Czech Forest (Site) Ecosystem Classification

Total Page:16

File Type:pdf, Size:1020Kb

Czech Forest (Site) Ecosystem Classification Czech Forest (Site) Ecosystem Classification Jiří Viewegh 1 Introduction Ecosystem (site) classification of forests in Czech Republic is among those based on environmental factors. Initially, it was developed using a phytosociologal basis, but later, in view of operational application, the emphasis was placed on the environment of forest ecosystems. Climatic and soil studies helped to characterize environmental conditions and their relationships to forest communtieis. As the development of a true ecological classification is difficult, existing forest ecosystem classifications are driven either by vegetation or environment. These two different approaches influenced the development of forest classification (commonly referred to as forest typology) in former Czechoslovakia. "Typological System of Forest Management Planning Institute" is the name of a recently established forest site classification. Taking into consideration extensive changes in forest cover, which have resulted in profiound changes in forest communities and the associated forest floor and soil properties (degradation stages), the classification system is based upon relatively stable environmental conditions. In addition to characterizing humus forms and plant communities of climax (potential) vegetation, the systen also attempts to quantify potential production of forest ecosystems (e.g., yield class and canopy position of trees). This typological system, which was developed by Plíva and Průša (Plíva 1971-1976) has been applied in Czech forests since 1970. As the composition of most of the original forests was changed to Norway spruce (Picea abies) monocultures in last 200 years, two environmental (site) factors were used in organizing the system. These are soil and climatic properties, the latter are represented by forest vegetation zones which express altitudinal zonation of forest vegetation in Czech Republic. These factors make up a two-dimensional, ecological grid (Table 1). 2 Units A forest site type is a unit with a narrow range of environmental conditions for the establishment and growth of tree species; thus it represents the basic unit of growing conditions. Zlatník (1956) defined a forest site type as "…an aggregate of natural geobiocenosis and all geobiocenoses originating from them, from the view-point of development, and partly geobiocenoses (geobiocenoids) changed to a certain degree, including development stages." (Randuška 1982, p. 162). Each forest site type includes all original geobiocoenoses with homogenous ecological or growth conditions and with a certain amplitude of the potential autochthonous and allochthonous forest productivity. Thus, a given forest site type includes all forest communities regardless of the existing vegetation and development stage. For operational application, forest site types are characterized by a diagnostic combination of plant species, soil properties, habitat, and measures of forest productivity (i.e., potential yield class of one or more tree species). Forest site type complexes are classes at a higher level of generalization of the typological system. Forest site types are grouped into forest site type complexes based ecological (climatic and edaphic) relationships. Each forest site type complex is characterized by a unique combination of edaphic and climatic conditions. On the ecological grid, edaphic conditions (referred to as edaphic categories) are displayed along the horizontal axis, and climatic conditions represented by forest vegetation zones are displayed along the vertical axis. Floristically or environmentally closely related edaphic categories are grouped into edaphic series (Table 1). 2.1 Forest vegetation zones Forest vegetation zones manifest categorical relations between climate (using elevation as a proxy for climatic change) and the tree layer composition of forest stands along an altitudinal gradient. Forest vegetation zones are named by one or more tree species tree associated with rich edaphic series. The rationale for the mesotrophic edaphic series is that it reflects the climatic influence more strongly than other edaphic series in which this influence is confounded by other environmental factors. The proportion of Fagus sylvatica in the tree species composition of mesotrophic edaphic series is the key to forest vegetation zones determining natural spread on habitats not influenced by water. Proportion and canopy position