Properties Frequently Used to Identify Fibers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Materials for the Textile Industry Alain Stout
English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ................................................................................................................... -
Animal Fiber Metrology
ANIMAL FIBER METROLOGY Chris Lupton Texas Agr iLife R esearc h The Texas A&M System San Angelo IRAQ AGRICULTURAL EXTENSION REVITALIZATION GROUP San Angelo, Texas October 21, 2009 Animal fiber program • Develop and evaluate improved ppgrocedures for measuring value- determining characteristics of animal fibers. • Collaborate in research ppjrojects that require fiber production and quality to be quantified. Animal fiber program • Project Leader: Chris Lupton • Research Associate: Faron Pfeiffer • Research Assistant: Sue Engdahl • Student Assistants: Eddie Swinney, Gary Henson, Kendra Franke (ASU) • (Graduate students, ASU and TAMU) • Plus administrative , secretarial , bookkeeping , and maintenance support from the unit and CS. Species we work with Muskox (qiviut), rabbit, dog, cattle, mice, et al. U. S. animal fiber testing labs • One commercial and 3 academic labs. • Our AgriLife Research lab is well equipped and staffed. • Consequently, there are plenty of opportunities for collaboration with AgriLife Research, USDA, ARS, and other scientists in academia on projects that have high national priority. Total sheep and lambs, 1908 to 2009 60000 1942, 56.2m 50000 40000 ands ss 30000 er, thou er, 2009, 5.75m in U.S. bb 0.87 m in Texas 20000 Num 10000 0 1908 1918 1928 1938 1948 1958 1968 1978 1988 1998 Year (January data) Number of operations with sheep 300000 250000 241,590 200000 150000 Number 100000 82,330 50000 0 1965 1970 1975 1980 1985 1990 1995 2000 2005 Year Sheep operations in Texas 25000 20000 19,500 15000 Number 10000 7000 5000 0 1965 1970 1975 1980 1985 1990 1995 2000 2005 Year National sheep and goat operations (farms) and trends 2008 data • Sheep 82,330. -
A Review on Chemical Behaviour of Natural Fiber Composites
Int. J. Chem. Sci.: 14(4), 2016, 2223-2238 ISSN 0972-768X www.sadgurupublications.com A REVIEW ON CHEMICAL BEHAVIOUR OF NATURAL FIBER COMPOSITES A. LAKSHUMU NAIDU* and P. S. V. RAMANA RAOa GMR Institute of Technology, RAJAM (A.P.) INDIA aCenturion University of Technology & Management, PARLAKHEMUNDI (Odisha) INDIA ABSTRACT This paper outlines the chemical properties of natural fibers composites and discusses the latest trends in chemical modifications. In recent years, natural fibers reinforced composites have received a strong attention because of their light weight, nonabrasive, combustible, nontoxic, low cost and biodegradable properties. Chemical treatment of the natural fibers can clean the fiber surface, chemically modify the surface, stop the moisture absorption process and increase the surface roughness. A number of specific chemicals are used for chemical modifications of these composites. Such chemically modified are being used increasingly for engineering applications (particularly under hard working conditions). Thus, it becomes necessary to take care of the chemical properties of composites to ensure their long term stable behaviour in the practical applications. The detailed test results and observations are presented and conclusions are drawn. Key words: Chemical properties, Chemical treatment, Composites. INTRODUCTION Because of the improvement and development of innovation, the need of material having profoundly particular properties is expanding step by step and this test interest can't be satisfy by utilization of polymers, clay and metal composites. Accordingly, as of late composite materials are utilized as elective as a part of a few light weight and high quality applications. Composites are commonly happening or designed materials which are produced from two or more constituents. -
Appendix 1 Sources
APPENDIX 1 SOURCES UMIST: DEPARTMENT OF TEXTILES Most of the work described in this book comes from research in the Department of Textiles, UMIST, under the direction of Professor John Hearle. It started with the purchase of a scanning electron microscope with a grant from the Science Research Council in 1967, together with five-year funding for an experimental officer and a technician. Since 1972, the staff have been supported by general UMIST funds; a second grant from SERC enabled a replacement SEM to be bought in 1979; industrial sponsors, listed below, have contributed through membership of the Fibre Fracture Research Group; special research grants have been made by the Ministry of Defence (SCRDE, Colchester, and RAE, Farnborough) and jointly by the Wool Research Organization of New Zealand (WRONZ) and the Wool Foundation (IWS); and other research programmes and contract services have contributed indirectly to our knowledge. Pat Cross was the first SEM experimental officer and she was followed in 1969 by Brenda Lomas, who retired in 1990. Trevor Jones then took on responsibility for microscopy in the Department of Textiles in addition to photography. Over the years, many staff and students have contributed to the research. Their names are given below. Some have worked wholly on fibre fracture problems. Others have used fracture studies as an incidental element in their work. PERSONNEL The following people at UMIST have contributed to the research. Academic staff J.D. Berry Aspects of fibre breakage CP. Buckley Mechanics of tensile fracture, general direction C. Carr Fabric studies W.D. Cooke Pilling in knitwear, conservation studies G.E. -
