An Ant-Plant Mesocosm Experiment Reveals Dispersal Patterns of Myrmecochorous Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Myrmecochore Species Abundance
EFFECTS OF MYRMECOCHORE SPECIES ABUNDANCE, DIVERSITY, AND FRUITING PHENOLOGY ON APHAENOGASTER (HYMENOPTERA: FORMICIDAE) NESTING AND FORAGING IN SOUTHERN APPALACHIAN RICH COVE FORESTS A Thesis presented to the faculty of the Graduate School of Western Carolina University in partial fulfillment of the requirements for the degree of Master of Science in Biology. By Mary N. Schultz Director: Dr. James T. Costa, Western Carolina University Biology Department Committee Members: Dr. Beverly Collins, Western Carolina University Biology Department Dr. Robert Warren III, State University of New York College at Buffalo Biology Department April, 2014 ACKNOWLEDGMENTS I would like to thank my committee members and director for their assistance and support, particularly logistical, conceptual, and editorial guidance from Dr. Beverly Collins; statistical and editorial assistance from Dr. Robert Warren; and keen proofreading and editorial comments from Dr. James T. Costa. I would also like to thank Dr. Mark Bradford, Yale school of Forestry and Environmental Studies, for funding my research. I am eternally grateful to my husband, David Clarke, for his continued unwavering support, in the field and out; none of this would have been possible without him. Lastly, my sincere appreciation for generous counsel and sage advice from my friends, Josh Kelly and Jay Kranyik. TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................... v LIST OF FIGURES ......................................................................................................... -
Květy Nebo Větve Květenství • Téměř Vždy Bez Palistů (Drobné Úkrojky Čepele Na Bázi Listů U Krytosemenných Rostlin
Ranunculaceae (pryskyřníkovité) Oddělení: Angiospermae (Magnoliophyta) Dvouděložné (Dicots) Bazální dvouděložné Řád: Ranunculales Čeleď: Ranunculaceae Ranunculaceae – pryskyřníkovité Ranunculus acris • Převážně suchozemské byliny (pryskyřník prudký) • Listy až na výjimky střídavé nebo v přízemní růžici často členěné nebo složené • nebo lodyha bezlistá s výraznými metamorfovaný (přeměněný) listeny list, z jehož úžlabí vyrůstají listy střídavé květy nebo větve květenství • téměř vždy bez palistů (drobné úkrojky čepele na bázi listů u krytosemenných rostlin. Existují volné (přirostlé) k řapíku (vikve, violky, hrách), opadavé (jabloň), přeměněné v trny (trnovník akát) listeny • Časté alkaloidy list nebo glykosidy bezlistá lodyha Anemone nemorosa (sasanka hajní) www.zum.de/stueber/lindman/ Ranunculaceae – pryskyřníkovité •Květy: aktinomorfní i zygomorfní květní obaly nedokonale rozlišené, volné •Květenství: hroznovité nebo květy jednotlivé Anemone ranunculoides Aconitum variegatum (sasanka pryskyřníkovitá) (oměj pestrý) květ jednolivý aktinomorfní zygomorfní květ hroznovité květenství Ranunculaceae – pryskyřníkovité •Květy: oboupohlavné, zpravidla spirocyklické tyčinek mnoho gyneceum apokarpní (plodolistů často mnoho nebo redukce až na 1) svrchní •Plod: měchýřek, nažka nebo bobule Ranunculus bulbosus (pryskyřník hlíznatý) nažka koruna plodolisty kalich tyčinky Ranunculaceae – pryskyřníkovité Naši zástupci Ranunculus acris (pryskyřník prudký) Ranunculus repens (pryskyřník plazivý) Ranunculaceae – pryskyřníkovité Anemone ranunculoides Anemone -
Succession in Ant Communities (Hymenoptera: Formicidae) in Deciduous Forest Clear-Cuts – an Eastern European Case Study
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 92–100, 2017 http://www.eje.cz doi: 10.14411/eje.2017.013 ORIGINAL ARTICLE Succession in ant communities (Hymenoptera: Formicidae) in deciduous forest clear-cuts – an Eastern European case study IOAN TĂUŞAN 1, JENS DAUBER 2, MARIA R. TRICĂ1 and BÁLINT MARKÓ 3 1 Department of Environmental Sciences, Lucian Blaga University of Sibiu; Applied Ecology Research Centre, Dr. Raţiu 5-7, 550012 Sibiu, Romania; e-mails: [email protected], [email protected] 2 Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 50, D-38116 Braunschweig, Germany; e-mail: [email protected] 3 Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania; e-mails: [email protected], [email protected] Key words. Hymenoptera, Formicidae, ants, deciduous forests, secondary succession, clear-cutting, community structure, pitfall traps Abstract. Clear-cutting, the main method of harvesting in many forests in the world, causes a series of dramatic environmental changes to the forest habitat and removes habitat resources for arboreal and epigeal species. It results in considerable changes in the composition of both plant and animal communities. Ants have many critical roles in the maintenance and functioning of forest ecosystems. Therefore, the response of ants to clear-cutting and the time it takes for an ant community to recover after clear- cutting are important indicators of the effect of this harvesting technique on the forest ecosystem. We investigated ground-dwelling ant communities during secondary succession of deciduous forests in Transylvania, Romania. -
