Tulip Developer Handbook Tulip Developer Handbook Table of Contents 1

Total Page:16

File Type:pdf, Size:1020Kb

Tulip Developer Handbook Tulip Developer Handbook Table of Contents 1 Tulip Developer Handbook Tulip Developer Handbook Table of Contents 1. Introduction ................................................................................ 1 2. Installation ................................................................................. 2 2.1. Options ............................................................................. 2 3. Tulip Library ............................................................................... 4 3.1. Introduction ......................................................................... 4 3.2. Graphs ............................................................................. 4 3.3. Hierarchy of graphs .................................................................. 5 3.4. Attributes ........................................................................... 6 3.5. Properties ........................................................................... 6 3.6. TUTORIAL Intro. ................................................................... 8 3.7. TUTORIAL 001 : Graphs creation, adding and deleting nodes or edges. ................... 8 3.7.1. 1. Header files ............................................................... 8 3.7.2. 2. Creation of a Graph ........................................................ 9 3.7.3. 3. Add nodes ................................................................. 9 3.7.4. 4. Add edges ................................................................. 9 3.7.5. 5. Delete an edge and a node ................................................. 10 3.7.6. 6. Printing the graph ......................................................... 11 3.7.7. 7. Saving a graph ............................................................ 11 3.7.8. 8. Graph deletion ............................................................ 11 3.7.9. 9. Compiling and running the program. ........................................ 12 3.7.10. 10. Source Code ........................................................... 12 3.8. TUTORIAL 002 : Iterating over a graph (class Iterator and the macro forEach) ............ 13 3.8.1. 1. Header files (Same as Tutorial 1) ........................................... 14 3.8.2. 2. Iterating over all nodes .................................................... 14 3.8.3. 3. Iterating through a node predecessors ....................................... 15 3.8.4. 4. Iterating through a node successors ......................................... 15 3.8.5. 5. Iterating through a node neighbors (predecessors and successors) ............... 15 3.8.6. 6. Iterating through a node incoming edges ..................................... 16 3.8.7. 7. Iterating through a node outgoing edges ..................................... 16 3.8.8. 8. Iterating through a node adjacent edges ...................................... 16 3.8.9. Don’t forget memory leaks ................................................... 17 3.8.10. 9. Iterating on edges (all edges). ............................................. 17 3.8.11. 10. The forEach Macro ..................................................... 17 3.8.12. Source Code ............................................................... 18 3.9. TUTORIAL 003 : Properties ........................................................ 20 3.9.1. 1. Header files and predefined properties ....................................... 20 3.9.2. 2. Creation of a property. .................................................... 21 3.9.3. 3. Initialize all properties. .................................................... 21 3.9.4. 4. Iterating over properties. .................................................. 22 3.9.5. Source Code ................................................................ 22 3.10. TUTORIAL 004 : Create your first subgraph. ........................................ 24 3.10.1. Source Code ............................................................... 25 3.11. TUTORIAL 005 : Properties and subgraphs .......................................... 26 3.11.1. 1. Introduction ............................................................ 26 3.11.2. 2. Properties of subgraph1 .................................................. 27 3.11.3. 3. Properties of subgraph2 .................................................. 28 3.11.4. Source Code ............................................................... 29 3.12. TUTORIAL 006 : Edges order. ..................................................... 31 3.12.1. 1. Creation of the graph and its edges ........................................ 31 3.12.2. 2. Swap edges ............................................................. 32 3.12.3. 3. Setting an order .......................................................... 33 3.12.4. Source Code ............................................................... 33 3.13. TUTORIAL 007 : Mutable Collection ............................................... 34 3.14. TUTORIAL 008 : Graph Tests ...................................................... 35 3.15. TUTORIAL 009 : ObservableGraph ................................................. 36 3.15.1. 1. Our new class, GraphObserverTest : ....................................... 36 iii Tulip De- opervel- Hand- book 3.15.2. 2. The Main function ....................................................... 37 4. Tulip Open GL Library ..................................................................... 38 4.1. Introduction ....................................................................... 38 4.2. 2D/3D for Tulip .................................................................... 38 4.2.1. Augmented Displays with GlEntity system ..................................... 