1 Swim Bladder

Total Page:16

File Type:pdf, Size:1020Kb

Swim Bladder 1 Swim Bladder Swim bladder 1 Swim bladder The swim bladder, gas bladder, fish maw or air bladder is an internal gas-filled organ that contributes to the ability of a fish to control its buoyancy, and thus to stay at the current water depth without having to waste energy [1] in swimming. The swim bladder of a Rudd The swim bladder is also of use as a stabilizing agent because in the upright position the center of mass is below the center of volume due to the dorsal position of the swim bladder. Another function of the swim bladder is the use as a resonating chamber to produce or receive sound. Species Swim bladders are only found in ray-finned fish. In the embryonic stages some species have lost the swim bladder again, mostly bottom dwellers like the weather fish. Other fishes like the Opah and the Pomfret use their pectoral fins to swim and balance the weight of the head to keep a horizontal position. The normally bottom dwelling sea robin can use their pectoral fins to produce lift while swimming. The cartilaginous fish (e.g. sharks and rays) and lobe-finned fish do not have swim bladders. They can control their depth only by swimming (using dynamic lift); others store fats or oils for the purpose. Structure and function The swim bladder normally consists of two gas-filled sacs located in the dorsal portion of the fish, although in a few primitive species, there is only a single sac. It has flexible walls that contract or expand according to the ambient pressure. The walls of the bladder contain very few blood vessels and are lined with guanine crystals, which make them impermeable to gases. By adjusting the gas pressure using the gas gland or oval window the fish can obtain neutral buoyancy and ascend and descend to a large range of depths. Due to the dorsal position it gives the fish lateral stability. In physostomous swim bladders, a connection is retained between the swim bladder and the gut, the pneumatic duct, allowing the fish to fill up the swim bladder by "gulping" air and filling the swim bladder. Excess gas can be removed in a similar manner. In more derived varieties of fish, the physoclisti connection to the gastric duct is lost. In early life stages, fish have to rise to the surface to fill up their swim bladders, however, in later stages the connection disappears and the gas gland has to introduce gas (usually oxygen) to the bladder to increase its volume and thus increase buoyancy. In order to introduce gas into the bladder, the gas gland excretes lactic acid and produces carbon dioxide. The resulting acidity causes the hemoglobin of the blood to lose its oxygen (Root effect) which then diffuses partly into the swim bladder. The blood flowing back to the body first enters a rete mirabile where virtually all the excess carbon dioxide and oxygen produced in the gas gland diffuses back to the arteries supplying the gas gland. Thus a very high gas pressure of oxygen can be obtained, which can even account for the presence of gas in the swim bladders of deep sea fish like the eel, requiring a pressure of hundreds of bars[2] . Elsewhere, at a similar structure known as the oval window, the bladder is in contact with blood and the oxygen can diffuse back. Together with oxygen other gases are salted out in the swim bladder which accounts for the high pressures of other gases as well[3] . Swim bladder 2 The combination of gases in the bladder varies. In shallow water fish, the ratios closely approximate that of the atmosphere, while deep sea fish tend to have higher percentages of oxygen. For instance, the eel Synaphobranchus has been observed to have 75.1% oxygen, 20.5% nitrogen, 3.1% carbon dioxide, and 0.4% argon in its swim bladder. Physoclist swim bladders have one important disadvantage: they prohibit fast rising, as the bladder would burst. Physostomes can "burp" out gas, though this complicates the process of re-submergence. In some fish, mainly freshwater species (e.g. common carp, wels catfish), the swim bladder is connected to the labyrinth of the inner ear by the Weberian apparatus, a bony structure derived from the vertebrae, which provides a precise sense of water pressure (and thus depth), and improves hearing.