IMPROVING WELDING JOINT STRENGTH with ALUMINIUM ALLOY 5052 USING GAS METAL ARC WELDING C.Sanjeevi1, K.Muthukumar2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microstructure, Texture, Electrical and Mechanical Properties of AA-6063 Processed by Multi Directional Forging
materials Article Microstructure, Texture, Electrical and Mechanical Properties of AA-6063 Processed by Multi Directional Forging Alireza Dashti 1, Mohammad Hossein Shaeri 1,* , Reza Taghiabadi 1, Faramarz Djavanroodi 2,3, Farzaneh Vali Ghazvini 4 and Hamid Javadi 4 1 Department of Materials Science and Engineering, Imam Khomeini International University (IKIU), Qazvin 3414916818, Iran; [email protected] (A.D.); [email protected] (R.T.) 2 Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia; [email protected] 3 Department of Mechanical Engineering, Imperial Collage London, London SW7, UK 4 Ecole de Technologie Supérieure, Department of Mechanical Engineering, Montréal, QC H3C 1K3, Canada; [email protected] (F.V.G.); [email protected] (H.J.) * Correspondence: [email protected]; Tel.: +98-283-390-1190 Received: 30 October 2018; Accepted: 27 November 2018; Published: 29 November 2018 Abstract: In current research, the effect of the multi-directional forging (MDF) process on the microstructure, texture, mechanical and electrical properties of AA-6063 under different heat treatment conditions at various MDF temperatures was studied. The annealed AA-6063 alloy was processed up to three passes of MDF at ambient temperature. Three passes of this process were also applied to the solution-treated AA-6063 at ambient temperature and 177 ◦C. Microstructural investigations demonstrated that the MDF process led to a significant reduction in the average grain size as well as a considerable increase in the fraction of low angle grain boundaries. Texture analysis revealed that copper and Goss textures were mainly developed within the annealed and solution-treated samples of AA-6063, respectively. -
Review on Multi-Pass Friction Stir Processing of Aluminium Alloys
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2020 doi:10.20944/preprints202007.0514.v1 Review Review on Multi-Pass Friction Stir Processing of Aluminium Alloys Oritonda Muribwathoho1, Sipokazi Mabuwa1* and Velaphi Msomi1 1 Cape Peninsula University of Technology, Mechanical Engineering Department, Bellville, 7535, South Africa; [email protected]; [email protected] * Correspondence: [email protected]; Tel.: 27 21 953 8778 Abstract: Aluminium alloys have evolved as suitable materials for automotive and aircraft industries due to their reduced weight, excellent fatigue properties, high-strength to weight ratio, high workability/formability, and corrosion resistance. Recently, the joining of similar and dissimilar metals have achieved huge success in various sectors. The processing of soft metals like aluminium, copper, iron and nickel have been fabricated using friction stir processing. Friction stir processing (FSP) is a microstructural modifying technique that uses the same principles as the friction stir welding technique. In the majority of studies on FSP, the effect of process parameters on the microstructure was characterized after a single pass. However, multiple passes of FSP is another method to further modify the microstructure in aluminium castings. This study is aimed at reviewing the impact of multi-pass friction stir processed joints of aluminium alloys and to identify a knowledge gap. From the literature that is available on multi-pass FSP, it has been observed that the majority of the literature focused on the processing of plates than the joints. There is limited literature reporting on multi-pass friction stir processed joints. This then creates a need to study further on multi-pass friction stir processing on dissimilar aluminium alloys. -
Mechanical Behaviors of Joining AL-Alloys Based FSW Parameters and Welding Tool Design Ahmed El-Keran1, Rania Mostafa2, Reham Al-Mahdy3*
