Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Qualified Products Lists Table of Contents List 1. TRAFFIC CONTROL MATERIALS Section A. Snowplowable Reflective Pavement Markers and Replacement Lenses 1. Snowplowable Reflective Pavement Markers 2. Replacement Lens for Snowplowable Markers 3. Raised Reflective Pavement Markers Section B. Preformed Plastic Pavement Markings 1. Type 1 – 60 mils 2. Preformed Thermoplastic Section C. Temporary Tape (Removeable and Non-Removeable) 1. Permanent Preformed Tape 2. Preformed Contrast Tape 3. Temporary Removeable Preformed Tape 4. Preformed Blackout Tape Section D. Alternative Pavement Marking Materials 1. Audible Pavement Markings 2. Wet Reflective Pavement Markings Section E. Bituminous Pavement Marker Adhesive Section F. Flexible Surface- and Ground-Mounted Delineator Posts Section G. Guardrail and Barrier/Parapet Delineation 1. Concrete Barrier/Parapet Delineation 2. Guardrail Post Delineation 3. Guardrail Beam Delineation 4. Concrete Barrier/Parapet Delineation Enhancement Section H. Workzone Traffic Drums List 2. Waterproofing Membranes and Materials Section A. Bridge Deck Waterproofing Membranes Section B. Joint Waterproofing Membranes (12” Plus Width) List 3. Structural Steel Coatings Section A. NEPCOAT List A – 3-Coat System 1. Inorganic Zinc/Epoxy or Urethane/Aliphilic Urethane 2. Organic Zinc/Epoxy or Urethane/Aliphilic Urethane 3. Organic Zinc Primer/Topcoat 4. Inorganic Zinc Primer/Topcoat 5. Epoxy Spot and Full Prime and Finish Coat 6. Non-Epoxy Spot and Full Prime and Finish Section B. Two-Coat System – Epoxy Spot and Full Prime and Finish Coat Section C. Two-Coat System – Non-Epoxy Spot and Full Prime and Finish Coat List 4. Air-Entraining and Chemical Admixtures for Concrete Section A. Air-Entraining Admixtures Section B. Chemical Admixtures 1. Type A – Water Reducers 2. Type B – Retarders 3. Type C – Accelerating Admixtures 4. Type D – Water Reducing and Retarding Admixtures 5. Type E – Water Reducing and Accelerating Admixtures 6. Type F – Water Reducing and High-Range Retarding Admixtures 7. Type S Admixtures Section C. Chemical Admixtures for Precast Concrete Section D. Miscellaneous Chemical Admixtures for Concrete List 5. Joint Sealers and Fillers Section A. Cold Pour (One-Component Joint Sealer) Section B. Cold Pour (Two-Component Joint Sealer) Section C. Hot Pour Joint Sealer Section D. Water-Activated Polyurethane Foam Grouts Section E. Preformed Joint Fillers (Bituminous and Non-Bituminous) List 6. Traffic Control Detection Loop Sealants List 7. Preformed Compressive Joint Seals with Lubricant Adhesives Section A. Preformed Elastic Compressive Joint Seals with Lubricant Adhesives Section B. Preformed Gland Joint Seals with Lubricant Adhesives List 8. Epoxy Resin Systems List 9. Elastomeric Bridge Joint and Bridge Joint Systems Section A. Elastomeric Bridge Joints Section B. Expansion Joint Systems for Reinforced Concrete Pavement at Bridge Ends (STD-1-5) List 10. Reflective Sheeting Section A. Reflective Sheeting 1. Engineering Grade and High-Intensity Encapsulated Lens 2. Microprismatic 3. Flexible Delineators and Type 2 Object Markers Section B. Work Zone Sheeting 1. Work Zone Sheeting – Signs 2. Work Zone Sheeting – Barricades, Channelizers, and Vertical Panels List 11. Biodegradable Asphalt Solvents List 12. Coatings for Concrete Section A. Applied Texture Coatings Section B. Concrete Curing Compounds 