Natural Fibers and Biopolymers Characterization: a Future Potential Composite Material
Journal of MECHANICAL ENGINEERING – Strojnícky časopis, VOL 68 (2018), NO 1, 33 - 50 NATURAL FIBERS AND BIOPOLYMERS CHARACTERIZATION: A FUTURE POTENTIAL COMPOSITE MATERIAL LALIT Ranakoti1*, MAYANK Pokhriyal1,, ANKUR Kumar1 1Department of Mechanical Engineering, National Institute of Technology Uttarakhand *email: [email protected] Abstract: Now days, green composite materials are now gaining popularity for the various industrial applications. It is a combination of naturally occurring reinforcement like jute, sisal, flax, hemp, and kenaf; and matrix materials like biopolymers or bio resins which have been derived from starch, and vegetable oils. It is becoming more desirable due to its properties like biodegradability, renewability and environment friendly. The present paper presents the various natural fibers and their combinations with biopolymers. The paper also reflects the key issue related to hydrophilic nature of natural fibers and their remedies for a good fiber and bio polymer adhesion. Furthermore the strategy used and major attributes of the green composite are also discussed. KEYWORDS: natural fibers, biopolymers, chemical treatment, green composite 1 Introduction Composite material has wide spectrum in industrial and engineering fields using suitable material like metal [1-2], polymers and ceramics so as to obtain optimum strength, these materials are being used according to the growing need of the society. Transition of Industries towards production of green composite is taking place due to the increasing demand of consumer, to reduce the use of synthetic material, higher sustainability, biodegradability, friendly to environment and recyclability, inexpensive, low density etc. [3, 4]. Natural fibers are biologically occurring materials which have two main sources (a) agriculture production and (b) production residue of crops when they are processed for the primary uses [5]. -
Fibers and Fabrics; TX335 .A1 U6 NO
KitlQRr Bureau of Standards Reference book' no' to ygjgtv |Oi Admin. Bldg. taken from the library, gmp STATES Ite.WMENT OF COMMERCE PUBLICATION A11ID3 Db3SbD All103063560 Blandford, Josephlne/FIbers and fabrics; TX335 .A1 U6 NO. 1, 1970 C.1 NBS-PUB-R 1 ^TES ‘‘•‘‘'/I'ti'i'.1'1' 1: BBB8 MB A Consumer’s Guide from the Mational Bureau of Standards NBS CIS 1 IIIIShSs Fibers and Fabrics by Josephine M. Blandford and Lois M. Gurel INFORMATION ABOUT NATURAL AND MAN-MADE FIBERS AND FABRICS TO MEET YOUR PARTICULAR NEEDS. NBS CONSUMER INFORMATION SERIES 1 Editor: James E. Payne Issued November 1970 U.S. DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary Rocco C. Siciliano, Under Secretary Myron Tribus, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS A Consumer’s Lewis M. Branscomb, Director GUIDE FROM THE) NATIONAL BUREAU OF STANDARDS For sale by the Superintendent of Documents, U.S. Government Printing Office, U.S. DEPARTMENT Washington, D.C. 20402. OF COMMERCE Price 65 cents. NATIONAL BUREAU OF STANDARDS APR 1 0 1971 FOREWORD Technology is changing not only the products you buy, but the marketplace as well. Unfortunately, this is not an unmixed blessing. Products are constantly being improved, but designs are complicated, quality is vari¬ able, and good advice is hard to get. Modern stores and merchandising bring you a wide variety of products; but the large number of choices and the lack of dependable infor¬ mation often make shopping a confusing and frustrating experience. A generation ago the merchant was likely to be a friend of the family. -
Police Microanalysis M
