Swim Bladder 1 Swim Bladder
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Belonidae Bonaparte 1832 Needlefishes
ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft). -
O2 Secretion in the Eye and Swimbladder of Fishes
1641 The Journal of Experimental Biology 209, 1641-1652 Published by The Company of Biologists 2007 doi:10.1242/jeb.003319 Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes Michael Berenbrink School of Biological Sciences, The University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK e-mail: [email protected] Accepted 12 March 2007 Summary The ability of some fishes to inflate their compressible value of haemoglobin. These changes predisposed teleost swimbladder with almost pure oxygen to maintain neutral fishes for the later evolution of swimbladder oxygen buoyancy, even against the high hydrostatic pressure secretion, which occurred at least four times independently several thousand metres below the water surface, has and can be associated with increased auditory sensitivity fascinated physiologists for more than 200·years. This and invasion of the deep sea in some groups. It is proposed review shows how evolutionary reconstruction of the that the increasing availability of molecular phylogenetic components of such a complex physiological system on a trees for evolutionary reconstructions may be as important phylogenetic tree can generate new and important insights for understanding physiological diversity in the post- into the origin of complex phenotypes that are difficult to genomic era as the increase of genomic sequence obtain with a purely mechanistic approach alone. Thus, it information in single model species. is shown that oxygen secretion first evolved in the eyes of fishes, presumably for improved oxygen supply to an Glossary available online at avascular, metabolically active retina. Evolution of this http://jeb.biologists.org/cgi/content/full/210/9/1641/DC1 system was facilitated by prior changes in the pH dependence of oxygen-binding characteristics of Key words: oxygen secretion, Root effect, rete mirabile, choroid, haemoglobin (the Root effect) and in the specific buffer swimbladder, phylogenetic reconstruction. -
Notes on the Swim-Bladder Physiology of Cod (Gadus Morhua) Investigated from the Underwater Laboratory "Helgoland"
Helgol~inder wiss. Meeresunters. 29, 460-463 (1977) Notes on the swim-bladder physiology of cod (Gadus morhua) investigated from the underwater laboratory "Helgoland" G. SUNDNES, B. GULLIKSEN ~X~ J. MORK Biological stasjon; Trondheim, Norway ABSTRACT: In situ sampling of gas from cod swim-bladders took place during a fortnight's saturation mission with the underwater laboratory "Helgoland" in May-June I975. These samples were compared to those done by the conventional method of transporting the fish to the surface for sampling. Based upon these in-situ measurements, the mean O2-concentration was 55.7 °/0 in buoyant cod at 15 m depth. Repeated sampling of the same fish showed a change in gas composition. Compared to the conventional method of transporting fish for sampling to the surface, in-situ sampling gave results with less variation, and indicated that surface-sampling does not give the correct gas composition of buoyant fish at depth of catch. INTRODUCTION Physiological investigations of fish swim-bladder have usually been performed near the surface, i.e. at about one atmosphere pressure. It means that fish were usually brought to the surface from their natural habitat of high water pressure to reduced pressure before experiments were performed and samples taken. Even in experiments with fish in pressure chambers, the gas samples of the swim-bladder were taken at one atmosphere pressure. Gas sampIes from fish at the depth of buoyancy have rarely been reported. The development of the underwater laboratory has given marine biologists a better opportunity to work under hydrostatic pressure whereby fish are kept under "natural" experimental conditions. -
Marine Fishes of the Azores: an Annotated Checklist and Bibliography
MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores. -
The Secretion of Oxygen Into the Swim-Bladder of Fish III
CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central The Secretion of Oxygen into the Swim-Bladder of Fish III. The role of carbon dioxide JONATHAN B. WITTENBERG, MARY J. SCHWEND, and BEATRICE A. WITTENBERG From the Department of Physiology, Albert Einstein College of Medicine, Yeshiva University, New York, and the Marine Biological Laboratory, Woods Hole, Massachusetts ABSTRACT The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pres- sure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is con- cluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercutrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory. -
Worksheets and Post-Lab Activities for “Floating Fishes”