of Fagus sylvatica and Quercus patraea agg. at lower elevations, and Fagus sylvatica and Picea abies at higher elevations often determine a forest vegetation zone. As strongly gleyed and wet soils do not support a competitive groth of Fagus sylvatica, it is important to to know the distribution and abundance of Abies alba which may extend from the Oak to BeechSpruce zone. As under these edaphic circumstances the climate elevation relationships are not strongly refelected in the composition of tree species, framing forest vegetation zones will depend on the natural proportion of Abies alba and Quercus robur or Abies alba and Picea abies. Detection of climatic changes with elevation on wet, organic soils dominated by Picea abies, or Pinus sylvestris is problematic. 1st - Oak zone (Quercus spp. mainly Quercus petraea agg.) Climatic characteristics: mean annual temperature 8°C; mean annual precipitation <600 mm; growing season >165 days. Quercus petraea agg. is the dominant climax species; Quercus cerris, Q. pubescens, and Fraxinus angustifolia are often abundant. Fagus sylvatica is absents or rare on wet habitats. This zone includes warm and water-deficient sites, with the exception of deep sands dominated by Pinus sylvestris and floodplains. The Oak zone covers 8.3 % of the forested area in Czech Republic. 2nd - BeechOak zone (Fagus sylvatica–Quercus petraea agg.) Climatic characteristics: mean annual temperature 7.5 to 8°C; mean annual precipitation 600 to 650 mm; growing season 160 to 165 days. Quercus petraea agg. is dominant. Carpinus betulus and Fagus sylvatica are very abundant in the lower tree layer. Quercus pubescens and Quercus cerris occur only on dry sites. Carpinus betulus is the dominant species in coppice stands, where Fagus sylvatica and Q. petraea agg. were eliminated by coppicing. This zone covers 14.9 % of the forested area in Czech Republic. 3rd - OakBeech zone (Quercus petraea agg.–Fagus sylvatica) Climatic characteristics: mean annual temperature 6.5 to 7.5°C; mean annual precipitation 650 to 700 mm; growing season 150 to160 days. Fagus sylvatica dominates grassy-like communities. The associated Quercus petraea and Carpinus betulus have a production optimum in the zone. Coppice silvicultural system has changed Fagus sylvatica and Quercus petraea agg. by Carpinus betulus. Quercus robur and Abies alba who were commnon on water-surplus soils are advancing back. Pinus sylvestris is associated with nutrient-poor sites. OakBeech zone covers 18.4 % of the forested area in Czech Republic. 4th - Beech zone (Fagus sylvatiaca) Climatic characteristics: mean annual temperature 6.0 to 6.5°C; mean annual precipitation 700 to 800 mm; growing season 140 to 150 days. This zone, represnting the climatic optimum for Fagus sylvatica, featured a large area of pure beech stands which occur at the present in the Carpathian area. Quercus petraea and Abies alba may be minor associates in the lower tree layer. In the Hercynicum area, localities with gleyed soils (sites with a strongly fluctuating water table) and wet soils within the Beech zone are substituted by the OakConiferous zone. As these edaphic conditions are not tolerated by Fagus sylvatica, Abies alba and Quercus robu dominate these localities. Beech zone covers 5.7 % of the forested area in Czech Republic. 5th - FirBeech zone (Abies alba–Fagus sylvatica) Climatic characteristics: mean annual temperature 5.5 to 6°C; mean annual precipitation 800 to 900 mm; growing season 130 to 140 days. Depending on local conditions, either Fagus sylvatica or Abies alba are dominant species in forests stands, while Quercus petraea agg. is absent. Abies alba occurs more frequently on fine-textured soils and ridges where beech litter does not accumulate. Conversely, habitats with beech litter accumulation and hence with compacted forest floor are more suitable for Fagus sylvatica. Also present, albeit to a much greater extent than in the past, is Picea abies who reaches a production optimum in the FirBeech zone. Throughout the zone, Fagus sylvatica is accompanied by several understory species considered to be diagnostic of the zone and faithful companions of the species. Tree species of water-surplus sites from the lower zones ascend to this zone; similarly, some subalpine plant species descend to cool sites. FirBeech zone covers 30% of the forested area in Czech Republic. 6th - SpruceBeech zone (Picea abies–Fagus sylvatica) Climatic characteristics: mean annual temperature 4.5 to 5.5°C; mean annual precipitation 900 to 1,050 mm; growing season 115 to 130 days. Three dominant tree species, i.e., Fagus sylvatica, Abies alba, and Picea abies, are referred to as a 'hercynian mixture'. Fagus sylvatica, however, does not occur on water-surplus sites. Several understory species considered to be companions of Picea abies occur sporadically the in herb layer, such as Prenanthes purpurea (ascended from relatively wetter sites in the FirBeech zone and yet wetter in the Beech zone to relatively drier sites in this zone), Polygonatum verticillatum, and Festuca altissima. Calamagrostis villosa is the understory dominant and Pinus sylvestris