[3] Evolution Swim bladders are evolutionarily closely related (i.e. homologous) to lungs. It is believed that the first lungs, simple sacs connected to the gut that allowed the organism to gulp air under oxygen-poor conditions, evolved into the lungs of today's terrestrial vertebrates and some fish (e.g. lungfish, gar, and bichir) and into the swim bladders of the ray-finned fish.[4] In embryonal development, both lung and swim bladder originate as an outpocketing from the gut; in the case of swim bladders, this connection to the gut continues to exist as the pneumatic duct in the more "primitive" ray-finned fish, and is lost in some of the more derived teleost orders. There are no animals which have both lungs and a swim bladder. The cartilaginous fish (e.g. sharks and rays) split from the other fishes about 420 million years ago and lack both lungs and swim bladders, suggesting that these structures evolved after that split.[4] Correspondingly, these fish also have a heterocercal fin which provides the necessary lift needed due to the lack of swim bladders. On the other hand, teleost fish with swim bladders have neutral buoyancy and have no need for this lift.[5] Human uses In some Asian cultures, the swim bladders of certain large sea fishes are considered a food delicacy. It is usually served braised or in stews. Swim bladders are also used in the food industry as a source of collagen. Swim Bladders can also be made into a strong, water-resistant glue. Swim bladders are also used to make isinglass for the clarification of beer. The gas/tissue interface at the swim bladder produces a strong reflection of sound, which is used in sonar equipment to find fish. Swim bladder display in a Melaka shopping mall Similar structures in other organisms Siphonophores have a special swim bladder that allows the jellyfish-like colonies to float along the surface of the water while their tentacles trail below. This organ is unrelated to the one in fish.[6] Swim bladder 3 See also • Swim bladder syndrome References [1] "Fish". Microsoft Encarta Encyclopedia Deluxe 1999. Microsoft. 1999. [2] http:/ / physiologyonline. physiology. org/ cgi/ content/ full/ 16/ 6/ 287 [3] http:/ / www. biolbull. org/ cgi/ content/ abstract/ 161/ 3/ 440 [4] Colleen Farmer (1997), "Did lungs and the intracardiac shunt evolve to oxygenate the heart in vertebrates" (http:/ / www. biology. utah. edu/ farmer/ publications pdf/ 1997 Paleobiology23. pdf), Paleobiology, [5] Kardong, KV (1998) Vertebrates: Comparative Anatomy, Function, Evolution2nd edition, illustrated, revised. Published by WCB/McGraw-Hill, p. 12 ISBN 0697286541 [6] Clark, F. E.; C. E. Lane (1961). "Composition of float gases of Physalia physalis". Fed. Proc. 107: 673–674. Bibliography • Carl E. Bond, Biology of Fishes, 2nd ed., (Saunders, 1996) pp. 283–290. Article Sources and Contributors 4 Article Sources and Contributors Swim bladder Source: http://en.wikipedia.org/w/index.php?oldid=389085144 Contributors: Academic Challenger, Alansohn, Altenmann, Anaxial, Aragorn2, Arekrishna, Ark-pl, AxelBoldt, B.d.mills, Belovedfreak, Bento00, BlackAndy, Bluerasberry, Bob the ducq, Boism, ChrisKot, Colonel Warden, CranialNerves, Discospinster, Donarreiskoffer, Dr.frog, Drbreznjev, DuffO, Dvc214, Dyl, Epipelagic, Flying dustman, Fryed-peach, GrapeSteinbeck, Gurch, Heron, Humanfeather, Jmlk17, Jon Cates, Jpatokal, Keenan Pepper, Killing Vector, Koavf, Korath, Luk, Manuel Anastácio, Melaen, Melissa, Minimac, Miniwildebeest, Mokele, Nakon, NrDg, ONUnicorn, Onorem, Panellet, Pinethicket, Player 03, Prashanthns, R'n'B, Rbrwr, Reactive1, RekishiEJ, Reuqr, Roisterer, Rosarinagazo, Sam Hocevar, SarekOfVulcan, Shrumster, Sjschen, Sjö, Skapur, Skyfaller, Soulkeeper, Stan Shebs, Thunderbird2, Tide rolls, Toh, Tom Harris, Tsiaojian lee, Umofomia, Viridiflavus, Vmenkov, W4ffl3, WAS 4.250, Xod, Z1720, Ziggurat, 91 anonymous edits Image Sources, Licenses and Contributors Image:Swim bladder.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Swim_bladder.jpg License: Creative Commons Attribution-Sharealike 2.5 Contributors: User:Uwe Gille File:Melaka-mall-Fish-maw-kiosk-2267.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Melaka-mall-Fish-maw-kiosk-2267.jpg License: Creative Commons Attribution-Sharealike 2.5 Contributors: User:Vmenkov License Creative Commons Attribution-Share Alike 3.0 Unported http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/.
