Phenotype Microarrays™

Total Page:16

File Type:pdf, Size:1020Kb

Phenotype Microarrays™ Phenotype MicroArrays™ PM21D MicroPlate™ Chemical Sensitivity A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Guanidine Guanidine Guanidine Guanidine 2,2`-Dipyridyl 2,2`-Dipyridyl 2,2`-Dipyridyl 2,2`-Dipyridyl Promethazine Promethazine Promethazine Promethazine hydrochloride hydrochloride hydrochloride hydrochloride B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Nystatin Nystatin Nystatin Nystatin Dodecyltrimethyl Dodecyltrimethyl Dodecyltrimethyl Dodecyltrimethyl Protamine sulfate Protamine sulfate Protamine sulfate Protamine sulfate ammonium ammonium ammonium ammonium bromide bromide bromide bromide C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Cetylpyridinium Cetylpyridinium Cetylpyridinium Cetylpyridinium Domiphen Domiphen Domiphen Domiphen L-Aspartic acid b- L-Aspartic acid b- L-Aspartic acid b- L-Aspartic acid b- chloride chloride chloride chloride bromide bromide bromide bromide hydroxamate hydroxamate hydroxamate hydroxamate D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 1- 1- 1- 1- EDTA EDTA EDTA EDTA Sodium Sodium Sodium Sodium Hydroxypyridine- Hydroxypyridine- Hydroxypyridine- Hydroxypyridine- dichromate dichromate dichromate dichromate 2-thione 2-thione 2-thione 2-thione E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 Compound 48/80 Compound 48/80 Compound 48/80 Compound 48/80 Manganese(II) Manganese(II) Manganese(II) Manganese(II) Magnesium Magnesium Magnesium Magnesium chloride chloride chloride chloride chloride chloride chloride chloride F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Copper(II) sulfate Copper(II) sulfate Copper(II) sulfate Copper(II) sulfate Neomycin Neomycin Neomycin Neomycin D-Cycloserine D-Cycloserine D-Cycloserine D-Cycloserine G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Sodium Selenite Sodium Selenite Sodium Selenite Sodium Selenite Nickel chloride Nickel chloride Nickel chloride Nickel chloride Trifluoperazine Trifluoperazine Trifluoperazine Trifluoperazine H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 Diamide Diamide Diamide Diamide Thiourea Thiourea Thiourea Thiourea Zinc chloride Zinc chloride Zinc chloride Zinc chloride PM22D MicroPlate™ Chemical Sensitivity A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 L-Glutamic acid g- L-Glutamic acid g- L-Glutamic acid g- L-Glutamic acid g- Sodium Sodium Sodium Sodium Caffeine Caffeine Caffeine Caffeine hydroxamate hydroxamate hydroxamate hydroxamate metavanadate metavanadate metavanadate metavanadate B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 L-Arginine L-Arginine L-Arginine L-Arginine Glycine Glycine Glycine Glycine Triclosan Triclosan Triclosan Triclosan hydroxamate hydroxamate hydroxamate hydroxamate hydroxamate hydroxamate hydroxamate hydroxamate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 3-Amino-1,2,4- 3-Amino-1,2,4- 3-Amino-1,2,4- 3-Amino-1,2,4- Miltefosine Miltefosine Miltefosine Miltefosine D,L-Serine D,L-Serine D,L-Serine D,L-Serine triazole triazole triazole triazole hydroxamate hydroxamate hydroxamate hydroxamate D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 Polymyxin B Polymyxin B Polymyxin B Polymyxin B Urea hydrogen Urea hydrogen Urea hydrogen Urea hydrogen Sodium arsenate Sodium arsenate Sodium arsenate Sodium arsenate peroxide peroxide peroxide peroxide E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 CCCP CCCP CCCP CCCP BAPTA BAPTA BAPTA BAPTA D-Serine D-Serine D-Serine D-Serine F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Azaserine