Recommended publications
  • Survey of Plant Pigments: Molecular and Environmental Determinants of Plant Colors
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica – ABSTRACTS (Vol. 51/1, 2009) ACTA BIOLOGICA CRACOVIENSIA Series Botanica 51/1: 7–16, 2009 SURVEY OF PLANT PIGMENTS: MOLECULAR AND ENVIRONMENTAL DETERMINANTS OF PLANT COLORS EWA MŁODZI ŃSKA* Department of Plant Physiology, Wroclaw University, ul. Kanonia 6/8, 50-328 Wrocław, Poland Received January 7, 2009; revision accepted February 20, 2009 * e-mail: [email protected] It is difficult to estimate the importance of plant pigments in plant biology. Chlorophylls are the most important pigments, as they are required for photosynthesis. Carotenoids are also necessary for their functions in photosynthesis. Other plant pigments such as flavonoids play a crucial role in the interaction between plants and animals as visual signals for pollination and seed scattering. Studies related to plant pigmentation are one of the oldest areas of work in plant science. The first publication about carotenoids appeared in the early nineteenth century, and the term "chlorophyll" was first used in 1818 (Davies, 2004). Since then, the biochemical structure of plant pigments has been revealed, as have the biosynthetic pathways for the major pigments that provide a useful variety of colors to blossoms and other plant organs. There is widespread interest in the application of molecular methods to improve our knowledge of gene regulation mechanisms and changes in plant pigment content. Genetic modification has been used to alter pigment production in transgenic plants. This review focuses on flower pigmentation, its biochemistry and biology. It presents a general overview of the major plant pigment groups as well as rarer plant dyes and their diversity and function in generating the range of colors observed in plants.
    [Show full text]
  • Květy Nebo Větve Květenství • Téměř Vždy Bez Palistů (Drobné Úkrojky Čepele Na Bázi Listů U Krytosemenných Rostlin
    Ranunculaceae (pryskyřníkovité) Oddělení: Angiospermae (Magnoliophyta) Dvouděložné (Dicots) Bazální dvouděložné Řád: Ranunculales Čeleď: Ranunculaceae Ranunculaceae – pryskyřníkovité Ranunculus acris • Převážně suchozemské byliny (pryskyřník prudký) • Listy až na výjimky střídavé nebo v přízemní růžici často členěné nebo složené • nebo lodyha bezlistá s výraznými metamorfovaný (přeměněný) listeny list, z jehož úžlabí vyrůstají listy střídavé květy nebo větve květenství • téměř vždy bez palistů (drobné úkrojky čepele na bázi listů u krytosemenných rostlin. Existují volné (přirostlé) k řapíku (vikve, violky, hrách), opadavé (jabloň), přeměněné v trny (trnovník akát) listeny • Časté alkaloidy list nebo glykosidy bezlistá lodyha Anemone nemorosa (sasanka hajní) www.zum.de/stueber/lindman/ Ranunculaceae – pryskyřníkovité •Květy: aktinomorfní i zygomorfní květní obaly nedokonale rozlišené, volné •Květenství: hroznovité nebo květy jednotlivé Anemone ranunculoides Aconitum variegatum (sasanka pryskyřníkovitá) (oměj pestrý) květ jednolivý aktinomorfní zygomorfní květ hroznovité květenství Ranunculaceae – pryskyřníkovité •Květy: oboupohlavné, zpravidla spirocyklické tyčinek mnoho gyneceum apokarpní (plodolistů často mnoho nebo redukce až na 1) svrchní •Plod: měchýřek, nažka nebo bobule Ranunculus bulbosus (pryskyřník hlíznatý) nažka koruna plodolisty kalich tyčinky Ranunculaceae – pryskyřníkovité Naši zástupci Ranunculus acris (pryskyřník prudký) Ranunculus repens (pryskyřník plazivý) Ranunculaceae – pryskyřníkovité Anemone ranunculoides Anemone
    [Show full text]
  • Struktura Filogeograficzna Gatunków Kompleksu Melica Ciliata – M