97 International Journal of Scientific & Engineering Research, Volume 10, Issue 6, June-2019 ISSN 2229-5518 Mechanical behaviors of joining AL-Alloys based FSW parameters and welding tool design Ahmed El-Keran1, Rania Mostafa2, Reham Al-Mahdy3* Production Engineering and Mechanical Design Deptartment, Faculty of Engineering, Mansoura University, Mansoura, Egypt. 1Assoc. Professor, [email protected] 2Lecturer, [email protected] 3* (corresponding author), [email protected] Abstract— Friction Stir Welding is a solid-state welding process with specially rotating tool design. The heat is generated due to the friction between the workpiece-surface and the tool shoulder. The core benefit of FSW joint is to weld the material without achieving the fusion temperature so it’s allows to join almost types of aluminum alloys, even the ones categorized as non-weld able alloy by the traditional welding process such as fusion welding because of the hot cracking and unfortunate solidification microstructure in the welding zone. FSW is used in aerospace, automotive, marine industries, electronics etc. This paper introduces a literature review on FSW process and various researches in this field. The effect of the welding parameters such as tool rotation speed, welding speed, tool tilt angle and tool design are introduced. The article also reviews the FSW of similar and dissimilar aluminum alloys and the FSW benefits and applications. Key Words — Friction Stir Welding, Al-Alloys, Welding parameters, FSW Tools, solid-state welding process, Rotional speed, Welding speed, Mechanical behaviors. —————————— u —————————— 1 INTRODUCTION In 1991, Wayne Thomas at The Welding Institute TWI in- vented a new welding process that is used to joint two pieces 2 Process principles by soften the rejoin between them without melting. -
Welding of Magnesium Alloys
Chapter 6 Welding of Magnesium Alloys Parviz Asadi, Kamel Kazemi-Choobi and Amin Elhami Additional information is available at the end of the chapter http://dx.doi.org/10.5772/47849 1. Introduction Magnesium is the sixth most abundant element on the Earth’s surface, with virtually inex- haustible supplies in the oceans. It is the third most plentiful element dissolved in seawater, with an approximate concentration of 0.14% (Busk, 1987). Over recent years the industrial output of magnesium alloys has been rising by almost 20% per annum. Magnesium and its alloys, as the lightest structural material, are about 40% lighter than aluminium and as much as about 78% lighter than steel. It is demonstrated that using magnesium alloys results in a 22–70% weight reduction, compared to using alternative materials (Kulekci, 2008). Magne- sium alloys have excellent specific strength, excellent sound damping capabilities, good cast-ability, hot formability, excellent machinability, good electromagnetic interference shielding, and recyclability (Haferkamp et al., 2000), (Mordike and Ebert, 2001), (Pastor et al., 2000). Moreover, magnesium ignites with difficulty in air due to its high heat capacity. Some disadvantages of magnesium are presented based on the following, Low elastic modulus; High degree of shrinkage on solidification; High chemical reactivity. Additionally, these alloys have limited fatigue and creep resistance at elevated temperatures (Mordike and Ebert, 2001). Because of the hexagonal close-packed (HCP) crystal structure, magnesium alloys also have a limited ductility and cold workability at room temperature (Sanders et al., 1999). These alloys have about the same corrosion resistance in common environments as mild steel, but are less corrosion resistant than aluminium alloys (Busk, 1987). -
DEVELOPMENT and CHARACTERIZATION of Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella Communis) PARTICULATE COMPOSITES
DEVELOPMENT AND CHARACTERIZATION OF Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella communis) PARTICULATE COMPOSITES BY MICHEAL NEBOLISA NWABUFOH THE DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA JUNE, 2015. DEVELOPMENT AND CHARACTERIZATION OF Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella communis) PARTICULATE COMPOSITES BY Michael Nebolisa NWABUFOH, B. Eng (Met), E.S.U.T M.Sc/Eng/01731/2010-2011 A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA. IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF A MASTER DEGREE IN METALLURGICAL AND MATERIALS ENGINEERING. DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING, FACULTY OF ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA. NIGERIA. JUNE, 2015 ii Declaration I hereby declare that, this research work titled "Development and Characterization of Al-3.7%Cu-1.4%Mg Alloy/Periwinkle