Azaserine Azaserine Azaserine Lithium chloride Lithium chloride Lithium chloride Lithium chloride FCCP FCCP FCCP FCCP G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Benzamidine Benzamidine Benzamidine Benzamidine Cycloheximide Cycloheximide Cycloheximide Cycloheximide Thallium(I) Thallium(I) Thallium(I) Thallium(I) acetate acetate acetate acetate H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 Bleomycin Bleomycin Bleomycin Bleomycin Paromomycin Paromomycin Paromomycin Paromomycin Myclobutanil Myclobutanil Myclobutanil Myclobutanil Phenotype MicroArrays™ PM23A MicroPlate™ Chemical Sensitivity A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Benzethonium Benzethonium Benzethonium Benzethonium Chlorpromazine Chlorpromazine Chlorpromazine Chlorpromazine Ammonium Ammonium Ammonium Ammonium Chloride Chloride Chloride Chloride hydrochloride hydrochloride hydrochloride hydrochloride Sulfate Sulfate Sulfate Sulfate B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Cadmium Cadmium Cadmium Cadmium Dequalinium Dequalinium Dequalinium Dequalinium Doxycycline Doxycycline Doxycycline Doxycycline Chloride hydrate Chloride hydrate Chloride hydrate Chloride hydrate Chloride Chloride Chloride Chloride Hyclate Hyclate Hyclate Hyclate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Glycine Glycine Glycine Glycine Hydroxylamine Hydroxylamine Hydroxylamine Hydroxylamine Poly-L-lysine Poly-L-lysine Poly-L-lysine Poly-L-lysine hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 Chromium(III) Chromium(III) Chromium(III) Chromium(III) Cobalt(II) Cobalt(II) Cobalt(II) Cobalt(II) Cupric Chloride Cupric Chloride Cupric Chloride Cupric Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Dihydrate Dihydrate Dihydrate Dihydrate hexahydrate hexahydrate hexahydrate hexahydrate hexahydrate hexahydrate hexahydrate hexahydrate E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 Sodium Sodium Sodium Sodium Sodium Sodium Sodium Sodium Sodium Arsenite Sodium Arsenite Sodium Arsenite Sodium Arsenite metaborate metaborate metaborate metaborate (meta)periodate (meta)periodate (meta)periodate (meta)periodate Tetrahydrate Tetrahydrate Tetrahydrate Tetrahydrate F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Sodium Azide Sodium Azide Sodium Azide Sodium Azide Sodium Sodium Sodium Sodium Sodium Cyanate Sodium Cyanate Sodium Cyanate Sodium Cyanate Caprylate Caprylate Caprylate Caprylate G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Sodium Nitrite Sodium Nitrite Sodium Nitrite Sodium Nitrite Sodium Sodium Sodium Sodium 2-Deoxy-D- 2-Deoxy-D- 2-Deoxy-D- 2-Deoxy-D- Orthovanadate Orthovanadate Orthovanadate Orthovanadate glucose glucose glucose glucose H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 Sodium Selenate Sodium Selenate Sodium Selenate Sodium Selenate Sodium Cyanide Sodium Cyanide Sodium Cyanide Sodium Cyanide Sodium Sodium Sodium Sodium Thiosulfate Thiosulfate Thiosulfate Thiosulfate PM24C MicroPlate™ Chemical Sensitivity A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Apramycin Apramycin Apramycin Apramycin Aminacrine Aminacrine Aminacrine Aminacrine Zaragozic acid A Zaragozic acid A Zaragozic acid A Zaragozic acid A Sulfate Sulfate Sulfate Sulfate B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Blasticidin Blasticidin Blasticidin Blasticidin Thioridazine Thioridazine Thioridazine Thioridazine Sodium Benzoate Sodium Benzoate Sodium Benzoate Sodium Benzoate hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride hydrochloride C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Chlortetracycline