Comparative Depth Distribution of Corallimorpharians and Scleractinians (Cnidaria: Anthozoa) Dg Fautin, Jm Guinotte, Jc Orr

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Depth Distribution of Corallimorpharians and Scleractinians (Cnidaria: Anthozoa) Dg Fautin, Jm Guinotte, Jc Orr Comparative depth distribution of corallimorpharians and scleractinians (Cnidaria: Anthozoa) Dg Fautin, Jm Guinotte, Jc Orr To cite this version: Dg Fautin, Jm Guinotte, Jc Orr. Comparative depth distribution of corallimorpharians and sclerac- tinians (Cnidaria: Anthozoa). Marine Ecology Progress Series, Inter Research, 2009, 397, pp.63-70. 10.3354/meps08271. hal-03196957 HAL Id: hal-03196957 https://hal.archives-ouvertes.fr/hal-03196957 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vol. 397: 63–70, 2009 MARINE ECOLOGY PROGRESS SERIES Published December 17 doi: 10.3354/meps08271 Mar Ecol Prog Ser Contribution to the Theme Section ‘Conservation and management of deep-sea corals and coral reefs’ OPENPEN ACCESSCCESS Comparative depth distribution of corallimorpharians and scleractinians (Cnidaria: Anthozoa) Daphne G. Fautin1,*, John M. Guinotte2, James C. Orr3 1Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045, USA 2Marine Conservation Biology Institute, 2122 112th Ave NE, Suite B-300, Bellevue, Washington 98004, USA 3Marine Environment Laboratories (MEL-IAEA), 4, Quai Antoine 1er, MC-98000 Monaco, Monaco ABSTRACT: We assessed whether CaCO3 concentration of seawater may be relevant to the occur- rence of members of Corallimorpharia and Scleractinia, which are very similar except for the posses- sion by scleractinians of a calcareous skeleton. In collections of both the Challenger Deep-sea Expe- dition 1872–1876 and the US Antarctic (Research) Program, average depth of occurrence was significantly greater for corallimorpharians than for scleractinians. We also compared depth of occur- rence relative to the position of the aragonite saturation horizon (ASH) at many localities from which specimens were collected. Nearly 25 and 50% of stations at which scleractinians were collected were below the ASH for the Antarctic and Challenger stations, respectively; 50 and 100% of the Antarctic and Challenger stations at which corallimorpharians were collected were below the ASH, respec- tively. Statistical analyses of these data to test whether there is a difference in the depth, relative to the ASH, at which scleractinians and corallimorpharians occur indicate a difference for the Chal- lenger but not the Antarctic stations; more data are needed. The scleractinians that tolerate living below the ASH belong to a minority of the genera recorded in the surveys, and do not include spe- cies considered important in forming bioherms; those that occur deepest are solitary. Some deep-sea scleractinians may be unaffected by shoaling of the ASH that is predicted across all ocean basins in the near future, some may be confined to water shallower than is now the case, and others may cease producing a skeleton, becoming morphologically indistinguishable from corallimorpharians. KEY WORDS: Corallimorpharia · Scleractinia · Corals · Sea anemones Resale or republication not permitted without written consent of the publisher INTRODUCTION limorpharians with that of deep-sea scleractinians to infer if CaCO3 concentration may be relevant to the Corallimorpharians (order Corallimorpharia) are occurrence of these similar animals. anthozoans morphologically intermediate between sea Corallimorpharia has far fewer members than the 2 anemones (order Actiniaria) and stony corals (order groups to which it is most similar (45 valid species, com- Scleractinia). Like a sea anemone, a corallimorpharian pared with 1632 of Scleractinia and 1069 of Actiniaria; (Fig. 1) lacks a calcareous skeleton, but has internal Fautin 2008). However, like scleractinians and actiniar- morphology and nematocysts like those of a scleractin- ians, corallimorpharians occur in all oceans, from polar ian (den Hartog 1980, Dunn 1982). Given concern that to equatorial latitudes, and from the intertidal to at least changes in seawater chemistry may affect the robust- 5 km in depth (actiniarians occur in the trenches as ness of the skeletons of calcifying organisms or prevent well). Shallow temperate and deep-water corallimor- formation