    Fragm. Florist. Geobot. Polon. 20(1): 109–130, 2013 Struktura filogeograficzna gatunków kompleksu Melica ciliata – M. transsilvanica (Poaceae) w Europie MAGDALENA SZCZEPANIAK SZCZEPANIAK , M. 2013. Phylogeographical structure of the species of Melica ciliata – M. trans- silvanica complex (Poaceae) in Europe. Fragmenta Floristica et Geobotanica Polonica 20(1): 109–130. PL ISSN 1640-629X. AB S TRACT : The phylogeographical structure of the European xerothermophilous grass species of Melica ciliata – M. transsilvanica complex (Poaceae) was assessed based on sequences of the non- coding trnL-trnF region of chloroplast DNA and AFLP data (obtained from the previous studies). Eleven haplotypes were detected within 88 populations collected from the entire distribution area. The clear geographic structure of cpDNA haplotypes was found. One main haplotype was wide- spread across Europe and was unique for all central and northern European population. The second high-frequency haplotype was distributed only on the Balkan Peninsula. In a marked contrast with non-variable more northerly populations, the greatest haplotype variation was revealed on the Iberian and Apennine Peninsulas, and somewhat smaller on the Balkan Peninsula, suggesting diversity centres and main glacial refugia in these regions. Among these southern refugia, probably mainly the Iberian Peninsula could have significantly contributed to postglacial re-colonisation of the more northerly parts of Europe. The some Apennine and Balkan lineages were clearly distinct and spread locally. KEY WORD S : cpDNA sequences, genetic structure, glacial refugia, Melica ciliata, Melica trans- silvanica, phylogeography M. Szczepaniak, Instytut Botaniki im. W. Szafera PAN, ul. Lubicz 46, 31-512 Kraków, Polska; e-mail: [email protected] Ws t ę p Flora i fauna zbiorowisk kserotermicznych Europy należą do najcenniejszych elementów różnorodności biologicznej, o czym decyduje występowanie wielu rzadkich i endemicznych gatunków (PO S CHLOD & WALLI S DEVRIE S 2002; PÄRTEL i in.
    [Show full text]
  • Report of a Working Group on Forages: Eighth Meeting
    European Cooperative Programme for Crop Genetic 2525 Report of a Working Resources Networks ECP GR Group on Forages Eighth Meeting, 10 –12 April 2003, Linz, Austria B. Boller, E. Willner, L. Maggioni and E. Lipman, compilers <www.futureharvest.org> IPGRI is a Future Harvest Centre supported by the Consultative Group on International Agricultural Research (CGIAR) European Cooperative Programme for Crop Genetic 2525 Report of a Working Resources Networks ECP GR Group on Forages Eighth Meeting, 10 –12 April 2003, Linz, Austria B. Boller, E. Willner, L. Maggioni and E. Lipman, compilers ii REPORT OF A WORKING GROUP ON FORAGES: EIGHTH MEETING The International Plant Genetic Resources Institute (IPGRI) is an independent international scientific organization that seeks to improve the well-being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 Future Harvest Centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. IPGRI has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Improving Livelihoods in Commodity-based Systems.
    [Show full text]
  • Recovery and Germination of Seeds After Passage Through the Gut of Kazakh Sheep on the North Slope of the Tianshan Mountains
    Seed Science Research (2017) 27,43–49 doi:10.1017/S0960258517000022 © Cambridge University Press 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Recovery and germination of seeds after passage through the gut of Kazakh sheep on the north slope of the Tianshan Mountains Shulin Wang1, Weihua Lu1*, Narkes Waly1, Chunhui Ma1, Qianbing Zhang1 and Chuanjian Wang2 1College of Animal Science and Technology; 2College of Information Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China (Received 9 July 2016; accepted after revision 12 January 2017) Abstract Introduction Endozoochorous dispersal of seeds by livestock has Grazing livestock are one of the most important endo- long attracted the attention of grassland scientists. zoochorous seed dispersal vectors in grasslands However, little is known about seed dispersal after (Archer and Pyke, 1991; Gökbulak and Call, 2009). ingestion by Kazakh sheep on dry grasslands in the Seeds can be retained for long periods in the gut of Tianshan Mountains. The objective of this experiment livestock, thus allowing rapid seed dispersal as the ani- was to learn more about the recovery and germinability mals travel (Pakeman, 2001; Mouissie et al., 2005b; of seeds from 17 plant species after either actual or Cosyns and Hoffmann, 2005). Several reports indicate simulated ingestion (i.e. insertion through a rumen that seedling emergence and growth are promoted by fi stula) by Kazakh sheep. The passage time of seeds organic matter and nutrients in livestock dung through the sheep gut ranged from 12 to 96 h.
