Category Theory Applied to Pontryagin Duality
Pacific Journal of Mathematics CATEGORY THEORY APPLIED TO PONTRYAGIN DUALITY DAVID W. ROEDER Vol. 52, No. 2 February 1974 PACIFIC JOURNAL OF MATHEMATICS Vol. 52, No. 2, 1974 CATEGORY THEORY APPLIED TO PONTRYAGIN DUALITY DAVID W. ROEDER A proof of the Pontryagin duality theorem for locally compact abelian (LCA) groups is given, using category-theo- retical ideas and homological methods. The proof is guided by the structure within the category of LCA groups and does not use any deep results except for the Peter-Weyl theorem. The duality is first established for the subcategory of ele- mentary LCA groups (those isomorphic with T* Θ ZJ 0 Rk φ F, where T is the circle group, Z the integers, R the real num- bers, and F a finite abelian group), and through the study of exact sequences, direct limits and projective limits the duality is expanded to larger subcategories until the full duality theorem is reached. Introduction* In this note we present a fairly economical proof of the Pontryagin duality theorem for locally compact abelian (LCA) groups, using category-theoretic ideas and homological methods. This theorem was first proved in a series of papers by Pontryagin and van Kampen, culminating in van Kampen's paper [5], with methods due primarily to Pontryagin. In [10, pp. 102-109], Weil introduced the simplifying notion of compactly generated group and explored the functorial nature of the situation by examining adjoint homomorphisms and projective limits. Proofs along the lines of Pontryagin-van Kampen-Weil appear in the books by Pontryagin [7, pp. 235-279] and Hewitt and Ross [2, pp.
[Show full text]