38 4.2.2. GlSimpleEntity ............................................................. 38 4.2.3. Gl 2D/3D classes ............................................................ 38 4.2.4. Scene and layers ............................................................ 39 4.2.5. Examples of Gl shape uses ................................................... 39 5. Tulip QT Library .......................................................................... 44 5.1. Introduction ....................................................................... 44 5.2. Interactors ......................................................................... 45 5.2.1. Interactor example ........................................................... 45 5.2.2. Interactor Component ........................................................ 45 5.2.3. Interactor itself .............................................................. 46 5.2.4. INTERACTORPLUGIN macro ............................................... 48 5.3. Views ............................................................................. 48 5.3.1. View example ............................................................... 48 5.3.2. How to create a view ......................................................... 49 5.3.3. An other solution : Use AbstractView or GlMainView ........................... 50 5.4. Controllers ........................................................................ 53 5.4.1. Empty Controller ............................................................ 54 5.4.2. Controller example .......................................................... 55 5.4.3. ControllerPluginExample .................................................... 55 5.4.4. ControllerAlgorithmTools class ............................................... 58 5.4.5. ControllerViewsTools class ................................................... 58 5.4.6. ControllerViewsManager class ................................................ 59 6. Plug-ins development ...................................................................... 60 6.1. The PropertyAlgorithm class. ........................................................ 60 6.1.1. Overview of the class ........................................................ 61 6.1.2. Parameters : ................................................................ 62 6.1.3. The PluginProgress class. .................................................... 65 6.1.4. Example of a plugin skeleton ................................................. 66 6.2. The Algorithm class. ............................................................... 67 6.2.1. Public members ............................................................. 67 6.2.2. Protected members .......................................................... 68 6.3. Import plug-ins ..................................................................... 68 6.3.1. Public members ............................................................. 68 6.3.2. Protected members .......................................................... 69 6.3.3. Skeleton an ImportModule derived class ....................................... 69 6.4. Export plug-ins ..................................................................... 70 6.4.1. Public members ............................................................. 70 6.4.2. Protected members .......................................................... 70 6.4.3. Skeleton of an ExportModule derived class ..................................... 71 6.5. Compilation ( Makefiles ) ........................................................... 71 7. Tulip graph format ......................................................................... 74 7.1. Nodes ............................................................................. 74 7.2. Edges ............................................................................. 74 7.3. Clusters ..........................................................................
Recommended publications
  • Performing Knowledge Requirements Analysis for Public Organisations in a Virtual Learning Environment: a Social Network Analysis
    chnology Te & n S o o ti ft a w a m r r e Fontenele et al., J Inform Tech Softw Eng 2014, 4:2 o f E Journal of n n I g f i o n DOI: 10.4172/2165-7866.1000134 l e a e n r r i n u g o J ISSN: 2165-7866 Information Technology & Software Engineering Research Article Open Access Performing Knowledge Requirements Analysis for Public Organisations in a Virtual Learning Environment: A Social Network Analysis Approach Fontenele MP1*, Sampaio RB2, da Silva AIB2, Fernandes JHC2 and Sun L1 1University of Reading, School of Systems Engineering, Whiteknights, Reading, RG6 6AH, United Kingdom 2Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brasil Abstract This paper describes an application of Social Network Analysis methods for identification of knowledge demands in public organisations. Affiliation networks established in a postgraduate programme were analysed. The course was ex- ecuted in a distance education mode and its students worked on public agencies. Relations established among course participants were mediated through a virtual learning environment using Moodle. Data available in Moodle may be ex- tracted using knowledge discovery in databases techniques. Potential degrees of closeness existing among different organisations and among researched subjects were assessed. This suggests how organisations could cooperate for knowledge management and also how to identify their common interests. The study points out that closeness among organisations and research topics may be assessed through affiliation networks. This opens up opportunities for ap- plying knowledge management between organisations and creating communities of practice.