Shell (Turritella communis) Ash Particulate Composites" was carried out by me, and the results of this research were obtained by tests carried out in the laboratory and all quotations are indicated by references. Name of Student Signature Date iii Certification This research work titled "Development and Characterization of Al-3.7%Cu- 1.4%Mg/Periwinkle (Turritella communis) Shell Ash Particulate Composites" by Nwabufoh M. Nebolisa with Registration Number M.Sc/Eng/01731/2010-2011 meets the regulations guiding the Award of Master degree in Metallurgical and Materials Engineering at Ahmadu Bello University, Zaria. ____________________ ________________ Prof. S.B. Hassan Date Chairman, Supervisor committee ____________________ _______________ Prof. G.B. Nyior Date Member, Supervisor committee ____________________ _______________ Prof. S.A. Yaro Date Head of Department _____________________ ________________ Prof. -
1 Multi-Objective Optimization of Process Parameters in TIG-MIG
Multi-Objective Optimization of Process Parameters in TIG-MIG Welded AISI 1008 Steel For Improved Structural Integrity CYNTHIA SAMUEL ABIMA University of Johannesburg STEPHEN AKINWALE AKINLABI Walter Sisulu University Nkosinathi Madushele University of Johannesburg Olawale Samuel FATOBA ( [email protected] ) University of Johannesburg Faculty of Engineering and Built Environment https://orcid.org/0000-0001- 6931-951X ESTHER TITILAYO AKINLABI Pan African University for Life and Earth Sciences Institute Research Article Keywords: Grey-based Taguchi method, Multi-objective optimization, Tensile strength, TIG-MIG hybrid welding, Yield strength Posted Date: May 6th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-486430/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Multi-Objective Optimization of process parameters in TIG-MIG welded AISI 1008 steel for improved structural integrity Cynthia Samuel Abimaa, Stephen Akinwale Akinlabib, Nkosinathi Madushelea, Olawale Samuel Fatobac* , Esther Titilayo Akinlabid a Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa. b Mechanical Engineering, Walter Sisulu University, Butterworth, South Africa c Kent State University, College of Aeronautics and Engineering, USA. d Pan African University for Life and Earth Sciences Institute, Ibadan, Nigeria Cynthia Samuel Abima: [email protected] Stephen Akinwale Akinlabi: [email protected] Nkosinathi Madushele: [email protected] Olawale Samuel Fatoba*: [email protected] Esther Titilayo Akinlabi: [email protected] 1 Abstract This study investigates a parametric multi-objective optimization of the Tungsten Inert Gas-Metal Inert Gas (TIG-MIG) hybrid welding of AISI 1008 mild steel joints. A combined grey relational system theory and the Taguchi method was used for process optimization towards achieving a set of process parameter that maximizes both ultimate tensile strength and 0.2% yield strength for structural applications. -
Materials 2006
materials 2006 Proceedings of 11th International Denizli Materials Symposium sponsored by the TÜBİTAK (The Scientific & Technological Research Council of Turkey), in cooperation with the Pamukkale University Engineering Faculty, held April 19-21, 2006 at the Pamukkale University Congress & Cultural Center, Denizli, Türkiye. Edited by Dr. Volkan KOVAN Proceedings of 11th International Materials Symposium, April 19-21, 2006, Denizli, Türkiye TABLE OF CONTENTS Dedication .......................................................................................................................................................................................x Preface............................................................................................................................................................................................xi Technical Program ........................................................................................................................................................................xii Committees ..................................................................................................................................................................................xxi 4137 Al/SiC Metal Matriks Kompozit İle AISI 304 Paslanmaz Çeliğin Sürtünme Kaynaği İle Birleştirilmesi İ. Küçükrendeci, R. İpek, M. Güleşen..............................................................................................................................................1 AISI 316Ti Paslanmaz Çeliklerin Tig Kaynak -