Worksheets and post-lab activities for “Floating Fishes” Possible lesson outlines of this modular activity: This is the lesson as currently written. It begins with the physics of buoyancy before transitioning to fish biology and how it’s related to fisheries Activity Time required 1 Introduction and background 50 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min 4 Fishing expedition 50 min An alternative is to start with the fishing expedition in order to emphasize the ecological aspects. Activity Time required 1 Introduction and background 50 min 2 Fishing expedition 50 min 3 Boat Sinking Lab 50 min 4 Fish Buoyancy 50 min If an instructor is short on time and wishes to emphasize the interaction between biology and physics, they can omit the fisheries background. This could be completed within a 3-hr lab period. To save 50 minutes, one can also omit the boat sinking lab. Activity Time required 1 Introduction (omit information about overfishing) 30 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min Page 1 of 10 Worksheets and post-lab activities for “Floating Fishes” Sample Worksheet for Day 2: Boat Sinking Lab 1) Add marbles to your boat one by one. What is happening to your boat as you add more marbles?__Students will find that the marbles all roll to one side ______ How many marbles did it take to sink your boat? ______ answers will vary ______________ 2) Take out the marbles and add the first divider to your boat. Add one marble at a time to just one side of your boat. -
Actinopterygii Viiib Sarcopterygii VIII
Základy zoologie strunatců VIII. Osteognathostomata VIIIa Actinopterygii VIIIb Sarcopterygii VIII. Osteognathostomata - čelistnatci s kostní tkání † Placodermi Chondrichthyes † Acanthodii Actinopterygii čelistnatci s kostní tkání (vodní = ryby = Pisces) Sarcopterygii předek ryb – Psarolepis, předek paprskoploutvých - Dialipina Teleostomi Acanthodii Actinopterygii - paprskoploutví Osteognathostomata Sarcopterygii - svaloploutví VIII. Osteognathostomata - čelistnatci s kostní tkání • endochondrální osifikace (kost uvnitř chrupavky na rozdíl od perichondrální os.) • převaha kostí nad chrupavkami, na lebce velký počet dermálních kostí • kostěné skřele (operculum) zakrývají branchiální prostor, napojené na jazylkový oblouk • nové krycí patrové kosti – vomer a parasphenoid • lopatkový pletenec v kontaktu s dermálními kostmi lebky • 3 otolithy ve vnitřním uchu • dolní žebra žaberní váčky žaberní přepážky žaberní oblouky, skřele • kostěné šupiny, postranní čára • žábra nasedají přímo na žaberní oblouky, red. žaberních přepážek • vnější nozdry (nares) rozdělěny mihule paryba kostnatá ryba VIIIa. Actinopterygii - paprskoploutví † Placodermi Chondrichthyes † Acanthodii Actinopterygii Od svrchního siluru (400 mil. let) Sarcopterygii Diverzifikace v devonu, adaptivní radiace: 1.karbon - trias († „Palaeonisciformes“), chrupavčití 2.trias - jura († Semionotus), Holostei – mnohokostnatí 3.jura – dodnes († Pycnodontiformes), Teleostei - kostnatí Diverzita recentních > vymřelých, nejpočetnější skupina obratlovců, 38 řádů, 430 čeledí a ~ 30 000 druhů, původně -
Observations on the Physiology of the Swim Bladder in Cyprinoid Fishes by H
OBSERVATIONS ON THE PHYSIOLOGY OF THE SWIM BLADDER IN CYPRINOID FISHES BY H. M. EVANS AND G. C. C. DAMANT. (Received 2.6th February 1928.) (With Five Text-figures.) THE swim bladder of fishes is primarily a hydrostatic organ and with rare exceptions contains or tends to contain the exact quantity of gas which is necessary to make the specific gravity of the whole fish equal to that of the water in which it is swimming, so that it can rest in mid-water tending neither to rise nor sink: this normal con- dition is called neutral buoyancy. Since gas is compressible and water is not, any increase of external or atmospheric pressure by acting through the non-rigid body walls will reduce the volume of gas in the swim bladder and cause the fish to sink in the water (condition of negative buoyancy). This condition can also be produced by aspirating some of the gas from the swim bladder or by attaching a small weight to the fish. When in a state of negative buoyancy produced by any of these treatments (provided that the interference has not been excessive), the fish will compensate (i.e. restore its neutral buoyancy) by introducing additional gas into its swim bladder. In fish with closed swim bladders (Physoclisti) it has long been known that this additional gas is mainly oxygen and is secreted into the swim bladder by organs known as red bodies or gas glands. Such organs are absent in many fishes whose swim bladders are furnished with ducts communicating with the exterior, and experiments which have been published on the method by which such fish compen- sate are inconclusive. -
Zootaxa, a New Species of Snapper
Zootaxa 1422: 31–43 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) A new species of snapper (Perciformes: Lutjanidae) from Brazil, with comments on the distribution of Lutjanus griseus and L. apodus RODRIGO L. MOURA1 & KENYON C. LINDEMAN2 1Conservation International Brasil, Programa Marinho, Rua das Palmeiras 451 Caravelas BA 45900-000 Brazil E-mail:[email protected] 2Environmental Defense, 485 Glenwood Avenue, Satellite Beach, FL, 32937 USA E-mail: [email protected] Abstract Snappers of the family Lutjanidae contain several of the most important reef-fishery species in the tropical western Atlantic. Despite their importance, substantial gaps exist for both systematic and ecological information, especially for the southwestern Atlantic. Recent collecting efforts along the coast of Brazil have resulted in the discovery of many new reef-fish species, including commercially important parrotfishes (Scaridae) and grunts (Haemulidae). Based on field col- lecting, museum specimens, and literature records, we describe a new species of snapper, Lutjanus alexandrei, which is apparently endemic to the Brazilian coast. The newly settled and early juvenile life stages are also described. This spe- cies is common in many Brazilian reef and coastal estuarine systems where it has been often misidentified as the gray snapper, Lutjanus griseus, or the schoolmaster, L. apodus. Identification of the new species cast doubt on prior distribu- tional assumptions about the southern ranges of L. griseus and L. apodus, and subsequent field and museum work con- firmed that those species are not reliably recorded in Brazil. The taxonomic status of two Brazilian species previously referred to Lutjanus, Bodianus aya and Genyoroge canina, is reviewed to determine the number of valid Lutjanus species occurring in Brazil. -