Chlortetracycline Chlortetracycline Chlortetracycline Sodium Sodium Sodium Sodium Pentamidine Pentamidine Pentamidine Pentamidine hydrochloride hydrochloride hydrochloride hydrochloride metasilicate metasilicate metasilicate metasilicate Isethionate Isethionate Isethionate Isethionate D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 6-Azauracil 6-Azauracil 6-Azauracil 6-Azauracil Potassium Potassium Potassium Potassium Thialysine Thialysine Thialysine Thialysine Chromate Chromate Chromate Chromate E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 Berberine Berberine Berberine Berberine EGTA EGTA EGTA EGTA Sodium Sodium Sodium Sodium Pyrophosphate Pyrophosphate Pyrophosphate Pyrophosphate Decahydrate Decahydrate Decahydrate Decahydrate F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Isoniazid Isoniazid Isoniazid Isoniazid Methyl Viologen Methyl Viologen Methyl Viologen Methyl Viologen Sodium Fluoride Sodium Fluoride Sodium Fluoride Sodium Fluoride Dichloride Dichloride Dichloride Dichloride hydrate hydrate hydrate hydrate G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Cisplatin Cisplatin Cisplatin Cisplatin Aluminum sulfate Aluminum sulfate Aluminum sulfate Aluminum sulfate Fluconazole Fluconazole Fluconazole Fluconazole H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 Propiconazole Propiconazole Propiconazole Propiconazole Tamoxifen Tamoxifen Tamoxifen Tamoxifen Miconazole Miconazole Miconazole Miconazole Nitrate Nitrate Nitrate Nitrate Phenotype MicroArrays™ PM25D MicroPlate™ Chemical Sensitivity A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Hydroxyurea Hydroxyurea Hydroxyurea Hydroxyurea Tobramycin Tobramycin Tobramycin Tobramycin Niaproof Niaproof Niaproof Niaproof B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Chloroalanine Chloroalanine Chloroalanine Chloroalanine Tetrazolium Tetrazolium Tetrazolium Tetrazolium Kanamycin Kanamycin Kanamycin Kanamycin hydrochloride hydrochloride hydrochloride hydrochloride Violet Violet Violet Violet Monosulfate Monosulfate Monosulfate Monosulfate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 4-Aminopyridine 4-Aminopyridine 4-Aminopyridine 4-Aminopyridine Amitriptyline Amitriptyline Amitriptyline Amitriptyline 4-Nitroquinoline- 4-Nitroquinoline- 4-Nitroquinoline- 4-Nitroquinoline- hydrochloride hydrochloride hydrochloride hydrochloride N-Oxide N-Oxide N-Oxide N-Oxide D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 Alexidine Alexidine Alexidine Alexidine Hygromycin B Hygromycin B Hygromycin B Hygromycin B Fluorodeoxyuridi Fluorodeoxyuridi Fluorodeoxyuridi Fluorodeoxyuridi ne ne ne ne E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 Sodium salicylate Sodium salicylate Sodium salicylate Sodium salicylate Succinic acid Succinic acid Succinic acid Succinic acid Clomiphene Clomiphene Clomiphene Clomiphene Citrate Citrate Citrate Citrate F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Malic acid Malic acid Malic acid Malic acid Tartaric acid Tartaric acid Tartaric acid Tartaric acid Fumaric acid Fumaric acid Fumaric acid Fumaric acid G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 5-Fluorocytosine 5-Fluorocytosine 5-Fluorocytosine 5-Fluorocytosine Palladium(II) Palladium(II) Palladium(II) Palladium(II) Ibuprofen Ibuprofen Ibuprofen Ibuprofen Chloride Chloride Chloride Chloride H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 Chloroquine Chloroquine Chloroquine Chloroquine Cinnamic acid Cinnamic acid Cinnamic acid Cinnamic acid 5-Fluorouracil 5-Fluorouracil 5-Fluorouracil 5-Fluorouracil.