Recommended publications
  • Belonidae Bonaparte 1832 Needlefishes
    ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft).
    [Show full text]
  • O2 Secretion in the Eye and Swimbladder of Fishes
    1641 The Journal of Experimental Biology 209, 1641-1652 Published by The Company of Biologists 2007 doi:10.1242/jeb.003319 Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes Michael Berenbrink School of Biological Sciences, The University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK e-mail: [email protected] Accepted 12 March 2007 Summary The ability of some fishes to inflate their compressible value of haemoglobin. These changes predisposed teleost swimbladder with almost pure oxygen to maintain neutral fishes for the later evolution of swimbladder oxygen buoyancy, even against the high hydrostatic pressure secretion, which occurred at least four times independently several thousand metres below the water surface, has and can be associated with increased auditory sensitivity fascinated physiologists for more than 200·years. This and invasion of the deep sea in some groups. It is proposed review shows how evolutionary reconstruction of the that the increasing availability of molecular phylogenetic components of such a complex physiological system on a trees for evolutionary reconstructions may be as important phylogenetic tree can generate new and important insights for understanding physiological diversity in the post- into the origin of complex phenotypes that are difficult to genomic era as the increase of genomic sequence obtain with a purely mechanistic approach alone. Thus, it information in single model species. is shown that oxygen secretion first evolved in the eyes of fishes, presumably for improved oxygen supply to an Glossary available online at avascular, metabolically active retina. Evolution of this http://jeb.biologists.org/cgi/content/full/210/9/1641/DC1 system was facilitated by prior changes in the pH dependence of oxygen-binding characteristics of Key words: oxygen secretion, Root effect, rete mirabile, choroid, haemoglobin (the Root effect) and in the specific buffer swimbladder, phylogenetic reconstruction.
    [Show full text]
  • Notes on the Swim-Bladder Physiology of Cod (Gadus Morhua) Investigated from the Underwater Laboratory "Helgoland"
    Helgol~inder wiss. Meeresunters. 29, 460-463 (1977) Notes on the swim-bladder physiology of cod (Gadus morhua) investigated from the underwater laboratory "Helgoland" G. SUNDNES, B. GULLIKSEN ~X~ J. MORK Biological stasjon; Trondheim, Norway ABSTRACT: In situ sampling of gas from cod swim-bladders took place during a fortnight's saturation mission with the underwater laboratory "Helgoland" in May-June I975. These samples were compared to those done by the conventional method of transporting the fish to the surface for sampling. Based upon these in-situ measurements, the mean O2-concentration was 55.7 °/0 in buoyant cod at 15 m depth. Repeated sampling of the same fish showed a change in gas composition. Compared to the conventional method of transporting fish for sampling to the surface, in-situ sampling gave results with less variation, and indicated that surface-sampling does not give the correct gas composition of buoyant fish at depth of catch. INTRODUCTION Physiological investigations of fish swim-bladder have usually been performed near the surface, i.e. at about one atmosphere pressure. It means that fish were usually brought to the surface from their natural habitat of high water pressure to reduced pressure before experiments were performed and samples taken. Even in experiments with fish in pressure chambers, the gas samples of the swim-bladder were taken at one atmosphere pressure. Gas sampIes from fish at the depth of buoyancy have rarely been reported. The development of the underwater laboratory has given marine biologists a better opportunity to work under hydrostatic pressure whereby fish are kept under "natural" experimental conditions.
    [Show full text]
  • Marine Fishes of the Azores: an Annotated Checklist and Bibliography
    MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores.