of skeletons entirely (e.g. Orr et al. 2005, pharians at all latitudes resemble scleractinian polyps Kleypas et al. 2006, Guinotte & Fabry 2008), we sought (Fig. 1a), whereas most shallow tropical corallimorphar- to compare the depth distribution of deep-sea coral- ians do not, being leathery in texture with short tenta- *Email: [email protected] © Inter-Research 2009 · www.int-res.com 64 Mar Ecol Prog Ser 397: 63–70, 2009 Fig. 1. (a) A deep-sea corallimorpharian, perhaps Corallimorphus pilatus, at 1798 m (photo from NOAA-HURL Archives, PI Amy Baco-Taylor). (b) A shallow tropical corallimorpharian (photo by G. Miller) cles (Fig. 1b). Cogently, in our experience, people inter- occurrence of members of these taxa is ambiguous. ested in and knowledgeable about deep-sea sclerac- Although some scleractinian species can tolerate living tinians may not recognize deep-sea corallimorpharians. below the ASH, the ones collected deepest in both sur- Currently, Corallimorpharia occupies a rank identical veys were solitary. Guinotte et al. (2006) have shown to that of Actiniaria and Scleractinia, but during the that by the end of the 21st century, water at depths past century it has been proposed (1) that they are re- where 70% of deep-sea bioherm-forming scleractini- ally scleractinians lacking a skeleton and (2) that they ans occur will be undersaturated with respect to arag- belong with actiniarians (summarized by, inter alia, den onite. As a result of this shoaling of the ASH across all Hartog 1980). Most recent molecular evidence supports ocean basins in the immediate future, some scleractini- Corallimorpharia as being separate from but more ans may be confined to water shallower than is now closely related to Scleractinia than to any other antho- the case, and others may cease producing a skeleton. zoan group (Brugler & France 2007, Fukami et al. 2008, Ecosystem structure and function could be altered sub- earlier data summarized by Daly & Fautin 2008). Re- stantially with follow-on effects for organisms that gardless of phylogenetic details, corallimorpharians are depend on cold-water coral bioherms. more closely related to some corals than many of the The number of records suitable for an analysis such groups referred to as ‘corals’ are to one another. Scler- as ours is small. The records we analyzed were from actinia and Corallimorpharia both belong to the antho- surveys not directed toward finding members of either zoan subclass Hexacorallia; some members of the other taxon; data from surveys focused on documenting the anthozoan subclass, Octocorallia, such as those of the occurence of members of one of the taxa could be family Isididae, are referred to as corals (e.g. Thresher biased. We are confident that all corallimorpharians et al. 2009). collected on the 2 surveys were included in the data To test whether deep-sea members of Corallimor- we analyzed. In addition to assessing whether depth of pharia and Scleractinia differ in depth of occurrence, occurrence differs between members of these 2 antho- we compared collection records for members of the zoan groups, an aim of the present study is to stimu- 2 taxa from comprehensive biological surveys that late, by our provisional results, the acquisition of addi- included data for both taxa. For 2 surveys that met our tional data to test further the hypothesis that CaCO3 criteria, we found that, on average, corallimorpharians concentration affects the occurrence of deep-sea scler- occur significantly deeper than scleractinians. Using actinians. data from the model of Orr et al. (2005) for carbonate saturation in seawater, we compared depth of occur- rence with position of the aragonite saturation horizon METHODS (ASH) (the skeleton of a scleractinian is composed of CaCO3 in the crystal form aragonite). The outcome of We acquired occurrence records for scleractinians our analyses concerning whether aragonite saturation and corallimorpharians from 2 biological surveys: the of seawater can explain the difference in depth of Challenger Deep-sea Expedition 1872–1876 (e.g. Fautin et al.: Depth of corallimorpharians and scleractinians 65 Rehbock 1992, Langmuir 2004, Perry & Fautin 2004) Orcadas’. The publication documenting scleractinians and the US Antarctic Research Program (USARP; now was written by Cairns (1982) and that on corallimor- termed the US Antarctic Program) as assembled in the pharians was written by Fautin (1984). online resource ‘Hexacorallians of the World’ (Fautin We compared depth of occurrence for scleractinians 2008). To obtain the data used, on the opening page of versus corallimorpharians collected on the Challenger ‘Hexacorallians of the World’ (http://hercules.kgs. Expedition and under the auspices of the USARP. Our ku.edu/Hexacoral/Anemone2) select ‘Distributional analysis was based solely on presence at a station; we Data,’ then successively select from the list of menus did not consider