! Osteichthyes ! Osteichthyes
! Osteichthyes ! Osteichthyes = Osteognathostomata- = Osteognathostomata- Ryby s.str.a Tetrapoda Ryby s.str.a Tetrapoda =Teleostomi – Koncoústé =Teleostomi – Koncoústé ryby …ale ryby …ale - Agnatha - Gnathostomata Sarcopterygii Osteognathostomata - Chondrichtyes Actinopterygii Teleostomi - Osteognathostomata †Acanthodii - Actinopterygii Chondrichthyes - Sarcopterygii †Placodermi Osteichthyes = Osteognathostomata (jméno Osteognathostomata: akcentující zahrnutí Tetrapoda) *lepidotrichia (dermální, kostěné), *šupiny s isopedinem (lamelární kost) • Endochondrální osifikace endoskeletu *dermatokranium jednotné • výrazný rozvoj a specialisace exoskeletu základní stavby, *jícnové výchlipky • Malý počet otolitů (3) v blanitém labyrintu (srv. otokonia u paryb) • Žaberní přepážky redukovány, společná žaberní dutina nebo vnější žábra lepidotrichia – • Výchlipky jícnu (plíce +/vs. plynový měchýř) kostěné, dermální, párové • lepidotrichia Osteognathostomata • Monophylum: Actinopterygii+ Sarcopterygii • Jícnová výchlipka (ventr. –plíce, dors. plynový měchýř) • Ztráta interbranchiálních sept • Lepidotrichia Šupiny ryb: • Endoskelet s peri- a endochondrální osifikací Kosmoidní (Sarcopterygii – • Dermální skelet (extrascapularia – kaud okraj zejm.fosilní), stropu lebky, praeoperculare +preoperculární kanál – začátek postr. čáry, operkulární komplex, gularia, Ganoidní (bichiři, kostlíni…) premaxilare, maxillare, qudratojugale, dentale, Leptoidní – kostěnné infrraorbitalia, temporalia, frontale, parietale, (Teleostei): cykloidní, parasphenoid, vomer, interclavicula, -
Swim Bladder and Scales in Fishes
Swim Bladder and Scales in fishes Zoology (Hons.) 2nd SEM DC3 Unit 5 Swim Bladder: The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ that contributes to the ability of many bony fish to control their buoyancy, and thus to stay at their current water depth without having to waste energy in swimming. The swim bladder functions as a resonating chamber, to produce or receive sound. The swim bladder is evolutionarily homologous to the lungs. Darwin reasoned that the lung in air-breathing vertebrates had derived from a more primitive swim bladder. The gas/tissue interface at the swim bladder produces a strong reflection of sound, which is used in sonar equipment to find fish. Depending on the presence of the duct (ductus pneumaticus) between the swim bladder and the oesophagus the swim bladder can be divided into 2 broad categories: 1) Physostomous and 2) Physoclistous type. Structure and function The swim bladder normally consists of two gas-filled sacs located in the dorsal portion of the fish, although in a few primitive species, there is only a single sac. It has flexible walls that contract or expand according to the ambient pressure. The walls of the bladder contain very few blood vessels and are lined with guanine crystals, which make them impermeable to gases. By adjusting the gas pressurising organ using the gas gland or oval window the fish can obtain neutral buoyancy and ascend and descend to a large range of depths. Due to the dorsal position it gives the fish lateral stability. -
Swim Bladder and Its Modifications Swim Bladder
Swim Bladder and its modifications Swim Bladder Swim bladder also known as air bladder or gas bladder is a characteristic structure in most of the osteichthyes It situated between the alimentary canal and kidneys and sac like in appearance It contain air and develop as a small outgrowth from wall of the gut Structural Modification In primitive bony fish, Polypterus it is in the form of bilobed sac having smooth wall. The right lobe is larger than the left and the two are joined at the proximal ends before opening into the pharynx by an aperture (glottis) provided with muscular sphincter In Lepidosteus (Holostei) the bladder is single elongated sac which open into gut by glottis. The wall of sac is not smooth but shows alveoli arranged in two rows In Dipnoi, Neoceratodus, Protopterus and Lepidosiren the bladder resembles the lung of an amphibian. The wall of bladder is highly vascular and shows numerous alveoli that are further divided into the smaller sacculi. Their bladder is modified for aerial respiration Structural Modification in teleost Gas bladder is present in most teleost but it is absent in several order of fishes such as Pleuronectiformes, Echeneiformes, Giganturiformes, Saccopharyngiformes, Pegasifformes and Symbranchiformes Teleost species in which bladder is present , it may be oval, tubular fusiform, heart shaped, horse-shoe shaped or dumb bell shaped In Cyprinidae (Labeo, Cirrhinus, Catla) the air bladder is divided into two inter connecting chambers In several sound producing fishes, the air bladder has finger like caecal outgrouth. In Gadus a pair of such caeca extend into the head region of the fish.