1. Type 1-D Concrete Curing Compounds 2. Type 2 Concrete Curing Compounds List 13. Patching Materials Section A. Asphalt Patching Materials 1. High-Performance Cold Patch Materials 2. Elastomeric Patching Materials – Hot-Applied 3. Elastomeric Patching Materials – Cold-Applied Section B. Concrete Patching Materials 1. Rapid-Set Cementitious Patching Materials 2. High-Performance Cold-Patch Materials 3. Two-Component Epoxy-Type Patching Materials 4. Cosmetic Repair Epoxy-Type Patching Materials 5. Structural Materials and Components 6. Polymer-Modified Cementitious Structural Patching Vertical and Overhead 7. Elastomeric Patching Materials – Hot-Applied 8. Methacrylate Binder Resin System 9. Elastomeric Patching Materials – Cold-Applied List 14. Anti-Stripping Additives Section A. Liquid Additives Section B. Fiber Additives List 15. Pre-Packaged Concrete Mixtures List 16. Pre-Packaged Grout List 17. Erosion Prevention and Sediment Control (EPSC) Section A. EPSC Products for Use with Standard Drawings 1. EC-STR-3B – Temporary Silt Fence 2. EC-STR-3C – Temporary Silt Fence with Backing 3. EC-STR-3D – Enhanced Silt Fence 4. EC-STR-4 – and 4A Enhanced Silt Fence Check 5. EC-STR-6 – Rock Check Dam 6. EC-STR-6A – Enhanced Rock Check Dam 7. EC-STR-8 – Filter Sock 8. EC-STR-19 – Catch Basin Protection 9. EC-STR-35 – Filter Berm 10. EC-STR37 – Sediment Tubes 11. EC-STR-39 and 39A – Curb Inlet Protection 12. EC-STR-40 through 51A – Catch Basin Filter Assembly 13. EC-STR-1 – Dewatering Structure 14. EC-STR-38 – Floating Turbidity Curtain Section B. Rolled Erosion Control Products (RECP) 1. RECP Type I 2. RECP Type II 3. RECP Type III 4. RECP Type IV Section C. Turf Reinforcement Matting (TRM) 1. TRM Class I, 6.0 to 8.0 lbs./ft2, Sheer Stress 2. TRM Class II, 8.0 to 10.0 lbs./ft2, Sheer Stress 3. TRM Class III, 10.0 lbs./ft2, Sheer Stress Section D. Hydraulic Erosion Control Products (HECP) 1. HECP Type 1 2. HECP Type 2 3. HECP Type 3 4. HECP Type 4 Section E. Flocculants 1. Polyacrylamide 2. Organic/Synthetic Flocculants Section F. Soil Binders and Tackifiers Section G. Dust Palliatives List 18. Manhole Steps List 19. Epoxy Powder for Reinforcing Steel List 20. Stressed Cable Grouts List 21. Release Compounds for Asphalt Mixes List 22. Masonry Anchors Section A. Mechanical Type Section B. Cementitious Type Section C. Epoxy Type Section D. Epoxy Type (Encapsulated) Section E. Epoxy Type (Injection Technique) List 23. Concrete Waterproofing Section A. Non-Penetrating Type Sealers (Non-Traffic Bearing) Section B. Penetrating Type Sealers Section C. Non-Penetrating Coal Tar Epoxy Sealers No Longer Active Section D. Epoxy-Urethane Overlay Systems for Bridge Decks (1/2-inch Thickness or Less) 1. Polymer-Modified Cementitious System 2. Type 1 Thin Overlay (Epoxy-Urethane) 3. Type 2 Thin Overlay (Low-Modulus Epoxy) List 24. Concrete Latex Modifiers List 25. Pressure Injected Epoxy Systems List 26. Anti-Graffiti Products List 27. Rebar Splices List 28. Pile Accessories List 29. Flashing Arrow Panels/Arrow Boards List 30. Portable Changeable Message Signs List 31. High Friction Surface Treatments for Roadways Section A. Asphalt Roadway Section B. Concrete Roadway Section C. Concrete Above-Grade Surfaces List 32. Recycled Plastic Guardrail Blockouts List 33. MASH or NCHRP-350 TL-3 Approved Sign Post Hardware List 34. Approved Roadside Safety Hardware (NCHRP-350) Section A. High Tension Cable