Recommended publications
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Cold-Water Coral Reefs
    Jl_ JOINTpk MILJ0VERNDEPARTEMENTET— — natiireW M^ iA/i*/r ONEP WCMC COMMITTEE Norwegian Ministry of the Environment TTTTr Cold-water coral reefs Out of sight - no longer out of mind Andre Freiwald. Jan Helge Fossa, Anthony Grehan, Tony KosLow and J. Murray Roberts Z4^Z4 Digitized by tine Internet Arciiive in 2010 witii funding from UNEP-WCIVIC, Cambridge http://www.arcliive.org/details/coldwatercoralre04frei i!i_«ajuiti'j! ii-D) 1.-I fLir: 111 till 1 J|_ JOINT^ MILJ0VERNDEPARTEMENTET UNEP WCMC COMMITTEE Norwegta» Ministry of the Environment T» TT F Cold-water coral reefs Out of sight - no longer out of mind Andre Freiwald, Jan HeLge Fossa, Anthony Grehan, Tony Koslow and J. Murray Roberts a) UNEP WCMCH UNEP World Conservation Supporting organizations Monitoring Centre 219 Huntingdon Road Department of the Environment, Heritage and Local Cambridge CBS DDL Government United Kingdom National Parks and Wildlife Service Tel: +44 101 1223 2773U 7 Ely Place Fax; +W 101 1223 277136 Dublin 2 Email: [email protected] Ireland Website: www.unep-wcmc.org http://www.environ.ie/DOEI/DOEIhome nsf Director: Mark Collins Norwegian Ministry of the Environment Department for Nature Management The UNEP World Conservation Monitoring Centre is the PO Box 8013 biodiversity assessment and policy implementation arm of the Dep. N-0030 Oslo United Nations Environment Programme (UNEPI. the world's Norway foremost intergovernmental environmental organization. UNEP- http://wwwmilio.no WCMC aims to help decision makers recognize the value ol biodiversity to people everywhere, and to apply this knowledge to Defra all that they do. The Centre's challenge is to transform complex Department for Environment.
    [Show full text]
  • Abundance and Clonal Replication in the Tropical Corallimorpharian Rhodactis Rhodostoma
    Invertebrate Biology 119(4): 351-360. 0 2000 American Microscopical Society, Inc. Abundance and clonal replication in the tropical corallimorpharian Rhodactis rhodostoma Nanette E. Chadwick-Furmana and Michael Spiegel Interuniversity Institute for Marine Science, PO. Box 469, Eilat, Israel, and Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel Abstract. The corallimorpharian Rhodactis rhodostoma appears to be an opportunistic species capable of rapidly monopolizing patches of unoccupied shallow substrate on tropical reefs. On a fringing coral reef at Eilat, Israel, northern Red Sea, we examined patterns of abundance and clonal replication in R. rhodostoma in order to understand the modes and rates of spread of polyps across the reef flat. Polyps were abundant on the inner reef flat (maximum 1510 polyps m-* and 69% cover), rare on the outer reef flat, and completely absent on the outer reef slope at >3 m depth. Individuals cloned throughout the year via 3 distinct modes: longitudinal fission, inverse budding, and marginal budding. Marginal budding is a replicative mode not previously described. Cloning mode varied significantly with polyp size. Approximately 9% of polyps cloned each month, leading to a clonal doubling time of about 1 year. The rate of cloning varied seasonally and depended on day length and seawater temperature, except for a brief reduction in cloning during midsummer when polyps spawned gametes. Polyps of R. rhodo- stoma appear to have replicated extensively following a catastrophic low-tide disturbance in 1970, and have become an alternate dominant to stony corals on parts of the reef flat. Additional key words: Cnidaria, coral reef, sea anemone, asexual reproduction, Red Sea Soft-bodied benthic cnidarians such as sea anemo- & Chadwick-Furman 1999a).