Seed Dispersal by Ants in Jarrah Forest Restorations of Western Australia
Seed Dispersal by Ants in Jarrah Forest Restorations of Western Australia Troy L. Wanless Introduction The jarrah forests in Western Australia cover approximately 1.75 million ha in the southwestern corner of the state (Figure 1). Jarrah, otherwise known as Eucalyptus marginata, is only one species among many that inhabit a region with considerable physical and biological diversity. 1200 species of plants, 29 mammalian species, 45 reptile species, 17 frog species, 4 fish species and 150 bird species live in this system which also has highly adverse conditions for survival. These may include infertile, often salt-laden soils, drought, and the occasional wildfire (Western Australia Forest Alliance, 2003). Considerable deposits of bauxite, which is the primary material involved in the production of aluminum, are scattered throughout the region. Since 1963, Alcoa of Australia Ltd. has cleared these jarrah forests to make way for mining of this ore. It is estimated that these deposits cover 7-8% of the forested area although only 3-4% will ever be mined due to environmental and economic constraints (Majer, 1989). These mined areas create a scattering of patches throughout the forest that are essentially stripped of any kind of biodiversity that was once there (Figure 2). Restoration efforts on these previously mined patches focus on many aspects of the jarrah forest ecosystem. Specifically interesting is the role that ants play in seed dispersal. This paper will focus on the topic of seed dispersal by ants in the northern jarrah forests of Western Australia while paying particular attention to myrmecochory. Figure 1. Location of jarrah forest in Australia Figure 2. -
Large-Flowered Trilliums Coming up in Spring in Our Childhoo
Large-flowered Trillium or Common Trillium (Trillium grandiflorum) Large-flowered Trilliums Coming Up in Spring In our childhood the woods in late May were full of hundreds of large, waxy white flowers that covered the forest floor. Grandma in her German diary called these trilliums “wild lilies” and also commented that on May14th and 22nd in 1927 and again on May 22nd in 1940 these flowers were numerous and in full bloom. (Freckman, 1994) gave the earliest blooming dates as April 24th. Large-flowered Trillium Bud Opening Today, with more houses and lawns in the country, and fewer undisturbed woodlots those visions of white are less frequently seen. In addition, the White-tailed Deer population has steadily increased and their appetite for tasty trilliums has served to eliminate many stands of this beautiful plant. This is especially troublesome because once the leaves and flowers are plucked, the plant is likely to die. It can no longer produce food to send down to the roots so that it can come back another year. It still grows quite abundantly on the sloping bank along Billings Avenue in the Town of Medford, Wisconsin. Some sources say that deer do not like to graze on steep banks or inclines so that may be why those plants have escaped. We have a patch of trilliums that has grown larger each year in our lawn. Recently we have had to protect these trilliums from the deer that could wipe out the entire patch in a single night. Sometimes seeds from those plants, possibly transported by ants, have grown into new plants in the front lawn. -
Download Chapter In
Flora and vegetation Margaret E Bradshaw The flora of Upper Teesdale is probably more widely known than that of any other area in Britain, and yet perhaps only a few of the thousands who visit the Dale each year realise the extent to which the vegetation and flora contribute to the essence of its character. In the valley, the meadows in the small walled fields extend, in the lower part, far up the south-facing slope, and, until 1957 to almost 570m at Grass Hill, then the highest farm in England. On the north face, the ascent of the meadows is abruptly cut off from the higher, browner fells by the Whin Sill cliff, marked by a line of quarries. Below High Force, the floor of the valley has a general wooded appearance which is provided by the small copses and the many isolated trees growing along the walls and bordering the river. Above High Force is a broader, barer valley which merges with the expansive fells leading up to the characteristic skyline of Great Dun Fell, Little Dun Fell and Cross Fell. Pennine skyline above Calcareous grassland and wet bog, Spring gentian Red Sike Moss © Margaret E Bradshaw © Geoff Herbert Within this region of fairly typical North Pennine vegetation is a comparatively small area which contains many species of flowering plants, ferns, mosses, liverworts and lichens which can be justifiably described as rare. The best known is, of course, the spring gentian (Gentiana verna), but this is only one of a remarkable collection of plants of outstanding scientific value. -