Recommended publications
  • Additions and Deletions to the Drug Product List
    Prescription and Over-the-Counter Drug Product List 40TH EDITION Cumulative Supplement Number 09 : September 2020 ADDITIONS/DELETIONS FOR PRESCRIPTION DRUG PRODUCT LIST ACETAMINOPHEN; BUTALBITAL; CAFFEINE TABLET;ORAL BUTALBITAL, ACETAMINOPHEN AND CAFFEINE >A> AA STRIDES PHARMA 325MG;50MG;40MG A 203647 001 Sep 21, 2020 Sep NEWA ACETAMINOPHEN; CODEINE PHOSPHATE SOLUTION;ORAL ACETAMINOPHEN AND CODEINE PHOSPHATE >D> AA WOCKHARDT BIO AG 120MG/5ML;12MG/5ML A 087006 001 Jul 22, 1981 Sep DISC >A> @ 120MG/5ML;12MG/5ML A 087006 001 Jul 22, 1981 Sep DISC TABLET;ORAL ACETAMINOPHEN AND CODEINE PHOSPHATE >A> AA NOSTRUM LABS INC 300MG;15MG A 088627 001 Mar 06, 1985 Sep CAHN >A> AA 300MG;30MG A 088628 001 Mar 06, 1985 Sep CAHN >A> AA ! 300MG;60MG A 088629 001 Mar 06, 1985 Sep CAHN >D> AA TEVA 300MG;15MG A 088627 001 Mar 06, 1985 Sep CAHN >D> AA 300MG;30MG A 088628 001 Mar 06, 1985 Sep CAHN >D> AA ! 300MG;60MG A 088629 001 Mar 06, 1985 Sep CAHN ACETAMINOPHEN; HYDROCODONE BITARTRATE TABLET;ORAL HYDROCODONE BITARTRATE AND ACETAMINOPHEN >A> @ CEROVENE INC 325MG;5MG A 211690 001 Feb 07, 2020 Sep CAHN >A> @ 325MG;7.5MG A 211690 002 Feb 07, 2020 Sep CAHN >A> @ 325MG;10MG A 211690 003 Feb 07, 2020 Sep CAHN >D> AA VINTAGE PHARMS 300MG;5MG A 090415 001 Jan 24, 2011 Sep DISC >A> @ 300MG;5MG A 090415 001 Jan 24, 2011 Sep DISC >D> AA 300MG;7.5MG A 090415 002 Jan 24, 2011 Sep DISC >A> @ 300MG;7.5MG A 090415 002 Jan 24, 2011 Sep DISC >D> AA 300MG;10MG A 090415 003 Jan 24, 2011 Sep DISC >A> @ 300MG;10MG A 090415 003 Jan 24, 2011 Sep DISC >D> @ XIROMED 325MG;5MG A 211690
    [Show full text]
  • Structure-Based Design, Synthesis, and Biological Evaluation Of
    Structure-Based Design, Synthesis, and Biological Evaluation of Triazole-Based smHDAC8 Inhibitors Dmitrii Kalinin, Sunit Jana, Maxim Pfafenrot, Alokta Chakrabarti, Jelena Melesina, Tajith Shaik, Julien Lancelot, Raymond Pierce, Wolfgang Sippl, Christophe Romier, et al. To cite this version: Dmitrii Kalinin, Sunit Jana, Maxim Pfafenrot, Alokta Chakrabarti, Jelena Melesina, et al.. Structure-Based Design, Synthesis, and Biological Evaluation of Triazole-Based smHDAC8 Inhibitors. ChemMedChem, Wiley-VCH Verlag, 2019, 15 (7), pp.571-584. 10.1002/cmdc.201900583. hal- 02999295 HAL Id: hal-02999295 https://hal.archives-ouvertes.fr/hal-02999295 Submitted on 23 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Full Papers ChemMedChem doi.org/10.1002/cmdc.201900583 1 2 3 Structure-Based Design, Synthesis, and Biological 4 5 Evaluation of Triazole-Based smHDAC8 Inhibitors 6 [a, b, c, d] [c, e] [c] [f] 7 Dmitrii V. Kalinin, Sunit K. Jana, Maxim Pfafenrot, Alokta Chakrabarti, [g]
    [Show full text]
  • Triazole Fungicide Residues and Their Inhibitory Effect on Some Trichothecenes Mycotoxin Excretion in Wheat Grains
    molecules Article Triazole Fungicide Residues and Their Inhibitory Effect on Some Trichothecenes Mycotoxin Excretion in Wheat Grains Tamer M. A. Thabit 1,2, Eman M. Abdelkareem 3,* , Nahla A. Bouqellah 4 and Shokr A. Shokr 1 1 Central Agricultural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC), Giza 12611, Egypt; [email protected] (T.M.A.T.); [email protected] (S.A.S.) 2 Saudi Arabia Grains Organization (SAGO), Riyadh 11471, Saudi Arabia 3 Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt 4 Biology Department, Collage of Science, Taibah University, Al-Madinah Al-Munawarah 344, Saudi Arabia; [email protected] * Correspondence: [email protected] Abstract: Wheat is one of the global strategic crops and ranks third in terms of cereals production. Wheat crops are exposed to many fungal infections during their cultivation stages, some of which have the ability to secrete a number of toxic secondary metabolites that threaten the quality of the grains, consumer health, producer economics, and global trade exchange. Fifty-four random samples were collected from wheat which originated from different countries. The samples included 14 types of soft wheat to study the extent of their contamination with deoxynivalenol (DON) and T-2 toxin by auto-ELISA technology and r-biopharm microtiter plate. All samples were contaminated with −1 DON toxin except one sample, and the values ranged between 40.7 and 1018.8 µg/kg . The highest contamination rates were in Lithuanian wheat and the lowest was in Indian wheat. Meanwhile, the Citation: Thabit, T.M.A.; highest average level of T-2 toxin contamination was in Lithuanian wheat grains with 377.4 µg/kg−1, Abdelkareem, E.M.; Bouqellah, N.A.; and the lowest average was 115.3 µg/kg−1 in Polish wheat.