    [Show full text]
  • Modelamiento Y Simulación De Ambientes Virtuales Bajo
    MODELAMIENTO Y SIMULACIÓN DE AMBIENTES VIRTUALES BAJO CRYSTAL SPACE 3D JUAN PABLO PINZÓN Tesis para optar al titulo de Ingeniero de Sistemas y Computación Director Profesor FERNANDO DE LA ROSA Ph.D. Informática UNIVERSIDAD DE LOS ANDES INGENIERÍA DE SISTEMAS Y COMPUTACIÓN BOGOTA, COLOMBIA 2002 CONTENIDO pág. CONTENIDO.......................................................................................................................III TABLA DE FIGURAS........................................................................................................VII GLOSARIO.......................................................................................................................... IX RESUMEN ..........................................................................................................................XII 1 INTRODUCCIÓN.......................................................................................................... 1 2 ASPECTOS DEL PROBLEMA A RESOLVER........................................................... 4 2.1 VISUALIZACIÓN Y SONIDO......................................................................................... 6 2.1.1 Representación tridimensional de sólidos. ........................................................ 7 2.1.2 Iluminación...................................................................................................... 9 2.1.3 Transformaciones Geométricas........................................................................12 2.1.4 Animación.......................................................................................................14
    [Show full text]
  • A Comparative Analysis of Large-Scale Network Visualization Tools
    A Comparative Analysis of Large-scale Network Visualization Tools Md Abdul Motaleb Faysal and Shaikh Arifuzzaman Department of Computer Science, University of New Orleans New Orleans, LA 70148, USA. Email: [email protected], [email protected] Abstract—Network (Graph) is a powerful abstraction for scalability for large network analysis. Such study will help a representing underlying relations and structures in large complex person to decide which tool to use for a specific case based systems. Network visualization provides a convenient way to ex- on his need. plore and study such structures and reveal useful insights. There exist several network visualization tools; however, these vary in One such study in [3] compares a couple of tools based on terms of scalability, analytics feature, and user-friendliness. Due scalability. Comparative studies on other visualization metrics to the huge growth of social, biological, and other scientific data, should be conducted to let end users have freedom in choosing the corresponding network data is also large. Visualizing such the specific tool he needs to use. In this paper, we have chosen large network poses another level of difficulty. In this paper, we five widely used visualization tools for an empirical and identify several popular network visualization tools and provide a comparative analysis based on the features and operations comparative analysis. Our comparisons are based on factors these tools support. We demonstrate empirically how those tools such as supported file formats, scalability in visualization scale to large networks. We also provide several case studies of and analysis, interacting capability with the drawn network, visual analytics on large network data and assess performances end user-friendliness (e.g., users with no programming back- of the tools.
    [Show full text]
  • Scientific & Technical Visualization I
    SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 Scientific & Technical Visualization I http://www.intelegia.com/en/files/2013/05/datavisualisation.jpg 1 SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 This is an amended version of the NC Department of Education’s curriculum for Scientific Visualization I course number 7061. The changes were made by Tonja Canady for Atkins High School students. Any photographs or graphics taken from the Internet have a hyperlink to the webpage or website from where they were copied. In addition, some information from the original document has to corrected or reworded in this version. Furthermore, activities and answer keys have been removed; teachers should use the original document to access student activities and answer keys. It is my belief that this version is more technologically current, links to 3ds Max tutorials, and is more student oriented than teacher oriented. Should you find mistakes, please notify Ms. Canady at [email protected] indicating the page number and paragraph number along with the correction. The information will be updated as quickly as possible. 2 SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 Table of Contents Unit 1: Leadership Development and Orientation .................................................................... 8 Objective: 1.01 Identify basic business meeting procedures. .................................................... 9 Objective: 1.02 Establish personal and organizational goals. .................................................