Czech Forest (Site) Ecosystem Classification
Czech Forest (Site) Ecosystem Classification Jiří Viewegh 1 Introduction Ecosystem (site) classification of forests in Czech Republic is among those based on environmental factors. Initially, it was developed using a phytosociologal basis, but later, in view of operational application, the emphasis was placed on the environment of forest ecosystems. Climatic and soil studies helped to characterize environmental conditions and their relationships to forest communtieis. As the development of a true ecological classification is difficult, existing forest ecosystem classifications are driven either by vegetation or environment. These two different approaches influenced the development of forest classification (commonly referred to as forest typology) in former Czechoslovakia. "Typological System of Forest Management Planning Institute" is the name of a recently established forest site classification. Taking into consideration extensive changes in forest cover, which have resulted in profiound changes in forest communities and the associated forest floor and soil properties (degradation stages), the classification system is based upon relatively stable environmental conditions. In addition to characterizing humus forms and plant communities of climax (potential) vegetation, the systen also attempts to quantify potential production of forest ecosystems (e.g., yield class and canopy position of trees). This typological system, which was developed by Plíva and Průša (Plíva 1971-1976) has been applied in Czech forests since 1970. As the composition of most of the original forests was changed to Norway spruce (Picea abies) monocultures in last 200 years, two environmental (site) factors were used in organizing the system. These are soil and climatic properties, the latter are represented by forest vegetation zones which express altitudinal zonation of forest vegetation in Czech Republic. -
The Large Blue Butterfly Maculinea Alcon in Belgium: Science and Conservation
BULLETfN DE L'JNSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE BIOLOGIE, 72-S VPPL. : 183-1 85, 20Q ~ BULLETIN VAN HET KONINKLJJK BELGISCH INSTITVUT VOOR NATUURWETENSC HAPPEN BIOLOGLE, 72-S UPPL.: 183-1 85, 2002 The large blue butterfly Maculinea alcon in Belgium: science and conservation W. V ANREUSEL, H. VAN DYCK & D. MAES Introduction According to the Flemish Red List, M. alcon is threa tened. It is one of the few legally protected butterflies. In Belgium, the obligate ant-parasitic butterfly Maculinea Since 1996, both its complex life history and conserva alcon is confined to NE-Flanders (Kempen) and has tion biology have been studied rather intensively by our decreased considerably in distribution (fig. 1) and abun research team. Several populations went extinct, no less dance. than 9 did so in the 1990s including extinctions in nature reserves. Our analyses indicate that populations of smal- . ler, more isolated sites have a significantly higher extinc tion probability. At present, only 12 populations remain in 8 areas, including 5 nature reserves and 3 military areas (table I). Based on detailed egg counts, most populations show negative trends. We have recently finalised a Spe cies Action Plan for Maculinea a/con funded by the Flemish Ministry of Nature Conservation (VAN REUSEL et al. 2000). It was the first action plan for an invertebrate, but Flanders has only little experience with the imple mentation of such plans and with the integration of spe before 1991 cies-specific knowledge into site-oriented conservation. Hence, the M. a/con plan will be an important test-case. -
Patterns in Evolution in Characters That Define Iris Subgenera And
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 34 2006 Patterns in Evolution in Characters That Define rI is Subgenera and Sections Carol A. Wilson Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Wilson, Carol A. (2006) "Patterns in Evolution in Characters That Define rI is Subgenera and Sections," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 34. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/34 Aliso 22, pp. 425-433 © 2006, Rancho Santa Ana Botanic Garden PATTERNS OF EVOLUTION IN CHARACTERS THAT DEFINE IRIS SUBGENERA AND SECTIONS CAROL A. WILSON Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711-3157, USA (carol. wilson@ cgu. edu) ABSTRACT Subgeneric groups have been circumscribed in Iris based on a small number of morphological characters. Recent DNA sequence data has indicated that several of the subgenera, sections, and series that have previously been delineated are paraphyletic or polyphyletic. The evolution of characters that have traditionally been used to distinguish sub generic and sectional groups within Iris was investigated by mapping these characters on a phylogenetic tree based on matK sequence data. Results indicate that rhizomes are pleisomorphic for the genus and that three bulb types have arisen independently. My analysis shows that sepal beards, sepal crests, and seed arils show extensive homoplasy. Most of the homoplasy seen is associated with the circumscription of polyphyletic subgeneric groups such as the beardless subgenus Limniris. Some additional homoplasy is due to diversity within supported clades or the historical use of a single character in circumscribing more than one subgeneric group. -
Butterflies of Montgomeryshire (VC47)
January 2021 Butterflies of Montgomeryshire (VC47) This document outlines the butterfly species recorded in Montgomeryshire, focusing on the county status of each species and their basic biology, rather than their identification. Use the links below (in blue) to navigate the document. Introduction and organisations Recording butterflies Species monitoring Vice-county 47 map Records contributing to this atlas Under-recorded areas Resident and common migratory species thought to occur in the county: -Dingy Skipper -Grizzled Skipper -Essex Skipper -Small Skipper -Large Skipper -Orange-tip -Large White -Small White -Green-veined White -Clouded Yellow -Brimstone -Wall -Speckled Wood -Small Heath -Ringlet -Meadow Brown -Gatekeeper (Hedge Brown) -Marbled White -Grayling -Pearl Bordered Fritillary -Small Pearl-bordered Fritillary -Silver-washed Fritillary -Dark Green Fritillary -Red Admiral -Painted Lady -Peacock -Small Tortoiseshell -Comma -Small Copper -Purple Hairstreak -Green Hairstreak -White-letter Hairstreak -Holly Blue -Common Blue Species that have bred in the county but are now presumed extinct: -Large Heath -High Brown Fritillary -Marsh Fritillary -Brown Hairstreak -Brown Argus Vagrants , releases, and unconfirmed records: -Scarce Swallowtail -Monarch (The Milkweed) -Purple Emperor -Camberwell Beauty Species not recorded but could be found in the county in the near future: -Wood White Introduction Montgomeryshire (vice-county 47) is relatively under-recorded in terms of butterflies, and as a result, the data used to produce this summary are unlikely to fully reflect a species' distribution. This document is by no means comprehensive, nor is it a field guide. It has been produced to allow people to ascertain the county status of each species. All butterfly records from around VC47 are very welcome (see recording butterflies section) and should be sent to the county butterfly recorder, Douglas Boyes: [email protected] Please feel free to use this email for any identification queries, further information, etc. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Review and Phylogenetic Evaluation of Associations Between Microdontinae (Diptera: Syrphidae) and Ants (Hymenoptera: Formicidae)
Hindawi Publishing Corporation Psyche Volume 2013, Article ID 538316, 9 pages http://dx.doi.org/10.1155/2013/538316 Review Article Review and Phylogenetic Evaluation of Associations between Microdontinae (Diptera: Syrphidae) and Ants (Hymenoptera: Formicidae) Menno Reemer Naturalis Biodiversity Center, European Invertebrate Survey, P.O. Box 9517, 2300 RA Leiden, The Netherlands Correspondence should be addressed to Menno Reemer; [email protected] Received 11 February 2013; Accepted 21 March 2013 Academic Editor: Jean-Paul Lachaud Copyright © 2013 Menno Reemer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The immature stages of hoverflies of the subfamily Microdontinae (Diptera: Syrphidae) develop in ant nests, as predators ofthe ant brood. The present paper reviews published and unpublished records of associations of Microdontinae with ants, in order to discuss the following questions. (1) Are all Microdontinae associated with ants? (2) Are Microdontinae associated with all ants? (3) Are particular clades of Microdontinae associated with particular clades of ants? (4) Are Microdontinae associated with other insects? A total number of 109 associations between the groups are evaluated, relating to 43 species of Microdontinae belonging to 14 genera, and to at least 69 species of ants belonging to 24 genera and five subfamilies. The taxa of Microdontinae found in association with ants occur scattered throughout their phylogenetic tree. One of the supposedly most basal taxa (Mixogaster)isassociatedwith ants, suggesting that associations with ants evolved early in the history of the subfamily and have remained a predominant feature of their lifestyle.