    [Show full text]
  • The Secretion of Oxygen Into the Swim-Bladder of Fish III
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central The Secretion of Oxygen into the Swim-Bladder of Fish III. The role of carbon dioxide JONATHAN B. WITTENBERG, MARY J. SCHWEND, and BEATRICE A. WITTENBERG From the Department of Physiology, Albert Einstein College of Medicine, Yeshiva University, New York, and the Marine Biological Laboratory, Woods Hole, Massachusetts ABSTRACT The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pres- sure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is con- cluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercutrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory.
    [Show full text]
  • Worksheets and Post-Lab Activities for “Floating Fishes”
    Worksheets and post-lab activities for “Floating Fishes” Possible lesson outlines of this modular activity: This is the lesson as currently written. It begins with the physics of buoyancy before transitioning to fish biology and how it’s related to fisheries Activity Time required 1 Introduction and background 50 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min 4 Fishing expedition 50 min An alternative is to start with the fishing expedition in order to emphasize the ecological aspects. Activity Time required 1 Introduction and background 50 min 2 Fishing expedition 50 min 3 Boat Sinking Lab 50 min 4 Fish Buoyancy 50 min If an instructor is short on time and wishes to emphasize the interaction between biology and physics, they can omit the fisheries background. This could be completed within a 3-hr lab period. To save 50 minutes, one can also omit the boat sinking lab. Activity Time required 1 Introduction (omit information about overfishing) 30 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min Page 1 of 10 Worksheets and post-lab activities for “Floating Fishes” Sample Worksheet for Day 2: Boat Sinking Lab 1) Add marbles to your boat one by one. What is happening to your boat as you add more marbles?__Students will find that the marbles all roll to one side ______ How many marbles did it take to sink your boat? ______ answers will vary ______________ 2) Take out the marbles and add the first divider to your boat. Add one marble at a time to just one side of your boat.
    [Show full text]
  • Actinopterygii Viiib Sarcopterygii VIII
    Základy zoologie strunatců VIII. Osteognathostomata VIIIa Actinopterygii VIIIb Sarcopterygii VIII. Osteognathostomata - čelistnatci s kostní tkání † Placodermi Chondrichthyes † Acanthodii Actinopterygii čelistnatci s kostní tkání (vodní = ryby = Pisces) Sarcopterygii předek ryb – Psarolepis, předek paprskoploutvých - Dialipina Teleostomi Acanthodii Actinopterygii - paprskoploutví Osteognathostomata Sarcopterygii - svaloploutví VIII. Osteognathostomata - čelistnatci s kostní tkání • endochondrální osifikace (kost uvnitř chrupavky na rozdíl od perichondrální os.) • převaha kostí nad chrupavkami, na lebce velký počet dermálních kostí • kostěné skřele (operculum) zakrývají branchiální prostor, napojené na jazylkový oblouk • nové krycí patrové kosti – vomer a parasphenoid • lopatkový pletenec v kontaktu s dermálními kostmi lebky • 3 otolithy ve vnitřním uchu • dolní žebra žaberní váčky žaberní přepážky žaberní oblouky, skřele • kostěné šupiny, postranní čára • žábra nasedají přímo na žaberní oblouky, red. žaberních přepážek • vnější nozdry (nares) rozdělěny mihule paryba kostnatá ryba VIIIa. Actinopterygii - paprskoploutví † Placodermi Chondrichthyes † Acanthodii Actinopterygii Od svrchního siluru (400 mil. let) Sarcopterygii Diverzifikace v devonu, adaptivní radiace: 1.karbon - trias († „Palaeonisciformes“), chrupavčití 2.trias - jura († Semionotus), Holostei – mnohokostnatí 3.jura – dodnes († Pycnodontiformes), Teleostei - kostnatí Diverzita recentních > vymřelých, nejpočetnější skupina obratlovců, 38 řádů, 430 čeledí a ~ 30 000 druhů, původně