    [Show full text]
  • Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis
    Hindawi Advances in Bioinformatics Volume 2017, Article ID 1278932, 8 pages https://doi.org/10.1155/2017/1278932 Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis Georgios A. Pavlopoulos,1 David Paez-Espino,1 Nikos C. Kyrpides,1 and Ioannis Iliopoulos2 1 Department of Energy, Joint Genome Institute, Lawrence Berkeley Labs, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA 2Division of Basic Sciences, University of Crete Medical School, Andrea Kalokerinou Street, Heraklion, Greece Correspondence should be addressed to Georgios A. Pavlopoulos; [email protected] and Ioannis Iliopoulos; [email protected] Received 22 February 2017; Revised 14 May 2017; Accepted 4 June 2017; Published 18 July 2017 Academic Editor: Klaus Jung Copyright © 2017 Georgios A. Pavlopoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. We comment on their strengths and their weaknesses and empirically discuss their scalability, user friendliness, and postvisualization capabilities.
    [Show full text]
  • Network Science and Python
    Network Analysis using Python Muhammad Qasim Pasta Assistant Professor Usman Institute of Technology About Me • Assistant Professor @ UIT • Research Interest: Network Science / Social Network Analysis • Consultant / Mentor • Python Evangelist • Github: https://github.com/mqpasta • https://github.com/mqpasta/pyconpk2018 • Website: http://qasimpasta.info Today’s Talk What is a Network? • An abstract representation to model pairwise relationship between objects. • Network = graph: mathematical representation nodes/vertices/actors edges/arcs/lines Birth of Graph Theory • Königsberg bridge problem: the seven bridges of the city of Königsberg over the river Preger • traversed in a single trip without doubling back? • trip ends in the same place it began Solution as graph! • Swiss mathematician - Leonhard Euler • considering each piece of island as dot • each bridge connecting two island as a line between two dots • a graph of dots (vertices or nodes) and lines (edges or links). Background | Literature Review | Questions | Contributions | Conclusion | Q/A Network Science • ―Network science is an academic field which studies complex networks such as telecommunication networks, computer networks …‖ [Wikipedia] • ―In the context of network theory, a complex network is a graph (network) with non- trivial topological features—features that do not occur in simple networks …‖ [Wikipedia] Study of Network Science Social Graph structure theory Inferential Statistical modeling mechanics Information Data Mining Visualization Background | Literature Review
    [Show full text]
  • Third Party Software Note of the Physik Instrumente
    Third Party Software Note of Physik Instrumente (PI) GmbH & Co. KG Issued: June 17, 2020 Page 1 / 33 I. Overview - Third-party software components, copyrights and licenses Software provided by PI as well as firmware installed on PI’s systems may incorporate and/or make use of third-party software components (including freeware and open source software components). The components listed below are covered by and shall be subject to their respective copyrights, license agreements and/or disclaimers of warranty, presented in the following table and the following section II. In the event an applicable open source license agreement requires the provision of the source code and/or object code of Software or parts thereof provided by PI, such source code and/or object code will be made available to the Customer within a reasonable period of time upon legitimate request via e-mail to [email protected] for a charge limited to the expenses PI has in complying with such Customer request; provided, however, that PI shall be entitled to reject such Customer request if it is made after the third anniversary of the delivery date of the Software. In the event a certain source code is delivered in executable form and has to be made available pursuant to the terms of the applicable open source license agreement, please follow the corresponding link in the ‘URL’ column of the table below or contact [email protected]. Component/Software URL License Copyright owner Incorporated in dglOpenGL.pas 1.8 https://github.com/saschawillems/ MPL 1.1 Copyright © DGL-OpenGL-Portteam - All Hexapod_Simutool BETA dglopengl Rights Reserved eventlog 0.2.x https://github.com/balabit/eventlo BSD 3-Clause License Copyright © by Balazs Scheidler C-884 FW g C-885 FW C-886 FW C-887 FW Expat XML Parser http://expat.sourceforge.net/ MIT License Copyright © 1998, 1999, 2000 Thai Open PI C++ Std.