    [Show full text]
  • Central European Vegetation
    Plant Formations in the Central European BioProvince Peter Martin Rhind Central European Beech Woodlands Beech (Fagus sylvatica) woods form the natural climax over much of Central Europe where the soils are relatively dry and can extend well into the uplands in the more southern zones. In the north, however, around Sweden it is confined to the lowlands. Beech woodlands are often open with a poorly developed shrub layer, Characteristic ground layer species may include various helleborines such as Cephalanthera damasonium, C. longifolia and C. rubra and sedges such as Carex alba, whilst in others, grasses like Sesleria caerlea or Melica uniflora may predominate, but in some of the more acidic examples, Luzula luzuloides is likely to dominate. There are also a number of endemic ground layer species. For example, in Carpathian beech woods endemics such as Dentaria glandulosa (Brassicaceae), Symphytum cordata (Boraginaceae) and the fern Polystichum braunii (Dryopteridaceae) may be encountered. Fine examples of primeaval beech woods can be found in the limestone Alps of lower Austria including the famous ‘Rothwald’ on the southeastern slopes of Dürrentein near Lunz. These range in altitude from about 940-1480 m. Here the canopy is dominated by Fagus sylvatica together with Acer pseudoplatanus, Picea abies, Ulmus glabra, and on the more acidic soils by Abies alba. Typical shrubs include Daphne mezereum, Lonicera alpigena and Rubus hirtus. At ground level the herb layer is very rich supporting possibly up to a 100 species of vascular plants. Examples include Adenostyles alliariae, Asplenium viridis, Campanula scheuchzeri, Cardamine trifolia, Cicerbita alpina, Denteria enneaphyllos, Euphorbia amygdaloides, Galium austriacum, Homogyne alpina, Lycopodium annotinum, Mycelis muralis, Paris quadrifolia, Phyteuma spicata, Prenanthes purpurea, Senecio fuchsii, Valeriana tripteris, Veratrum album and the central European endemic Helliborus niger (Ranunculaceae).
    [Show full text]
  • Plant Species Richness and Composition of a Habitat Island
    Biodiversity Data Journal 8: e48704 doi: 10.3897/BDJ.8.e48704 Research Article Plant species richness and composition of a habitat island within Lake Kastoria and comparison with those of a true island within the protected Pamvotis lake (NW Greece) Alexandros Papanikolaou‡‡, Maria Panitsa ‡ Division of Plant Biology, Department of Biology, University of Patras, Patras, Greece Corresponding author: Maria Panitsa ([email protected]) Academic editor: Gianniantonio Domina Received: 22 Nov 2019 | Accepted: 07 Jan 2020 | Published: 15 Jan 2020 Citation: Papanikolaou A, Panitsa M (2020) Plant species richness and composition of a habitat island within Lake Kastoria and comparison with those of a true island within the protected Pamvotis lake (NW Greece). Biodiversity Data Journal 8: e48704. https://doi.org/10.3897/BDJ.8.e48704 Abstract Lake Kastoria is one of the potentially “ancient” Balkan lakes that has a great environmental importance and ecological value, attracts high touristic interest and is under various anthropogenic pressures. It belongs to a Natura 2000 Special Protection Area and a Site of Community Interest. The city of Kastoria is located at the western part of the lake and just next to it, towards the centre of the lake, is a peninsula, a habitat island. In the framework of research concerning the flora of lake islands of Greece, one of the main objectives of the present study is to fill a gap concerning plant species richness of the habitat island within the protected Lake Kastoria, which is surrounded by the lake except for its north-western part where the border of the city of Kastoria is located.