Influence of Grain Refinement by Al-5Ti-1B on the Microstructure and Mechanical Properties of Aluminium Alloy A356 18-29 A
Sirte University Scientific Journal (SUSJ) )Periodical Academic Refereed( Applied Sciences Volume 10, Issue No. 1, June 2020 General Director Prof. Ahmed F. Mahgoub Editor in Chief Dr. Abdalsalam M. Muftah Editorial Board Dr. Hamid M. Younis Dr. Soliman M. Alshater Dr. Algaddafi S. Alpotte Dr. Khalifa M. Fadil Abdalmawla A.Ali Dr. Abobaker Eljilani Abobaker Sirte University Scientific Journal Post Box 674 Sirte, Libya Tel: 00218545265704-1178 Fax:00218545262152-1178 Email: [email protected] Sirte University Scientific Journal (SUSJ) A scientific refereed journal issued on behalf of Sirte University in a number of issues throughout the year interested in publishing research and documented studies in the field of humanities and applied sciences for university faculty members and other universities from inside and outside Libya . The views expressed in the publication are the individual opinion of the author(s) and they neither represents nor reflect the opinion of the editor and editorial board or Sirte University. The University reserves all copyright and, no re-print or publication of the whole or parts of the journal is allowed without prior permission. II Sirte University Scientific Journal (SUSJ) Paper Submission . Sirte University Scientific Journal (SUSJ) is referred journal issued by the Sirte University in the fields of humanities and applied sciences in English. The submission file is in Microsoft Word (2007 or later version) file format and should be submitted electronically as e-mail attachments along with four hard copies to the editor of the SUSJ at [email protected]. Papers should be approximately up to 20 pages long (including tables, figure, references and appendixes). -
Investigations on Force Generation and Joint Properties of Dissimilar Thickness Friction Stir Corner Welded Aa 5086 Alloy
Engineering Review, Vol. 40, Issue 1, 67-74, 2020. 67 ________________________________________________________________________________________________________________________ INVESTIGATIONS ON FORCE GENERATION AND JOINT PROPERTIES OF DISSIMILAR THICKNESS FRICTION STIR CORNER WELDED AA 5086 ALLOY Manigandan Krishnan1*, Senthilkumar Subramaniam1 1School of Mechanical Engineering, VIT University, Vellore-632014, Tamilnadu, India ARTICLE INFO Abstract: Article history: The force generation, joint mechanical and Received: 21.12.2017. metallurgical properties of friction stir corner Received in revised form: 14.05.2018. welded non-heat treatable AA 5086 aluminum alloy Accepted: 13.06.2018. are investigated in this paper. The friction stir Keywords: welding process is carried out with the plate Friction stir welding thicknesses of 6 mm and 4 mm. The welding speed, Corner joint tool rotational speed and tool plunge depth were Dissimilar thickness considered as the process parameters to conduct Microstructure the welding experiments. The machine spindle Tensile strength motor current consumption and tool down force Hardness generation during friction stir welding were DOI: http://doi.org/10.30765/er.40.1.09 analyzed. The microstructures of various joint regions were observed. The tensile samples revealed the tensile strength of 197 MPa with tool rotational and welding speeds of 1,000 rev/min and 150 mm/min respectively, which is 78 % of parent material tensile strength. A maximum micro hardness of 98 HV was observed at thermomechanically joint affected zone, which was welded with tool rotation of 1,000 rev/min and welding speed of 190 mm/min. 1. Introduction materials around the tool pin. The maximum temperature during welding is usually less than 80% Aluminium alloys generally are difficult to weld of the melting temperature of materials. -
Experimental Investigations on Friction Stir Welded Joint of Dissimilar Aluminium Alloys