    [Show full text]
  • Software Tools for Complex Networks Analysis
    Software tools for Complex Networks Analysis Fabrice Huet, University of Nice Sophia- Antipolis SCALE Team MOTIVATION Why do we need tools ? Source : nature.com • Visualization • Properties extraction • Complex queries Source : Boldi et al. Graphs are everywhere • RDF (“test1”, writtenBy, “Sophie”) (“test1”, publishedIn, “Journal”) (“test2”, publishedIn, “Journal) • SPARQL SELECT ?s WHERE { ?s writtenBy ?a. ?a hasName “Sophie”. ?s publishedIn “Journal”. } • Basically a sub-graph matching Why are graphs different ? • Graphs can be large - Facebook : 720M users, 69B friends in 2011 - Twitter : 537M accounts, 23.95B links in 2012 • Low memory cost per vertex - 1 ID, 1 pointer/edge • Low computation per vertex • Graphs are not memory friendly - Random jumps to memory • They are not hardware friendly! Lots of frameworks • Really lots of them - Matlab, NetworkX, GraphChi, Hadoop, Twister, Piccolo, Maiter, Pregel, Giraph, Hama, GraphLab, Pegasus, Snap, Neo4J, Gephi, Tulip, any DBMS,… • Why so many ? - Not one size fits all - Different computational models - Different architecture Possible taxonomy • Generic vs Specialized - Hadoop vs GraphChi (or Giraph, GraphX…) • Shared vs Distributed Memory - GraphChi vs Pregel • Synchronous vs Asynchronous - Giraph vs Maiter • Single vs Multi threaded - NetworkX vs GraphiChi NETWORKX 8 Overview • A Python package for complex network analysis • Simple API • Very flexible - Can attach any data to vertices and edges - Supports visualization • Graphs generators • http://networkx.github.io/ Dependencies • Supports
    [Show full text]
  • Motor De Física Multifuncional
    PROYECTO DE SISTEMAS INFORMÁTICOS FACULTAD DE INFORMÁTICA UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2009/2010 MOTOR DE FÍSICA MULTIFUNCIONAL PROFESOR DIRECTOR: Dr. Segundo Esteban San Román AUTORES: Jaime Sánchez-Valiente Blázquez Santiago Riera Almagro Matías Salinero Delgado 2 Resumen. Tanto la industria de los videojuegos como la de la animación requieren motores físicos que permitan reproducir fielmente el comportamiento de los elementos presentes en una escena. El papel de estos motores es esencial para que el trabajo final muestre un resultado realista. El objetivo de este proyecto es el desarrollo e implementación de un motor físico multifuncional, modular y ampliable que pueda ser usado en diferentes campos, como los videojuegos y la simulación de sistemas físicos. Este proyecto implementa los conceptos de dinámica de sólidos rígidos y dinámica de partículas. Además se han introducido otras funcionalidades derivadas del tratamiento de estos cuerpos como son las colisiones de sólidos rígidos y las uniones elásticas. El motor se realizará sobre el lenguaje C++, siendo el lenguaje más común en la realización de este tipo de aplicaciones y permitiendo así su fácil acoplamiento en los campos anteriormente mencionados. Abstract. Both the video game industry such as animation industry requires physics engines that allow to faithfully reproducing the behavior of the elements present in a scene. The role of these motors is essential for the final work to show a realistic outcome. The aim of this project is the development and implementation of a multi- physics engine, modular and expandable, that can be used in different fields, such as video games and simulation of physical systems.