    [Show full text]
  • Bocconea 25, Results of the Seventh Iter Mediterraneum
    Bocconea 25: 5-127 doi: 10.7320/Bocc25.005 Version of Record published online on 9 July 2012 Werner Greuter Results of the Seventh “Iter Mediterraneum” in the Peloponnese, Greece, May to June 1995 (Occasional Papers from the Herbarium Greuter – N° 1) Abstract Greuter, W.: Results of the Seventh “Iter Mediterraneum” in the Peloponnese, Greece, May to June 1995. (Occasional Papers from the Herbarium Greuter – N° 1). — Bocconea. 25: 5-127. 2012. — ISSN 1120-4060 (print), 2280-3882 (online). The material collected during OPTIMA’s Iter Mediterraneum VII to the Peloponnese in 1995 has been revised. It comprises 2708 gatherings, each with 0 to 31 duplicates, collected in 53 numbered localities. The number of taxa (species or subspecies) represented is 1078. As many of the areas visited had been poorly explored before, a dozen of the taxa collected turned out to not to have been previously described, of which 9 (7 species, 2 subspecies) are described and named here (three more were published independently in the intervening years). They belong to the genera Allium, Asperula, Ballota, Klasea, Lolium, Minuartia, Nepeta, Oenanthe, and Trifolium. New combinations at the rank of subspecies (3) and variety (2) are also published. One of the species (Euphorbia aulacosperma) is first recorded for Europe, and several are new for the Peloponnese or had their known range of distribution significantly expanded. Critical notes draw attention to these cases and to taxonomic problems yet to be solved. An overview of the 11 Itinera Mediterranea that have taken place so far is presented, summarising their main results. Keywords: Flora of Greece, Peloponnese, Itinera Mediterranea, OPTIMA, new species, new com- binations, Allium, Asperula, Ballota, Klasea, Lolium, Minuartia, Nepeta, Oenanthe, Trifolium.
    [Show full text]
  • Checklist of Rust Fungi from Ketmen Ridge (Southeast of Kazakhstan)
    Plant Pathology & Quarantine 7(2): 110–135 (2017) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/7/2/4 Copyright © Mushroom Research Foundation Checklist of rust fungi from Ketmen ridge (southeast of Kazakhstan) Rakhimova YV, Yermekova BD, Kyzmetova LA Institute of Botany and Phytointroduction, Timiryasev Str. 36D, Almaty, 050040, Kazakhstan Rakhimova YV, Yermekova BD, Kyzmetova LA 2017 – Checklist of rust fungi from Ketmen ridge (southeast of Kazakhstan). Plant Pathology & Quarantine 7(2), 110–135, Doi 10.5943/ppq/7/2/4 Abstract The Ketmen ridge has 84 species belonging to class Urediniomycetes. The class is represented by 11 genera from 6 families. The largest genera are Puccinia (48 species) and Uromyces (12 species). The following species are widely distributed in the territory: Gymnosporangium fusisporum on Cotoneaster spp., Puccinia chrysanthemi on Artemisia spp. and Puccinia menthae on Mentha spp. Rust fungi attack 134 species of host plants. Key words – aecia – host plants – mycobiota – telia – uredinia Introduction Ketmen ridge (Ketpen, Uzynkara) is located to the east of the Zailiysky Alatau (Trans-Ili Alatau) and separated from the Central Tien-Shan by the Kegen depression. This, the most eastern ridge from the northern chains of the Tien Shan, extends in an east-west direction. The Ketmen ridge is more than 300 km long, 40–50 km wide and 3500–4200 m high. The western part of the ridge (about 160 km long) is located in Kazakhstan territory, and the eastern part in China. The highest point of the ridge, in the eastern part of the state border of Kazakhstan, is Nebesnaya peak (3638 m).