Guardrail Systems 1. Guardrail Guarantee 2. High Tension Cable Guardrail Systems 3. Cable Guardrail End Terminals Section B. Median Guardrail End Terminals 1. S-GRT-2 – Type 38 Guardrail End Terminals 2. Median Guardrail End Terminals 3. Flared Guardrail End Terminals 4. S-GRT-3 – Type 21 Guardrail End Terminals Section C. Crash Cushions 1. Sacrificial Systems 2. Non-Gating, Reusable Systems 3. Non-Gating, Low-Maintenance Systems 4. Gating, Sand-Filled Arrays 5. Gating, Non-Redirective Crash Cushions 6. Miscellaneous Crash Cushions Section D. Temporary Work Zone Traffic Control Devices 1. Truck- and Trailer-Mounted Attenuators 2. Non-Gating Work Zone Attenuators Section E. Work Zone Channelizing Devices 1. Portable Precast Concrete Barriers 2. Steel Traffic Barriers 3. Water-Filled Plastic Channelizing Devices Section F. Miscellaneous Roadside Hardware List 35. There is no List 35 currently List 36. Geotextiles and Geosynthetics Section A. Geotextiles and Geosynthetics (Type I, II, III, and IV) 1. Geotextiles and Geosynthetics Type I 2. Geotextiles and Geosynthetics Type II 3. Geotextiles and Geosynthetics Type III 4. Geotextiles and Geosynthetics Type IV Section B. Geotextiles and Geosynthetics for Use in Standard Drawings 1. EC-STR-3A – Temporary Filter Barrier and EC-STR-3B – Temporary Silt Fence 2. EC-STR-3C – Temporary Silt Fence with Backing 3. EC-STR-3D – Enhanced Silt Fabric 4. EC-STR-2 – Temporary Sediment Filter Bag Section C. Geogrids for Reinforced Soil Slopes 1. Geogrids for Reinforced Soil Slopes Type I 2. Geogrids for Reinforced Soil Slopes Type II 3. Geogrids for Reinforced Soil Slopes Type III 4. Geogrids for Reinforced Soil Slopes Type IV List 37. ADA Detectable Warning Truncated Domes List 38. Retaining Wall Systems Section A. Proprietary Gravity Wall Systems 1. Bin/Crib/Precast Large Format Blocks 2. Gabion Walls Section B. Mechanically Stabilized Earth (MSE) Wall Systems 1. Segmental, Precast Facing 2. Modular Block Facing 3. Other Facing Types 4. Specialty Wall Types – Anchor Walls, Soil Nail Walls, Secant/Tangent Walls Engineer/Install List 39. Warm Mix Asphalt List 40. Pavement Sealers and Treatments Section A. Standard Fog Seals Section B. High-Performance Fog Seals Section C. Rejuvenating Sealers Section D. Pavement Rejuvenators Section E. Bituminous Pavement Treatments Section F. Trackless Tack Coats 1. Emulsions (Trackless Tack Coat) 2. Hot-Applied (Trackless Tack Coat) List 41. Rockfall Mitigation Section A. Rockfall Fence (TN Type I, II, III, and IV) 1. Rockfall Fence (TN Type I) 2. Rockfall Fence (TN Type II) 3. Rockfall Fence (TN Type III) 4. Rockfall Fence (TN Type IV) Section B. Rockfall Slope Drape (TN Type I, II, III, and IV) 1. Rockfall Slope Drape (TN Type I) 2. Rockfall Slope Drape (TN Type II) 3. Rockfall Slope Drape (TN Type III) 4. Rockfall Slope Drape (TN Type IV) Section C. Rockfall Pinned Slope Mesh (TN Type I, II, and III) 1. Rockfall Pinned Slope Mesh (TN Type I) 2. Rockfall Pinned Slope Mesh (TN Type II) 3. Rockfall Pinned Slope Mesh (TN Type III) List 42. Spray Applied Liner Material Section A. Geopolymer and Cementitious Material Section B. Resin-Based Material List 43. Closure Pour Material List 44. Work Zone Traffic Control Products Section A. Digital Speed Limit Sign Assembly Section B. Speed Feedback Sign Assembly Section C. Temporary Portable Rumble Strips List 45. MASH Approved Roadside Safety Hardware Section A.