    [Show full text]
  • Observations on the Physiology of the Swim Bladder in Cyprinoid Fishes by H
    OBSERVATIONS ON THE PHYSIOLOGY OF THE SWIM BLADDER IN CYPRINOID FISHES BY H. M. EVANS AND G. C. C. DAMANT. (Received 2.6th February 1928.) (With Five Text-figures.) THE swim bladder of fishes is primarily a hydrostatic organ and with rare exceptions contains or tends to contain the exact quantity of gas which is necessary to make the specific gravity of the whole fish equal to that of the water in which it is swimming, so that it can rest in mid-water tending neither to rise nor sink: this normal con- dition is called neutral buoyancy. Since gas is compressible and water is not, any increase of external or atmospheric pressure by acting through the non-rigid body walls will reduce the volume of gas in the swim bladder and cause the fish to sink in the water (condition of negative buoyancy). This condition can also be produced by aspirating some of the gas from the swim bladder or by attaching a small weight to the fish. When in a state of negative buoyancy produced by any of these treatments (provided that the interference has not been excessive), the fish will compensate (i.e. restore its neutral buoyancy) by introducing additional gas into its swim bladder. In fish with closed swim bladders (Physoclisti) it has long been known that this additional gas is mainly oxygen and is secreted into the swim bladder by organs known as red bodies or gas glands. Such organs are absent in many fishes whose swim bladders are furnished with ducts communicating with the exterior, and experiments which have been published on the method by which such fish compen- sate are inconclusive.
    [Show full text]
  • Zootaxa, a New Species of Snapper
    Zootaxa 1422: 31–43 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) A new species of snapper (Perciformes: Lutjanidae) from Brazil, with comments on the distribution of Lutjanus griseus and L. apodus RODRIGO L. MOURA1 & KENYON C. LINDEMAN2 1Conservation International Brasil, Programa Marinho, Rua das Palmeiras 451 Caravelas BA 45900-000 Brazil E-mail:[email protected] 2Environmental Defense, 485 Glenwood Avenue, Satellite Beach, FL, 32937 USA E-mail: [email protected] Abstract Snappers of the family Lutjanidae contain several of the most important reef-fishery species in the tropical western Atlantic. Despite their importance, substantial gaps exist for both systematic and ecological information, especially for the southwestern Atlantic. Recent collecting efforts along the coast of Brazil have resulted in the discovery of many new reef-fish species, including commercially important parrotfishes (Scaridae) and grunts (Haemulidae). Based on field col- lecting, museum specimens, and literature records, we describe a new species of snapper, Lutjanus alexandrei, which is apparently endemic to the Brazilian coast. The newly settled and early juvenile life stages are also described. This spe- cies is common in many Brazilian reef and coastal estuarine systems where it has been often misidentified as the gray snapper, Lutjanus griseus, or the schoolmaster, L. apodus. Identification of the new species cast doubt on prior distribu- tional assumptions about the southern ranges of L. griseus and L. apodus, and subsequent field and museum work con- firmed that those species are not reliably recorded in Brazil. The taxonomic status of two Brazilian species previously referred to Lutjanus, Bodianus aya and Genyoroge canina, is reviewed to determine the number of valid Lutjanus species occurring in Brazil.