    [Show full text]
  • Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution
    Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution by Peter J. Etnoyer1 and Stephen D. Cairns2 1. NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the U.S. Gulf of Mexico chapter in “The State of Deep‐Sea Coral Ecosystems of the United States” provides a list of deep‐sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the waters of the Gulf of Mexico (Figure 1). Deep‐sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 m deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from species lists presented in ʺBiodiversity of the Gulf of Mexicoʺ (Felder & Camp 2009), which inventoried species found throughout the entire Gulf of Mexico including areas outside U.S. waters. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Only those species found within the U.S. Gulf of Mexico Exclusive Economic Zone are presented here. Information from recent studies that have expanded the known range of species into the U.S. Gulf of Mexico have been included. The total number of species of deep‐sea corals documented for the U.S.
    [Show full text]
  • Symbiosis in Deep-Water Corals
    ;ymbiosis, 37 (2004) 33-61 33 Balaban, Philadelphia/Rehovot Review article. Symbiosis in Deep-Water Corals LENE BUHL-MORTENSEN,. AND PAL B. MORTENSEN Benthic Habitat Research Group, Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway, Tel. +47-55-236936, Fax. +47-55-236830, Email. [email protected] Received October 7, 2003; Accepted December 20, 2003 Abstract Deep or cold-water corals house a rich fauna of more or less closely associated animals. This fauna has been poorly studied, and most of the records are sporadic observations of single species. In this review we compile available records of invertebrates associated with alcyonarian, antipatharian, gorgonian, and scleractinian deep-water corals, including our own previously unpublished observations. Direct observations of the location of mobile species on deep-water corals are few and samples of deep-water corals often contain a mixture of sediments and broken corals. The nature of the relationship between the associated species and the coral is therefore in most cases uncertain. We present a list of species that can be characterised as symbionts. More than 980 species have been recorded on deep-water corals, of these 112 can be characterised as symbionts of which, 30 species are obligate to various cnidarian taxa. Fifty-three percent of the obligate deep-water coral symbionts are parasites, 47% are commensals. The obligate symbionts are rarer than their hosts, which implies that reduced coral abundance and distribution may be critical to the symbionts' ecology. Most of the parasites are endoparasites (37%), whereas ectoparasites and kleptoparasites are less common (13 and 3%, respectively).
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • Ibdiocc- Scor Wg
    PROPOSAL FOR IBDIOCC- SCOR WG Submitted to: Dr. Edward Urban, Executive Secretary, Scientific Committee for Oceanic Research (SCOR) Submitted by: Dr. Robert Y. George, President, George Institute for Biodiversity and Sustainability (GIBS), 1320 Vanagrif Ct., Wake Forest, North Carolina. Date of Submission: April 15, 2016. IBDIOCC Interaction Between Drivers Impacting Ocean Carbonate Chemistry: How can Deep-Sea Coral Ecosystems respond to ASH/CSH Shoaling in Seamounts that pose imminent threats from Ocean Acidification? Summary/Abstract: We propose a new SCOR Working Group IBDIOCC (2017 to 2019) that seeks to assess new impacts on seamount ecosystems from ocean acidification (OA), that essentially looks at the impact of shoaling of ASH and CSH on the biota that include communities/species associated with deep sea scleractinian corals e.g. Lophelia pertusa and Solenosmilia variabilis) The WG, with members from both southern and northern hemispheres, seeks to re-evaluate and augment the science priorities defined in 2012 by the Census of the Marine Life, but taking into account the new climate change threats and challenges from shifts in ocean carbonate chemistry. The WG will incorporate recommendations from ‘Ocean In High Carbon World-Ocean Acidification international symposium which will be participated by Dr. George (chairman of WG) who will also present a paper on vulnerable deep sea ecosystems to ocean carbonate chemistry, especially seamounts southeast of Australia and New Zealand. The WG plans to develop a follow-on capacity building workshop in the ASLO annual meeting in Hawaii (2017) and in the AGU Ocean Sciences meeting in Portland, Oregon (2018). In 2017, the WG will meet for three days in 2017 at the ASLO annual meeting to generate two open-access publications; 1) the first global assessment of OA on seamount fauna, and 2) a peer-reviewed multi-authored paper to be submitted to NATURE CLIMATE.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • Species Delimitation in Sea Anemones (Anthozoa: Actiniaria): from Traditional Taxonomy to Integrative Approaches