Recommended publications
  • Colorado's Full-Scale Field Testing of Rockfall Attenuator Systems
    TRANSPORTATION RESEARCH Number E-C141 October 2009 Colorado’s Full-Scale Field Testing of Rockfall Attenuator Systems TRANSPORTATION RESEARCH BOARD 2009 EXECUTIVE COMMITTEE OFFICERS Chair: Adib K. Kanafani, Cahill Professor of Civil Engineering, University of California, Berkeley Vice Chair: Michael R. Morris, Director of Transportation, North Central Texas Council of Governments, Arlington Division Chair for NRC Oversight: C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin Executive Director: Robert E. Skinner, Jr., Transportation Research Board TRANSPORTATION RESEARCH BOARD 2009–2010 TECHNICAL ACTIVITIES COUNCIL Chair: Robert C. Johns, Director, Center for Transportation Studies, University of Minnesota, Minneapolis Technical Activities Director: Mark R. Norman, Transportation Research Board Jeannie G. Beckett, Director of Operations, Port of Tacoma, Washington, Marine Group Chair Paul H. Bingham, Principal, Global Insight, Inc., Washington, D.C., Freight Systems Group Chair Cindy J. Burbank, National Planning and Environment Practice Leader, PB, Washington, D.C., Policy and Organization Group Chair James M. Crites, Executive Vice President, Operations, Dallas–Fort Worth International Airport, Texas, Aviation Group Chair Leanna Depue, Director, Highway Safety Division, Missouri Department of Transportation, Jefferson City, System Users Group Chair Robert M. Dorer, Deputy Director, Office of Surface Transportation Programs, Volpe National Transportation Systems Center, Research and Innovative
    [Show full text]
  • Rockfall Catchment Area Design Guide
    ROCKFALL CATCHMENT AREA DESIGN GUIDE FINAL REPORT SPR-3(032) Metric Edition by Lawrence A. Pierson, C.E.G., Senior Engineering Geologist Landslide Technology and C. Fred Gullixson, C.E.G., Senior Engineering Geologist Oregon Department of Transportation and Ronald G. Chassie, P.E. Geotechnical Engineer for Oregon Department of Transportation – Research Group 200 Hawthorne Avenue SE – Suite B-240 Salem, OR 97301-5192 and Federal Highway Administration 400 Seventh Street SW Washington, DC 20590 December 2001 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-OR-RD-02-04m 4. Title and Subtitle 5. Report Date December 2001 ROCKFALL CATCHMENT AREA DESIGN GUIDE Final Report (Metric Edition) 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Lawrence A. Pierson, C.E.G., Landslide Technology, Portland, OR, USA SPR-3(032) C. Fred Gullixson, C.E.G., Geo/Hydro Section, Oregon Dept. of Transportation Ronald G. Chassie, P.E. Geotechnical Engineer, FHWA (Retired) 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Oregon Department of Transportation Research Group 11. Contract or Grant No. 200 Hawthorne Ave. SE Salem, OR 97301-5192 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Research Group and Federal Highway Administration Final Report Oregon Department of Transportation 400 Seventh Street, SW 200 Hawthorne Ave. SE Washington, DC 20590 14. Sponsoring Agency Code Suite B-240 Salem, OR 97301-5192 15. Supplementary Notes 16. Abstract The data gathered from an exhaustive research project consisting of rolling a total of approximately 11,250 rocks off vertical; 4V:1H;2V;1H;1.33V:1H;1.0V:1.0H slopes of three different heights (12.2, 18.3, and 24.4 meters) into three differently inclined catchment areas (flat, 1V:6H and 1V:4H) has been used to develop design charts for dimensioning rockfall catchment areas adjacent to highways.