    [Show full text]
  • ( 12 ) United States Patent
    US010231994B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 231, 994 B2 Kuklinski et al. (45 ) Date of Patent: Mar. 19 , 2019 ( 54 ) SELENIUM -CONTAINING COMPOSITIONS 5 ,470 , 880 A 11 / 1995 Yu et al. 5 ,512 , 200 A 4 / 1996 Garcia AND USES THEREOF 5 , 536 ,497 A 7 / 1996 Evans et al . 6 , 069 , 152 A 5 / 2000 Schaus et al. (71 ) Applicant : SELO MEDICAL GMBH , Unternberg 6 , 114 , 348 A 9 / 2000 Weber et al. (AT ) 6 , 120 ,758 A 9 / 2000 Siddiqui et al . 6 , 133 , 237 A 10 / 2000 Noll et al. 6 , 277 , 835 B1 8 / 2001 Brown (72 ) Inventors : Bodo Kuklinski, Rostock (DE ) ; Peter 6 , 391 , 323 B1 5 / 2002 Carnevali Kössler , Mariapfarr ( AT ); Norbert 2003 / 0180387 AL 9 / 2003 Kossler et al . Fuchs , Mariapfarr (AT ) 2004 /0265268 A1 * 12 /2004 Jain . A61K 8 /64 424 /85 . 1 (73 ) Assignee : SELO MEDICAL GMBH , Unternberg 2005 /0048134 AL 3 /2005 Kuklinski et al. ( AT ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 DE 3408362 9 / 1984 DE 43 20 694 1 / 1995 U . S . C . 154 (b ) by 0 days . DE 43 35 441 4 / 1995 DE 44 13 839 10 / 1995 (21 ) Appl. No. : 15 / 725 , 455 EP 0 000 670 2 / 1979 EP 0 750 911 1 / 1997 ( 22 ) Filed : Oct. 5 , 2017 EP 0 913 155 5 / 1999 FR 2 779 720 12 / 1999 GB 2323030 9 / 1998 (65 ) Prior Publication Data WO WO 00 / 12101 3 /2000 US 2018 / 0028559 A1 Feb .
    [Show full text]
  • A Multifaceted Approach to Combating Leishmaniasis, a Neglected Tropical Disease
    OLD TARGETS AND NEW BEGINNINGS: A MULTIFACETED APPROACH TO COMBATING LEISHMANIASIS, A NEGLECTED TROPICAL DISEASE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy from the Graduate School of The Ohio State University By Adam Joseph Yakovich, B.S. ***** The Ohio State University 2007 Dissertation Committee: Karl A Werbovetz, Ph.D., Advisor Approved by Pui-Kai Li, Ph.D. Werner Tjarks, Ph.D. ___________________ Ching-Shih Chen, Ph.D Advisor Graduate Program In Pharmacy ABSTRACT Leishmaniasis, a broad spectrum of disease which is caused by the protozoan parasite Leishmania , currently affects 12 million people in 88 countries worldwide. There are over 2 million of new cases of leishmaniasis occurring annually. Clinical manifestations of leishmaniasis range from potentially disfiguring cutaneous leishmaniasis to the most severe manifestation, visceral leishmaniasis, which attacks the reticuloendothelial system and has a fatality rate near 100% if left untreated. All currently available therapies all suffer from drawbacks including expense, route of administration and developing resistance. In the laboratory of Dr. Karl Werbovetz our primary goal is the identification and development of an inexpensive, orally available antileishmanial chemotherapeutic agent. Previous efforts in the lab have identified a series of dinitroaniline compounds which have promising in vitro activity in inhibiting the growth of Leishmania parasites. It has since been discovered that these compounds exert their antileishmanial effects by binding to tubulin and inhibiting polymerization. Remarkably, although mammalian and Leishmania tubulins are ~84 % identical, the dinitroaniline compounds show no effect on mammalian tubulin at concentrations greater than 10-fold the IC 50 value determined for inhibiting Leishmania tubulin ii polymerization.