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2019 doi:10.20944/preprints201911.0118.v1 Paper presented at the 2nd Latin American Symposium of Cnidarians (XVIII COLACMAR) Species delimitation in sea anemones (Anthozoa: Actiniaria): From traditional taxonomy to integrative approaches Carlos A. Spano1, Cristian B. Canales-Aguirre2,3, Selim S. Musleh3,4, Vreni Häussermann5,6, Daniel Gomez-Uchida3,4 1 Ecotecnos S. A., Limache 3405, Of 31, Edificio Reitz, Viña del Mar, Chile 2 Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km. 6, Puerto Montt, Chile 3 Genomics in Ecology, Evolution, and Conservation Laboratory, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile. 4 Nucleo Milenio de Salmonidos Invasores (INVASAL), Concepción, Chile 5 Huinay Scientific Field Station, P.O. Box 462, Puerto Montt, Chile 6 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avda. Brasil 2950, Valparaíso, Chile Abstract The present review provides an in-depth look into the complex topic of delimiting species in sea anemones. For most part of history this has been based on a small number of variable anatomic traits, many of which are used indistinctly across multiple taxonomic ranks. Early attempts to classify this group succeeded to comprise much of the diversity known to date, yet numerous taxa were mostly characterized by the lack of features rather than synapomorphies. Of the total number of species names within Actiniaria, about 77% are currently considered valid and more than half of them have several synonyms. Besides the nominal problem caused by large intraspecific variations and ambiguously described characters, genetic studies show that morphological convergences are also widespread among molecular phylogenies.
    [Show full text]
  • Deep-Sea Coral Taxa in the U.S. Northeast Region: Depth and Geographical Distribution (V
    Deep-Sea Coral Taxa in the U.S. Northeast Region: Depth and Geographical Distribution (v. 2020) by David B. Packer1, Martha S. Nizinski2, Stephen D. Cairns3, 4 and Thomas F. Hourigan 1. NOAA Habitat Ecology Branch, Northeast Fisheries Science Center, Sandy Hook, NJ 2. NOAA National Systematics Laboratory Smithsonian Institution, Washington, DC 3. National Museum of Natural History, Smithsonian Institution, Washington, DC 4. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD This annex to the U.S. Northeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems of the United States” provides a revised and updated list of deep-sea coral taxa in the Phylum Cnidaria, Class Anthozoa, known to occur in U.S. waters from Maine to Cape Hatteras (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from Packer et al. (2017) with the addition of new species and range extensions into Northeast U.S. waters reported through 2020, along with a number of species previously not included. No new species have been described from this region since 2017. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, then alphabetically by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distributions. The total number of distinct deep-sea corals documented for the U.S.
    [Show full text]
  • The State of Knowledge of Deep-Sea Corals in the New Zealand Region Di Tracey1 and Freya Hjorvarsdottir2 (Eds, Comps) © 2019
    The state of knowledge of deep-sea corals in the New Zealand region Di Tracey1 and Freya Hjorvarsdottir2 (eds, comps) © 2019. All rights reserved. The copyright for this report, and for the data, maps, figures and other information (hereafter collectively referred to as “data”) contained in it, is held by NIWA is held by NIWA unless otherwise stated. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. While NIWA uses all reasonable endeavours to ensure the accuracy of the data, NIWA does not guarantee or make any representation or warranty (express or implied) regarding the accuracy or completeness of the data, the use to which the data may be put or the results to be obtained from the use of the data. Accordingly, NIWA expressly disclaims all legal liability whatsoever arising from, or connected to, the use of, reference to, reliance on or possession of the data or the existence of errors therein. NIWA recommends that users exercise their own skill and care with respect to their use of the data and that they obtain independent professional advice relevant to their particular circumstances. NIWA SCIENCE AND TECHNOLOGY SERIES NUMBER 84 ISSN 1173-0382 Citation for full report: Tracey, D.M. & Hjorvarsdottir, F. (eds, comps) (2019). The State of Knowledge of Deep-Sea Corals in the New Zealand Region. NIWA Science and Technology Series Number 84. 140 p. Recommended citation for individual chapters (e.g., for Chapter 9.: Freeman, D., & Cryer, M. (2019). Current Management Measures and Threats, Chapter 9 In: Tracey, D.M.
    [Show full text]