    [Show full text]
  • Sr 520: I-5 (Seattle) to Sr 202(Redmond Vic)
    SR 520, I-5 (SEATTLE) TO SR 202(REDMOND VIC) ARM 0.00 TO ARM 12.82, SR MP 0.00 TO SR MP 12.83 CHARACTERISTICS Segment Description: SR 520, I-5 (Seattle) to SR 202(Redmond Vic) ARM 0.00 to 12.82, SR MP 0.00 to SR MP 12.83 . County/Counties: King Cities/Towns Included: There are number of cities located along the routes: Seattle, Medina, Hunts Point, Yarrow Point, Clyde Hill, Bellevue, and Redmond. Number of lanes in the corridor: 2 to 6 Lane width: 12 to 24 feet. Speed limit: 40 to 60 mph. Median width: 4 to 157 feet. Shoulder width: 3 to 24 feet. Highway Characteristics: SR 520 has been designated as HSS and as NHS for the entire corridor. SR 520 has been assigned the functional class Urban Principal Arterial. Also, the SR 520 corridor is designated T-2 with annual tonnage of 7,486,969. Special Use Lane Information (HOV, Bicycle, Climbing): There is one Transit lane on the left in the vicinity of Arm 0.97 - 1.09. There are high occupancy vehicle (HOV) lanes on the Left in the vicinity of ARM 4.18-6.90 and 7.53-10.47 and on the right in the vicinity of ARM 7.37- 9.47 and 9.78-11.17. There are Weave/Speed Change lanes located on the right in the vicinity of ARM 6.31-6.69, 7.20-7.34, 9.59-11.50 and on the left in the vicinity of ARM 7.05-7.28, 9.53-9.78.
    [Show full text]
  • Us82 Rockfall Mitigation Project
    US82 ROCKFALL MITIGATION PROJECT May, 2009 BY Mohammed Ghweir Engineering Geologist Geotechnical Design Section New Mexico DOT SACRAMENTO MTS Rock Fall Signs Back Ground • US82 Connects the Town of Alamogordo, Holloman Air Force Base, and White Sands Missile Range with the Village of Cloudcroft and A Major Route US285 to the East. • The Mountain Range is Over 10,000 ft. High and Subjected to Snowfall and Freeze in the Winter. • The Road Was Built In+ the Early Fifties. • Rockfall Catchment Is Non-Existing or Very Narrow. • This Terrain is Rocky and Very Costly to Blast or Excavate. • Road Cuts Were Mostly Made in Unfavorably Orientation with Respect to Dip Angles. US82 UP MTS. GEOLOGY • The Sacramento Mountains Range is Located in the Basin and Range Province of Southern New Mexico. It is Primarily an Uplift of Large Faulted Blocks of Anticlines and Synclines. • It Comprises Quaternary Alluvial/Pediment thin Deposits That overlies Very Massive and Mostly competent Paleozoic Sedimentary Rocks of Limestone, sandstone and Shale. Geologic Map of US82 Rock Mitigation Project San Andres Limestone Yeso Fm EXISTING CONDITIONS • The Project Includes Four Road Cuts Extend From MP 14.2 to MP 15.2. • Gabion Wall and Concrete Barriers were Place Some Thirty Years Ago As Fallen Rocks Catchment. • Gabions Were Placed on Top of Standard Concrete Barriers. • Over time, Rocks filled the Space Behind the Barriers and the Walls and Spilled Over Into the Narrow Shoulder and the Driving Lanes. • The Concrete Barriers Started to Deteriorate and Chip off which will Later Undermine the Gabion Stack. GEOTECHNICAL INVESTIGATION • These Cuts Were Rated “A” and “B” Using Oregon Rockfall Rating System.