    [Show full text]
  • Comparison of the Anti-Inflammatory Effects of Cilomilast, Budesonide
    Ratcliffe and Dougall BMC Pharmacology and Toxicology 2012, 13:15 http://www.biomedcentral.com/2050-6511/13/15 RESEARCH ARTICLE Open Access Comparison of the anti-inflammatory effects of Cilomilast, Budesonide and a p38 Mitogen activated protein kinase inhibitor in COPD lung tissue macrophages Marianne Jennifer Ratcliffe1* and Iain Gordon Dougall2 Abstract Chronic Obstructive Pulmonary Disease (COPD) is a disease characterized by a largely irreversible airflow obstruction and a persistent, excessive inflammatory response. Alveolar macrophages (AMs) are increased in the lungs of COPD patients, and act as orchestrators of the inflammatory response, releasing a range of mediators to coordinate recruitment and activation of leukocytes. Attempts to treat the inflammatory component of COPD with anti-inflammatory drugs such as steroids has met with limited success. In this study, we compared the ability of the phosphodiesterase IV (PDEIV) inhibitor Cilomilast, the steroid Budesonide, and the p38 mitogen activated protein kinase inhibitor BIRB-796 to inhibit tumour necrosis factor alpha (TNFα) and interleukin 6 (IL-6) releases from AMs isolated from COPD lung transplant tissue. All studies were carried out with appropriate ethical approval and written, informed consent was obtained from each subject. Cilomilast had little effect on cytokine release from AMs. There was considerable variability in the responsiveness of AMs to Budesonide, with a subset of AMs responding poorly to Budesonide. BIRB-796 inhibited TNFα release from all AM donors, including those that responded poorly to steroids. Treatment with BIRB-796 and Budesonide together gave an additive decrease in TNFa release. These results suggest that a p38 inhibitor may provide advantages over existing anti-inflammatory treatments for COPD, either as an add-on to existing therapy, or to treat patients who respond poorly to steroids.
    [Show full text]
  • Supplementary Information
    Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262
    [Show full text]
  • 1,4-Disubstituted-1,2,3-Triazole Compounds Induce Ultrastructural Alterations in Leishmania Amazonensis Promastigote
    International Journal of Molecular Sciences Article 1,4-Disubstituted-1,2,3-Triazole Compounds Induce Ultrastructural Alterations in Leishmania amazonensis Promastigote: An in Vitro Antileishmanial and in Silico Pharmacokinetic Study Fernando Almeida-Souza 1,2,* , Verônica Diniz da Silva 3,4, Gabriel Xavier Silva 5, Noemi Nosomi Taniwaki 6, Daiana de Jesus Hardoim 2, Camilla Djenne Buarque 3, 1, , 2, Ana Lucia Abreu-Silva * y and Kátia da Silva Calabrese y 1 Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís 65055-310, Brazil 2 Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; [email protected] (D.d.J.H.); calabrese@ioc.fiocruz.br (K.d.S.C.) 3 Laboratório de Síntese Orgânica, Pontifícia Universidade Católica, Rio de Janeiro 22451-900, Brazil; [email protected] (V.D.d.S.); [email protected] (C.D.B.) 4 Faculdade de Ciência e Tecnologia, Universidade Nova de Lisboa, 2825-149 Caparica, Portugal 5 Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; [email protected] 6 Núcleo de Microscopia Eletrônica, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil; [email protected] * Correspondence: [email protected] (F.A.-S.); [email protected] (A.L.A.-S.) These authors equally contributed to this work. y Received: 26 June 2020; Accepted: 14 July 2020; Published: 18 September 2020 Abstract: The current standard treatment for leishmaniasis has remained the same for over 100 years, despite inducing several adverse effects and increasing cases of resistance. In this study we evaluated the in vitro antileishmanial activity of 1,4-disubstituted-1,2,3 triazole compounds and carried out in silico predictive study of their pharmacokinetic and toxicity properties.