    [Show full text]
  • ! Osteichthyes ! Osteichthyes
    ! Osteichthyes ! Osteichthyes = Osteognathostomata- = Osteognathostomata- Ryby s.str.a Tetrapoda Ryby s.str.a Tetrapoda =Teleostomi – Koncoústé =Teleostomi – Koncoústé ryby …ale ryby …ale - Agnatha - Gnathostomata Sarcopterygii Osteognathostomata - Chondrichtyes Actinopterygii Teleostomi - Osteognathostomata †Acanthodii - Actinopterygii Chondrichthyes - Sarcopterygii †Placodermi Osteichthyes = Osteognathostomata (jméno Osteognathostomata: akcentující zahrnutí Tetrapoda) *lepidotrichia (dermální, kostěné), *šupiny s isopedinem (lamelární kost) • Endochondrální osifikace endoskeletu *dermatokranium jednotné • výrazný rozvoj a specialisace exoskeletu základní stavby, *jícnové výchlipky • Malý počet otolitů (3) v blanitém labyrintu (srv. otokonia u paryb) • Žaberní přepážky redukovány, společná žaberní dutina nebo vnější žábra lepidotrichia – • Výchlipky jícnu (plíce +/vs. plynový měchýř) kostěné, dermální, párové • lepidotrichia Osteognathostomata • Monophylum: Actinopterygii+ Sarcopterygii • Jícnová výchlipka (ventr. –plíce, dors. plynový měchýř) • Ztráta interbranchiálních sept • Lepidotrichia Šupiny ryb: • Endoskelet s peri- a endochondrální osifikací Kosmoidní (Sarcopterygii – • Dermální skelet (extrascapularia – kaud okraj zejm.fosilní), stropu lebky, praeoperculare +preoperculární kanál – začátek postr. čáry, operkulární komplex, gularia, Ganoidní (bichiři, kostlíni…) premaxilare, maxillare, qudratojugale, dentale, Leptoidní – kostěnné infrraorbitalia, temporalia, frontale, parietale, (Teleostei): cykloidní, parasphenoid, vomer, interclavicula,
    [Show full text]
  • Swim Bladder and Scales in Fishes
    Swim Bladder and Scales in fishes Zoology (Hons.) 2nd SEM DC3 Unit 5 Swim Bladder: The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ that contributes to the ability of many bony fish to control their buoyancy, and thus to stay at their current water depth without having to waste energy in swimming. The swim bladder functions as a resonating chamber, to produce or receive sound. The swim bladder is evolutionarily homologous to the lungs. Darwin reasoned that the lung in air-breathing vertebrates had derived from a more primitive swim bladder. The gas/tissue interface at the swim bladder produces a strong reflection of sound, which is used in sonar equipment to find fish. Depending on the presence of the duct (ductus pneumaticus) between the swim bladder and the oesophagus the swim bladder can be divided into 2 broad categories: 1) Physostomous and 2) Physoclistous type. Structure and function The swim bladder normally consists of two gas-filled sacs located in the dorsal portion of the fish, although in a few primitive species, there is only a single sac. It has flexible walls that contract or expand according to the ambient pressure. The walls of the bladder contain very few blood vessels and are lined with guanine crystals, which make them impermeable to gases. By adjusting the gas pressurising organ using the gas gland or oval window the fish can obtain neutral buoyancy and ascend and descend to a large range of depths. Due to the dorsal position it gives the fish lateral stability.
    [Show full text]
  • Swim Bladder and Its Modifications Swim Bladder
    Swim Bladder and its modifications Swim Bladder Swim bladder also known as air bladder or gas bladder is a characteristic structure in most of the osteichthyes It situated between the alimentary canal and kidneys and sac like in appearance It contain air and develop as a small outgrowth from wall of the gut Structural Modification In primitive bony fish, Polypterus it is in the form of bilobed sac having smooth wall. The right lobe is larger than the left and the two are joined at the proximal ends before opening into the pharynx by an aperture (glottis) provided with muscular sphincter In Lepidosteus (Holostei) the bladder is single elongated sac which open into gut by glottis. The wall of sac is not smooth but shows alveoli arranged in two rows In Dipnoi, Neoceratodus, Protopterus and Lepidosiren the bladder resembles the lung of an amphibian. The wall of bladder is highly vascular and shows numerous alveoli that are further divided into the smaller sacculi. Their bladder is modified for aerial respiration Structural Modification in teleost Gas bladder is present in most teleost but it is absent in several order of fishes such as Pleuronectiformes, Echeneiformes, Giganturiformes, Saccopharyngiformes, Pegasifformes and Symbranchiformes Teleost species in which bladder is present , it may be oval, tubular fusiform, heart shaped, horse-shoe shaped or dumb bell shaped In Cyprinidae (Labeo, Cirrhinus, Catla) the air bladder is divided into two inter connecting chambers In several sound producing fishes, the air bladder has finger like caecal outgrouth. In Gadus a pair of such caeca extend into the head region of the fish.
    [Show full text]