    [Show full text]
  • About CTC OUR TEAM Technical Communications for Transportation
    Technical communications for transportation professionals Show the value of your research program in clear, about CTC PROGRAM compelling ways. CTC & Associates will help you COMMUNICATIONS develop performance measures, annual reports, CTC & Associates provides technical newsletters (print and online), videos and communications services for the websites that drive change. transportation sector. Based in Madison, Wisconsin, the firm serves state departments of transportation, local road agencies, associations, universities and national Capture the impacts of your research projects research programs. We help our clients for internal and external audiences. CTC & Associates will develop tailored research drive change with effective TECHNOLOGY summaries for your projects that tell the story communication of research results, peer TRANSFER of the problem, solution and benefits – in practices and management strategies. technically accurate yet interesting language that is accessible to both managers and specialists. Don’t reinvent the wheel. CTC & Associates will OUR TEAM conduct quick-turnaround research for you INFORMATION on any transportation topic. We’ll comb the literature, interview experts and conduct surveys CTC’s writers, editors, research managers SERVICES – then package it all in a readable report that and web designers work closely with our highlights gaps and potential next steps. clients in transportation research to develop the most effective ways to communicate technical and policy information. We carefully tailor communications for top management, Maximize your research investment. CTC & practitioners, partner organizations and Associates will help you fill gaps in your research RESEARCH program. We will manage contract research, the public, and we pride ourselves on administer pooled fund studies, facilitate peer delivering high-quality, effective products MANAGEMENT exchanges, develop RFPs, and revise guidance and services on time and on budget.
    [Show full text]
  • A Review of Rockfall Mechanics and Modelling Approaches Luuk K.A
    Progress in Physical Geography 27,1 (2003) pp. 69–87 A review of rockfall mechanics and modelling approaches Luuk K.A. Dorren Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, the Netherlands Abstract: Models can be useful tools to assess the risk posed by rockfall throughout relatively large mountainous areas (>500km 2), in order to improve protection of endangered residential areas and infrastructure. Therefore the purpose of this study was to summarize existing rockfall models and to propose modifications to make them suitable for predicting rockfall at a regional scale. First, the basic mechanics of rockfall are summarized, including knowledge of the main modes of motion: falling, bouncing and rolling. Secondly, existing models are divided in three groups: (1) empirical models, (2) process-based models and (3) Geophysical Information System (GIS)-based models. For each model type its basic principles and ability to predict rockfall runout zones are summarized. The final part is a discussion of how a model for predicting rockfall runout zones at a regional scale should be developed. AGIS-based distribution model is suggested that combines a detailed process-based model and a GIS. Potential rockfall source areas and falltracks are calculated by the GIS component of the model and the rockfall runout zones are calculated by the process-based component. In addition to this model, methods for the estimation of model parameters values at a regional scale have to be developed. Key words: distributed model, GIS, modelling, natural hazard, rockfall. IIntroduction In mountainous areas rockfall is a daily occurrence.
    [Show full text]
  • Limestone Cliff Stability Assessment R EPO
    May 2017 Limestone Cliff Stability Assessment Submitted to: Chief Executive Officer Shire of Augusta and Margaret River PO Box 61 MARGARET RIVER WA 6285 Attn: Jared Drummond Report Number. 1666765-001-R-Rev0 Distribution: REPORT 1 Electronic Copy – Golder Associates 1 Electronic Copy – Shire of Augusta and Margaret River LIMESTONE CLIFF STABILITY ASSESSMENT Table of Contents 1.0 INTRODUCTION ........................................................................................................................................................ 1 2.0 SCOPE OF WORK .................................................................................................................................................... 1 3.0 DESKTOP STUDY ..................................................................................................................................................... 1 4.0 GEOLOGICAL ASSESSMENT ................................................................................................................................. 2 5.0 GEOLOGY AND GEOMORPHOLOGY ..................................................................................................................... 2 5.1 Geology ........................................................................................................................................................ 2 5.2 Geomorphology ............................................................................................................................................ 4 6.0 GEOLOGICAL/GEOMORPHOLOGICAL MAPPING
    [Show full text]
  • Slope Stability and Rock Fall Hazard Assessment of Volcanic Tuffs Using
    Slope stability and rock fall hazard assessment of volcanic tuffs using RPAS with 2D FEM slope modelling Ákos Török1, Árpád Barsi2, Gyula Bögöly1, Tamás Lovas2, Árpád Somogyi2, and Péter Görög1 1Department of Engineering Geology and Geotechnics, Budapest University of Technology and Economics, Budapest, H- 5 1111, Hungary 2Department of Photogrammetry and Geoinformatics, Budapest University of Technology and Economics, Budapest, H- 1111, Hungary Correspondence to: Ákos Török ([email protected]) Abstract. Low strength rhyolite tuff forms steep, hardly accessible cliffs in NE Hungary. The slope is affected by rock falls. 10 RPAS (Remotely Piloted Aircraft System) was used to generate a digital terrain model (DTM) for slope stability analysis and rock fall hazard assessment. Cross sections and joint system data was obtained from DTM. Joint and discontinuity system was also verified by field measurements. On site and laboratory tests provided additional engineering geological data for modelling. Stability of cliffs and rock fall hazard were assessed by 2D FEM (Finite Element Method). Global analyses of cross-sections show that weak intercalating tuff layers may serve as potential slip surfaces, however at present the highest 15 hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that without RPAS no reliable terrain model could be made and it also emphasizes the efficiency of RPAS in rock fall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS) and tachymetry. 1 Introduction In the past years, technological development of RPAS revolutionized the data gathering of landslide affected areas (Rau et 20 al.