    [Show full text]
  • Guanidine-Containing Polyhydroxyl Macrolides: Chemistry, Biology, and Structure-Activity Relationship
    molecules Review Guanidine-Containing Polyhydroxyl Macrolides: Chemistry, Biology, and Structure-Activity Relationship Xiaoyuan Song 1, Ganjun Yuan 1,* , Peibo Li 2 and Sheng Cao 1 1 College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] (X.S.); [email protected] (S.C.) 2 School of Life Sciences, Sun Yat-sen University, 135 Xingang Road, Guangzhou 510275, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0791-83813459 Academic Editor: Jesus Simal-Gandara Received: 7 October 2019; Accepted: 29 October 2019; Published: 30 October 2019 Abstract: Antimicrobial resistance has been seriously threatening human health, and discovering new antimicrobial agents from the natural resource is still an important pathway among various strategies to prevent resistance. Guanidine-containing polyhydroxyl macrolides, containing a polyhydroxyl lactone ring and a guanidyl side chain, can be produced by many actinomycetes and have been proved to possess many bioactivities, especially broad-spectrum antibacterial and antifungal activities. To explore the potential of these compounds to be developed into new antimicrobial agents, a review on their structural diversities, spectroscopic characterizations, bioactivities, acute toxicities, antimicrobial mechanisms, and the structure-activity relationship was first performed based on the summaries and analyses of related publications from 1959 to 2019. A total of 63 guanidine-containing polyhydroxyl macrolides were reported, including
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Hepatotoxicity-Induced by the Therapeutic Dose of Acetaminophen and the Ameliorative Effect of Oral Co-Administration of Selenium/ Tribulus Terrestris Extract in Rats
    Int. J. Morphol., 38(5):1444-1454, 2020. Hepatotoxicity-Induced by the Therapeutic Dose of Acetaminophen and the Ameliorative Effect of Oral Co-administration of Selenium/ Tribulus terrestris Extract in Rats Hepatotoxicidad Inducida por la Dosis Terapéutica de Acetaminofén y el Efecto de Mejora de la Administración Conjunta de Extracto de Selenio Tribulus terrestris en Ratas Amin A. Al-Doaiss1,2 AL-DOAISS, A. A. Hepatotoxicity-induced by the therapeutic dose of acetaminophen and the ameliorative effect of oral co-administration of selenium / Tribulus terrestris extract in rats. Int. J. Morphol., 38(5):1444-1454, 2020. SUMMARY: Over dose or long-term clinical use of therapeutic doses of acetaminophen (APAP) causes hepatotoxicity. Various strategies attempted to ameliorate APAP-hepatotoxicity have been found to be unsuitable for clinical practice. This study was aimed to illustrate the histopathological changes induced by therapeutic dose of APAP and investigate the hepatoprotective role of oral co- administration of selenium/ Tribulus terrestris (TT) extract concurrently against hepatotoxicity induced by APAP in rats. Fifty-four healthy male albino Wistar rats were randomized into nine groups (G1–G9) of six rats each, and administered with APAP and TT orally for 30 days as follows: Control (2ml normal saline), APAP (470 mg/kg), APAP (470 mg/kg) + selenium (2 mg/kg), APAP (470 mg/kg) + TT (98 mg/kg), APAP (470 mg/kg) + selenium (2mg/kg) + TT (98 mg/kg), APAP (470 mg/kg) + silymarin (200 mg/kg), selenium (2 mg/ kg), TT (98 mg/kg) and silymarin (200 mg/kg) groups. The results demonstrated that exposure of rats to therapeutic dose of APAP for 30 days caused significant histopathological changes parallel to elevated blood chemistry parameters.
    [Show full text]
  • WO 2014/185925 Al 20 November 2014 (20.11.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/185925 Al 20 November 2014 (20.11.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BOW 53/28 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US20 13/04 1503 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 17 May 2013 (17.05.2013) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (26) Publication Language: English ZM, ZW. (71) Applicant: EMPIRE TECHNOLOGY DEVELOP¬ (84) Designated States (unless otherwise indicated, for every MENT LLC [US/US]; 271 1 Centerville Road, Suite 400, kind of regional protection available): ARIPO (BW, GH, Wilmington, Delaware 19808 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: PEPPOU, George Charles; 4 Armen Way, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Hornsby Heights, New South Wales 2077 (AU).
    [Show full text]