EXPERIMENTAL INVESTIGATIONS ON FRICTION STIR WELDED JOINT OF DISSIMILAR ALUMINIUM ALLOYS Thesis Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY by ANIL KUMAR K. S. DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA, SURATHKAL, MANGALORE – 575025 SEPTEMBER, 2019 D E C L A R A T I O N I hereby declare that the Research Thesis entitled “EXPERIMENTAL INVESTIGATIONS ON FRICTION STIR WELDED JOINT OF DISSIMILAR ALUMINIUM ALLOYS” which is being submitted to the National Institute of Technology Karnataka, Surathkal in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Department of Mechanical Engineering is a bonafide report of the research work carried out by me. The material contained in this Research Thesis has not been submitted to any University or Institution for the award of any degree. Register Number : 145020ME14P01 Name of the Research Scholar : ANIL KUMAR K.S. Signature of the Research Scholar : Department of Mechanical Engineering Place : NITK, Surathkal Date : CERTIFICATE This is to certify that the Research Thesis entitled “EXPERIMENTAL INVESTIGATIONS ON FRICTION STIR WELDED JOINT OF DISSIMILAR ALUMINIUM ALLOYS” submitted by Mr. ANIL KUMAR K.S. (Register Number: 145020ME14P01) as the record of the research work carried out by him, is accepted as the Research Thesis submission in partial fulfillment of the requirements for the award of degree of Doctor of Philosophy. Research Guide(s) Prof. S.M. Murigendrappa Dr. Hemantha Kumar Professor Associate Professor Department of Mechanical Engineering Department of Mechanical Engineering NITK, Surathkal. NITK, Surathkal. Chairman-DRPC Date: Place: NITK, Surathkal. -
Enhancing Ballistic Impact Resistance of Polymer Matrix Composite Armors by Addition of Micro and Nano-Fillers
ENHANCING BALLISTIC IMPACT RESISTANCE OF POLYMER MATRIX COMPOSITE ARMORS BY ADDITION OF MICRO AND NANO-FILLERS A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Division of Biomedical Engineering University of Saskatchewan Saskatoon By Edison E. Haro © Copyright Edison Haro, July 2018. All rights reserved. Permission to use In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: College of Graduate and Postdoctoral Studies 116 Thorvaldson Building, 110 Science Place University of Saskatchewan Saskatoon, Saskatchewan (S7N 5C9) Canada OR Division of Biomedical Engineering Room 2B60 57 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan (S7N 5A9) Canada i Abstract Improving the ballistic impact resistance of hybrid polymer matrix composites through addition of micro- and nano-particles as fillers is the principal goal of this research. -
MINISTRY of EDUCATION FEDERAL UNIVERSITY of RIO GRANDE DO SUL School of Engineering
MINISTRY OF EDUCATION FEDERAL UNIVERSITY OF RIO GRANDE DO SUL School of Engineering Graduate Program in Mining, Metallurgy and Materials PPGE3M MEASURING THE EFFECT OF CATHODIC PROTECTION ON THE PERFORMANCE OF THERMALLY SPRAYED ALUMINIUM COATINGS AT ELEVATED TEMPERATURE Nataly Araujo Cé Thesis submitted for the degree of Doctor of Philosophy in Engineering. Porto Alegre 2017 MINISTRY OF EDUCATION FEDERAL UNIVERSITY OF RIO GRANDE DO SUL School of Engineering Graduate Program in Mining, Metallurgy and Materials PPGE3M MEASURING THE EFFECT OF CATHODIC PROTECTION ON THE PERFORMANCE OF THERMALLY SPRAYED ALUMINIUM COATINGS AT ELEVATED TEMPERATURE NATALY ARAUJO CÉ Metallurgical Engineer Study conducted at the Department of Metallurgy from School of Engineering of UFRGS within the Graduate Program in Mining, Metallurgy and Materials - PPGE3M as part of the requirements for obtaining the title of Doctor of Philosophy in Engineering. Concentration Area: Materials Science and Technology Porto Alegre 2017 II MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Escola de Engenharia Programa de Pós-Graduação em Minas, Metalurgia e Materiais PPGE3M AVALIAÇÃO DO EFEITO DA PROTEÇÃO CATÓDICA NO DESEMPENHO DO REVESTIMENTO DE ALUMÍNIO PULVERIZADO TERMICAMENTE SUBMETIDO A ALTAS TEMPERATURAS NATALY ARAUJO CÉ Engenheira Metalúrgica Estudo conduzido no Departamento de Metalurgia da Escola de Engenharia da UFRGS através do Programa de Pós-Graduação em Minas, Metalurgia e Materiais - PPGE3M- como parte dos requerimentos para obtenção do título de Doutor em Engenharia. Área de Concentração: Ciência e Tecnologia dos Materiais Porto Alegre 2017 III This thesis was judged adequate for obtaining a Doctor of Philosophy degree, concentration area in Materials Science and Technology and approved in its final form by the supervisor and by the Examination Board of the Graduate Program.