    [Show full text]
  • AND SR 167 - SR 512(PUYALLUP) to I-405 (RENTON) CHARACTERISTICS Segment Description: the SR 167 and SR 512 Highways Function As the Eastern Bypass to I-5
    SR 167/SR 512, SR 512- I-5 (LAKEWOOD) TO SR 167 (PUYALLUP) AND SR 167 - SR 512(PUYALLUP) TO I-405 (RENTON) CHARACTERISTICS Segment Description: The SR 167 and SR 512 highways function as the eastern bypass to I-5. These two highways work together in tandem and need to be recognized and evaluated as one corridor. Traveling from south to north, SR 512 begins at I-5, in Lakewood, connecting with SR 167, in Puyallup, continuing north on SR 167 intersecting with I-405 at the north end in Renton. County/Counties: Pierce and King Cities/Towns Included: There are number of cities located along the routes: Lakewood, Puyallup, Sumner, Algona, Pacific, Auburn, Kent and Renton. Number of lanes in the corridor: 1 to 4 Lane width: 12 to 24 feet. Speed limit: 30 to 60 mph. Median width: 0 to 200 feet. Shoulder width: 1 to 22 feet. Highway Characteristics: SR 167 and SR 512 have been designated as both HSS and NHS. SR 167 and SR 512 have been assigned the functional class Urban Principal Arterial. Also, the SR 167 and SR 512 corridor is designated T-1 with annual tonnage up to 43,000,000. Special Use Lane Information (HOV, Bicycle, Climbing): SR 512 has two speed change/weaving lanes. One of the speed change lanes is on the left in the vicinity of ARM 0.27 - 0.63 and the other is on the right in the vicinity of ARM 0.32 - 0.64. There is one climbing lane on SR 512 on the left in the vicinity of 8.85 - 9.79.
    [Show full text]
  • Summary Report on the Arthur's Seat Rockfall, Edinburgh, February 2007
    Summary report on the Arthur’s Seat rockfall, Edinburgh, February 2007 Physical Hazards Programme Internal Report IR/07/033 BRITISH GEOLOGICAL SURVEY PHYSICAL HAZARDS PROGRAMME INTERNAL REPORT IR/07/033 Summary report on the Arthur’s Seat rockfall, Edinburgh, February 2007 N R Golledge The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Licence No: 100017897/2007. Keywords Arthur’s Seat; Edinburgh; Scotland; rockfall; natural hazard; mass movement; slope failure. Bibliographical reference N R GOLLEDGE. 2007. Summary report on the Arthur’s Seat rockfall, Edinburgh, February 2007. British Geological Survey Internal Report, IR/07/033. 13pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2007. All rights reserved Keyworth, Nottingham British Geological Survey 2007 BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available from the BGS British Geological Survey offices Sales Desks at Nottingham, Edinburgh and London; see contact details below or shop online at www.geologyshop.com Keyworth, Nottingham NG12 5GG The London Information Office also maintains a reference 0115-936 3241 Fax 0115-936 3488 collection of BGS publications including maps for consultation.