    [Show full text]
  • Genetic and Morphological Differentiation Between Melica
    Acta Societatis Botanicorum Poloniae Journal homepage: pbsociety.org.pl/journals/index.php/asbp ORIGINAL RESEARCH PAPER Received: 2010.09.24 Accepted: 2011.12.16 Published electronically: 2011.12.30 Acta Soc Bot Pol 80(4):301-313 DOI: 10.5586/asbp.2011.041 Genetic and morphological differentiation betweenMelica ciliata L. and M. transsilvanica Schur (Poaceae) in Europe reveals the non-presence of M. ciliata in the Polish flora Magdalena Szczepaniak*, Elżbieta Cieślak W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland Abstract A good knowledge of species delimitation is crucial for the biodiversity protection and the conservation of wild species. We studied the efficiency of AFLP markers and morphological characters to assist species determination for Melica ciliata L. and M. transsilvanica Schur within European range of distribution, including isolated and range-limit populations of “M. ciliata” (i.e. M. cf. ciliata) from the Polish Sudetes, where it is regarded as critically endangered. AFLP markers were found to be more effective then morphological characters (more or less continuous) in distinguishing the both studied species. AMOVA revealed very low genetic diversity within populations and high differentiation among populations of M. ciliata and M. transsilvanica (FST = 0.89 and 0.95, respectively). The species-diagnostic AFLP markers of M. transsilvanica shared with “M. ciliata” from the Sudetes were detected. On the other hand, no species-diagnostic genetic markers of M. ciliata or hybrid-diagnostic markers of M. × thuringiaca were found within “M. ciliata”. PCoA and NJ showed an overlapping genetic diversity of “M. ciliata” and M. transsilvanica.
    [Show full text]
  • E. Biondi, L. Gubellini, M. Pinzi & S. Casavecchia the Vascular Flora Of
    Fl. Medit. 22: 67-167 doi: 10.7320/FlMedit22.067 Version of Record published online on 28 December 2012 E. Biondi, L. Gubellini, M. Pinzi & S. Casavecchia The vascular flora of Conero Regional Nature Park (Marche, Central Italy) To Aldo J. B. Brilli-Cattarini, eminent botanist and expert resear- cher on the Marche region flora and par- ticularly on the Conero flora. He was the founder of the “Centro Ricerche Floristiche Marche” of Pesaro and Urbino Province. He has been a master for all of us even in the preparation of this work, with great gene rosity, he offered us his unique experience with enthusiasm. Abstract Biondi E., Gubellini L., Pinzi M. & Casavecchia, S.: The vascular flora of Conero Regional Nature Park (Marche, Central Italy). — Fl. Medit. 22: 67-167. 2012. — ISSN: 1120-4052 print- ed, 2240-4538 online. It is presented the vascular flora of Conero Regional Park. The paper starts with a brief presen- tation of the park territory (geography, geomorphology and bioclimate) that arises in the cen- tral Adriatic side of the Italian peninsula. The vegetation is briefly described thanks to the detailed phytosociological analysis carried out in the territory and to detailed maps on different scales. The description of vegetation allows indicating, for most of the species listed, their par- ticipation in the plant communities present in the area. The floristic list comprises 1169 entities, of specific and sub specific levels, that belong to 101 families and 507 genera. It also includes 64 species currently disappeared or not recently found in the study area, indicated by NP acronym (not present).
    [Show full text]
  • Red List of Vascular Plants of the Czech Republic: 3Rd Edition
    Preslia 84: 631–645, 2012 631 Red List of vascular plants of the Czech Republic: 3rd edition Červený seznam cévnatých rostlin České republiky: třetí vydání Dedicated to the centenary of the Czech Botanical Society (1912–2012) VítGrulich Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Grulich V. (2012): Red List of vascular plants of the Czech Republic: 3rd edition. – Preslia 84: 631–645. The knowledge of the flora of the Czech Republic has substantially improved since the second ver- sion of the national Red List was published, mainly due to large-scale field recording during the last decade and the resulting large national databases. In this paper, an updated Red List is presented and compared with the previous editions of 1979 and 2000. The complete updated Red List consists of 1720 taxa (listed in Electronic Appendix 1), accounting for more then a half (59.2%) of the native flora of the Czech Republic. Of the Red-Listed taxa, 156 (9.1% of the total number on the list) are in the A categories, which include taxa that have vanished from the flora or are not known to occur at present, 471 (27.4%) are classified as critically threatened, 357 (20.8%) as threatened and 356 (20.7%) as endangered. From 1979 to 2000 to 2012, there has been an increase in the total number of taxa included in the Red List (from 1190 to 1627 to 1720) and in most categories, mainly for the following reasons: (i) The continuing human pressure on many natural and semi-natural habitats is reflected in the increased vulnerability or level of threat to many vascular plants; some vulnerable species therefore became endangered, those endangered critically threatened, while species until recently not classified may be included in the Red List as vulnerable or even endangered.
    [Show full text]