    [Show full text]
  • Approaches for Unveiling the Kinetic Mechanisms of Voltage Gated Ion Channels in Neurons
    APPROACHES FOR UNVEILING THE KINETIC MECHANISMS OF VOLTAGE GATED ION CHANNELS IN NEURONS ______________________________________ A Dissertation Presented to the Faculty of the Graduate School At the University of Missouri-Columbia __________________________________________________________________ In Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy __________________________________________________ Submitted by MARCO ANTONIO NAVARRO Dr. Lorin Milescu, Dissertation mentor May 2019 © Copyright by Marco Navarro 2019 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled APPROACHES FOR UNVEILING THE KINETIC MECHANISMS OF VOLTAGE GATED ION CHANNELS IN NEURONS presented by Marco Navarro, a candidate for the degree of Doctor of Philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. _______________________________________________ Professor Lorin Milescu _______________________________________________ Professor Mirela Milescu _______________________________________________ Professor David Schulz _______________________________________________ Professor Kevin Gillis Thesis Committee Dr. Lorin S Milescu Assistant Professor, Department of Biological Sciences University of Missouri, Columbia, MO Dr. Mirela Milescu Assistant Professor, Department of Biological Sciences University of Missouri, Columbia, MO Dr. David Schulz Professor, Department of Biological Sciences University of Missouri, Columbia, MO Dr. Kevin Gillis Professor, Department of Biological Engineering Professor Medical Pharmacology and Physiology University of Missouri, Columbia, MO ACKNOWLEDGEMENTS For the love of science, may we stand tall on the shoulders of giants. Thank you to all the laboratory animals who have been sacrificed for the sake of this work. Our progress towards understanding of physiology could not be achieved without this sacrifice. I would like to thank those who supported me and kept me alive these many years, all the doctors, nurses, coaches, family, and friends.
    [Show full text]
  • Generation and Organization of Behaviors for Autonomous Robots
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GENERATION AND ORGANIZATION OF BEHAVIORS FOR AUTONOMOUS ROBOTS JIMMY PETTERSSON Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2006 Generation and organization of behaviors for autonomous robots JIMMY PETTERSSON ISBN 91-7291-833-0 c JIMMY PETTERSSON, 2006 Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 2515 ISSN 0346-718X Department of Applied Mechanics Chalmers University of Technology SE–412 96 Göteborg Sweden Telephone: +46 (0)31–772 1000 Chalmers Reproservice Göteborg, Sweden 2006 Till Anita och Nils-Åke Generation and organization of behaviors for autonomous robots JIMMY PETTERSSON Department of Applied Mechanics Chalmers University of Technology Abstract In this thesis, the generation and organization of behaviors for autonomous robots is studied within the framework of behavior-based robotics (BBR). Several differ- ent behavioral architectures have been considered in applications involving both bipedal and wheeled robots. In the case of bipedal robots, generalized finite-state machines (GFSMs) were used for generating a smooth gait for a (simulated) five- link bipedal model, constrained to move in the sagittal plane. In addition, robust balancing was achieved, even in the presence of perturbations. Furthermore, in simulations of a three-dimensional bipedal robot, gaits were generated using clus- ters of central pattern generators (CPGs) connected via a feedback network. A third architecture, namely a recurrent neural network (RNN), was used for gen- erating several behaviors in a simulated, one-legged hopping robot. In all cases, evolutionary algorithms (EAs) were used for optimizing the behaviors. The important problem of behavioral organization has been studied using the utility function (UF) method, in which behavior selection is obtained through evo- lutionary optimization of utility functions that provide a common currency for the comparison of behaviors.
    [Show full text]
  • 67 SOFTWARE Michael Joswig and Benjamin Lorenz
    67 SOFTWARE Michael Joswig and Benjamin Lorenz INTRODUCTION This chapter is intended as a guide through the ever-growing jungle of geometry software. Software comes in many guises. There are the fully fledged systems consisting of a hundred thousand lines of code that meet professional standards in software design and user support. But there are also the tiny code fragments scattered over the Internet that can nonetheless be valuable for research purposes. And, of course, the very many individual programs and packages in between. Likewise today we find a wide group of users of geometry software. On the one hand, there are researchers in geometry, teachers, and their students. On the other hand, geometry software has found its way into numerous applications in the sciences as well as industry. Because it seems impossible to cover every possible aspect, we focus on software packages that are interesting from the researcher's point of view, and, to a lesser extent, from the student's. This bias has a few implications. Most of the packages listed are designed to run on UNIX/Linux1 machines. Moreover, the researcher's genuine desire to understand produces a natural inclination toward open source software. This is clearly reflected in the selections below. Major exceptions to these rules of thumb will be mentioned explicitly. In order to keep the (already long) list of references as short as possible, in most cases only the Web address of each software package is listed rather than manuals and printed descriptions, which can be found elsewhere. At least for the freely available packages, this allows one to access the software directly.
    [Show full text]