Journal of Criminal Law and Criminology Volume 25 Article 11 Issue 5 January-February Winter 1935 Police Microanalysis M. Edwin O'Neill Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/jclc Part of the Criminal Law Commons, Criminology Commons, and the Criminology and Criminal Justice Commons Recommended Citation M. Edwin O'Neill, Police Microanalysis, 25 Am. Inst. Crim. L. & Criminology 835 (1934-1935) This Criminology is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Journal of Criminal Law and Criminology by an authorized editor of Northwestern University School of Law Scholarly Commons. POLICE SCIENCE It is interesting to note that there is a prevailing tendency, in all races, in the distribution of the pattern types among the digits. Whorls tend to be concentrated on digits I and IV, with a significant superiority of the right hand in this respect; digit II leads in the possession of arches, and radial loops also occur most commonly on digit II. Racial departures from this typical behavior must again be revealed in groups of individuals, just as the behavior itself is demon- strable only statistically. Another significant contribution by Poll to the technology of finger-print analysis is the construction of what he terms a "dactylodiagram," based on the frequencies of whorls and arches in specified finger pairs of right and left hands; for the detailed procedure reference must be made to the original publications. One expression of the result is the "lambda angle," in which racial dif- ferences are demonstrable, this being the figure cited in the press notices of Poll's work. -
Sockwear Recommendations for People with Diabetes
Clinical Decision Making Sockwear Recommendations for People With Diabetes Carol B. Feldman, MSN, RN, CDE, and Ellen D. Davis, MS, RN, CDE Case Presentation A.B., a 55-year-old man who had adequate blood glucose control. His monofilament testing confirmed that been diagnosed with type 2 diabetes 6 most recent HbA1c was 6.5%. foot sensation was intact. He had easi- months ago, was a new patient in the The skin on his feet was intact, ly palpable pedal pulses and no edema. foot clinic of the Durham VA without redness, and its texture was During routine discussion of foot- Medical Center. At the time of his smooth and soft. His nails were intact care precautions, he asked what kind first visit, he was taking metformin, without signs of onychomycosis. The of socks he should wear to prevent 500 mg twice a day, and maintained shape of his feet was normal, and problems. Discussion Good foot care practices are impor- physicians, podiatrists, staff nurses, Although they expressed concern that tant for people with diabetes. A large and certified diabetes educators socks should be comfortable, they percentage of diabetic patients under- (CDEs) from Duke University Medical were also likely to recommend specific go nontraumatic amputation after Center, the Durham VA Medical fabric types. Most of the nurses diabetic neuropathy renders them Center, and surrounding areas to thought people with diabetes should unable to feel festering foot injuries. explore providers’ sockwear recom- wear cotton or wool socks. But those What’s more, within 3 years of a first mendations and the reasoning behind recommending acrylic fabrics said amputation, up to half of these them. -
Production and Characterization of Cut Resistant Acrylic/Copolyaramid Fibers Via Bicomponent Wet Spinning Stephen Hipp Clemson University, [email protected]
Clemson University TigerPrints All Dissertations Dissertations 12-2015 Production and Characterization of Cut Resistant Acrylic/Copolyaramid Fibers Via Bicomponent Wet Spinning Stephen Hipp Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Polymer Chemistry Commons Recommended Citation Hipp, Stephen, "Production and Characterization of Cut Resistant Acrylic/Copolyaramid Fibers Via Bicomponent Wet Spinning" (2015). All Dissertations. 1587. https://tigerprints.clemson.edu/all_dissertations/1587 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. PRODUCTION AND CHARACTERIZATION OF CUT RESISTANT ACRYLIC/COPOLYARAMID FIBERS VIA BICOMPONENT WET SPINNING A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Polymer and Fiber Science by Stephen James Hipp December 2015 Accepted by: Dr. Philip Brown, Committee Chair Dr. Gary Lickfield Dr. Olin Mefford Dr. Julia Sharp Abstract A composite fiber system consisting of a sheath core bicomponent polymer fiber loaded with hard ceramic particles was developed and characterized for use in cut protective clothing. The core component was comprised of a copolyaramid in order to provide high base cut resistance. An acrylic-copolyaramid polymer blend was used for the sheath component to improve processability and provide potential benefits such as dyeability. Lastly, aluminum oxide particles were incorporated into the fiber core to deflect and deform the cutting edge, further improving cut resistance. A series of designed experiments was used to explore the effects of the wet spinning and heat treatment processes on the structure and properties of the bicomponent fiber. -
Evaluation of Physical Properties of Errandi-Acrylic Union Fabrics