    [Show full text]
  • Analysis of Rockfall Hazards
    Analysis of rockfall hazards Introduction Rockfalls are a major hazard in rock cuts for highways and railways in mountainous terrain. While rockfalls do not pose the same level of economic risk as large scale failures which can and do close major transportation routes for days at a time, the number of people killed by rockfalls tends to be of the same order as people killed by all other forms of rock slope instability. Badger and Lowell (1992) summarised the experience of the Washington State Department of Highways. They stated that ‘A significant number of accidents and nearly a half dozen fatalities have occurred because of rockfalls in the last 30 years … [and] … 45 percent of all unstable slope problems are rock fall related’. Hungr and Evans (1989) note that, in Canada, there have been 13 rockfall deaths in the past 87 years. Almost all of these deaths have been on the mountain highways of British Columbia. Figure 1: A rock slope on a mountain highway. Rockfalls are a major hazard on such highways Analysis of rockfall hazards Figure 2: Construction on an active roadway, which is sometimes necessary when there is absolutely no alternative access, increases the rockfall hazard many times over that for slopes without construction or for situations in which the road can be closed during construction. Mechanics of rockfalls Rockfalls are generally initiated by some climatic or biological event that causes a change in the forces acting on a rock. These events may include pore pressure increases due to rainfall infiltration, erosion of surrounding material during heavy rain storms, freeze-thaw processes in cold climates, chemical degradation or weathering of the rock, root growth or leverage by roots moving in high winds.
    [Show full text]
  • Transportation Management Plan
    TRANSPORTATION MANAGEMENT PLAN OR99E: Rockfall Mitigation Pacific Highway East MP 12.62- MP 13.36 Clackamas County Key #18769 Looking north on OR99E just south of railroad tunnel. Looking north on OR99E just north of Canemah. EP D A R N T O M G E Oregon Department of Transportation E N R T O Region 1 Traffic Unit O N F O I 123 NW Flanders Street T T R A A T NSPOR Portland, Oregon 97209 Prepared by: Review by: Thanh Tran Simon Eng, P.E. Traffic Analyst Traffic Analysis Team Leader RENEWAL DATE: 12-31-2017 September 14, 2017 TABLE OF CONTENTS Page 1 INTRODUCTION 1 1.1. PROJECT AREA BOUNDARIES 1 1.2. PROPOSED IMPROVEMENTS 2 1.3. TMP GOALS 2 2 PROJECT AREA CHARACTERISTICS AND OPERATIONS 2 2.1. ROADWAY CHARACTERISTICS 2 2.2. TRAFFIC VOLUMES 3 2.3. TRAFFIC OPERATIONS 3 3 FACTORS IMPACTING CONSTRUCTION STAGING 6 3.1. PROJECT SHCEDULE 7 3.2. PROPOSED IMPROVEMENTS AND IMPACTS TO TRAFFIC FLOW 7 3.3. ALTERNATE ROUTES 7 3.4. EXISTING VEHICLE RESTRICTIONS 7 3.5. ENVIRONMENTAL RESTRICTIONS 7 3.6. CONSTRUCTION NOISE REGULATIONS 8 4 POTENTIAL MOBILITY ISSUES 8 4.1. TRAFFIC MOBILITY DURING CONSTRUCTION 8 4.2. CONSIDERATION OF OVERSIZED VEHICLES 8 4.3. INPUT FROM THE PUBLIC AND STAKEHOLDERS 8 4.4. HOLIDAYS AND SPECIAL EVENTS 9 5 CONSTRUCTION STAGING 9 6 LANE CLOSURE RESTRICTIONS 10 7 TRAFFIC MANAGEMENT AND OPERATION STRATEGIES 11 7.1. PUBLIC INFORMATION AND OUTREACH 11 7.2. MOTORIST INFORMATION/ITS 11 7.3. CONSTRUCTION STRATEGIES 12 7.4.
    [Show full text]