Journal of Applied and Natural Science 10 (3): 925 - 930 (2018) ISSN : 0974-9411 (Print), 2231-5209 (Online) journals.ansfoundation.org Evaluation of physical properties of Errandi-acrylic union fabrics Sunita Boruah* Article Info Assistat Professor, Department of Fashion Design and Technology, Assam Women’s DOI:10.31018/jans.v10i3.1816 University, Jorhat-785004 (Assam), India Received: June 30, 2018 B. Baishya Kalita Revised: July 16, 2018 Professor, Department of Textiles and Apparel designing, College of Community Science, Accepted: July 30, 2018 Assam Agricultural University, Jorhat-785013 (Assam), India *Corresponding author. E-Mail: [email protected] How to Cite Abstract: Boruah, S. et al. (2018). Errandi silk has a potential of emerging as “A silk of the new millennium”. The experi- Evaluation of physical mental finding provides information on physical properties as well as subjective evalua- properties of Errandi- tions of Errandi silk -Acrylic union fabrics with twill and herringbone weave. The count and acrylic union fabrics. diameter of errandi silk fibre were higher than acrylic fibre and in case of woven fabrics, Journal of Applied and herringbone weave were found to have maximum value in cloth covers, weight and thick- Natural Science, 10(3): ness. A comparative subjective evaluation was done based on fabric quality by the panel 925 - 930 of 100 respondents. 100 per cent respondent opined that all the woven samples have good appearance, soft in hand and smooth in texture. It was observed that cent percent of respondents found errandi-acrylic blended union fabrics with twill and herringbone weaves were high in lustre. The costs of blended yarns and the cost of union fabrics of different proportion were got reduced in comparison to that of 100 per cent errandi-silk yarn (Rs.3000.00/kg) and controlled errandi silk fabrics (Rs.985.00/mt.). -
Colaris Digital Textile Printing
ZIMMER AUSTRIA | DIGITAL PRINTING SYSTEMS COLARIS DIGITAL TEXTILE PRINTING HOME TEXTILES APPAREL DECORATION AUTOMOTIVE FLAGS & BANNERS www.zimmer-austria.com 2020.01.15 page 1 CONTENT 1. INNOVATION IS IN OUR DNA 1.1. HISTORIC MILESTONES 3 2. INK CLASSES 2.1. TYPES | PRODUCTS | PROCESS | REQUIREMENTS 4 2.2. TYPES | PRODUCTS | PROCESS | REQUIREMENTS 5 3. PRINT TECHNOLOGY 3.1. PROCESSING DIAGRAM 6 3.2. PROCESS EQUIPMENT 7 4. REACTIVE PRINTING 4.1. GENERAL INFORMATION 8 4.2. EXAMPLE: TERRY TOWEL PRINT PRODUCTION 9 5. ACID PRINTING 5.1. GENERAL INFORMATION 10 5.2. EXAMPLE: UPHOLSTERY PRINT LINE 11 6. DISPERSE / SUBLIMATION PRINTING 6.1. GENERAL INFORMATION 12 6.2. EXAMPLE: PES BLANKET PRINT LINE 13 7. VAT INDANTHRENE® PRINTING 7.1. GENERAL INFORMATION 14 7.2. APPLICATION DIVERSITY 15 8. PIGMENT PRINTING 8.1. GENERAL INFORMATION 16 8.2. APPLICATION DIVERSITY 17 9. CATIONIC PRINTING 9.1. GENERAL INFORMATION 18 10. COLARIS - CHARACTERISTICS AND FEATURES 10.1. COLARIS MODELS 19 11. COLARIS FEATURES AND COMPONENTS 11.1. INTEGRATED MACHINE COMPONENTS 20 11.2. INTEGRATED MACHINE COMPONENTS 21 12. PROCESS EQUIPMENT 12.1. INLINE COMPONENTS 22 12.2. OFFLINE COMPONENTS 23 13. PRINT HEAD 13.1. TECHNOLOGY 24 13.2. RECONDITION CENTER 25 14. ZIMMER TECHNOLOGY & APPLICATION CENTER 14.1. GENERAL INFORMATION 26 14.2. EQUIPMENT & FACILITIES 27 www.zimmer-austria.com 2020.01.15 page 2 1. INNOVATION IS IN OUR DNA 1.1. HISTORIC MILESTONES Vertical Duplex blanket printer from 1951 First commercial rotary screen printer 1958 The broad digital competence of ZIMMER AUSTRIA is based on an innovation introduced more than 4 decades ago. -
Fiber Identification in Practice
FIBERIDENTIFICATION IN PRACTICE MarthaGoodway* ABSTRACT-Brief case studies of the problems in identification of a wide variety of ethnographic and archaeological fibers are given. The strategy of identification varied with the purpose (choice of treatment, assessment of damage or identification of its cause, or authentication) but most of all with the condition of the fibers. Fibers from ethnographic or archaeological sources tend to be aged, and are sometimes fragmentary or decayed, fossilized or charred. With fibers in such condition, the simpler methods of preparation for microscopic observation were found more successful than the classical biological methods of soaking, clearing and staining. Not all fibers could be identified. Fur fibers from characteristic areas of the pelt were usually diagnostic as to species as well as to genus. Vegetable fibers were often not mophologically specific to species. Unless "guide elements" were present, or special limitations on species distribution were known, the identification of the genus of a vegetable fiber was often the best that could be done. Instructions for an optical test for flax, and a report form for the observation of fur and wool fibers, are included. The identification of fibers in archaeological and ethnographic objects in practice is a great deal more difficult than the texts on fiber identification lead one to believe. For example, the solubility tests which are a mainstay of synthetic fiber identification are of no use since archaeological and ethnographic fibers are natural ones. The various chloroiodine stains, Herzberg's and others which stain cellulose red, violet or blue and ligno-cellulose yellow, seldom act on old and dessicated fiber unless at nodes or points of fracture.