Air Intakes : Role, Constraints and Design

Total Page:16

File Type:pdf, Size:1020Kb

Air Intakes : Role, Constraints and Design ICAS 2002 CONGRESS AIR INTAKES: ROLE, CONSTRAINTS AND DESIGN Gérard LARUELLE Vice President, Research EADS Launch Vehicles, Les Mureaux, France Keywords : Air-intake-role-constraints Abstract possible propulsive balance, which is expressed in two The aim of this general paper is to give an overview of the objectives: problems that arise in the design of air intakes, giving many - provide maximum thrust, current examples from around the world. The role of the air - induce minimum drag. intake is first outlined. Subsonic, supersonic and even Maximum thrust will be obtained by designing the air hypersonic air intakes, are described before to explain their intake to transform kinetic energy (i.e., the velocity of the integration on the vehicle. In the past, the only aspects flow as it arrives in front of the air intake) into potential considered in air intake design were aerodynamic and energy (the pressure after the diffuser, at the engine input) structural. Nowadays, Radar Cross-Section is often an with the best possible efficiency. Efficiency is a parameter essential criterion for military applications, so new design that is calculated by taking the ratio of the total pressure in approaches and new locations on the vehicle are being front of the engine to that of the upstream flow. This thrust introduced. This problem is presented. will be maximum if the air intake captures just what the The complexity of the internal flow, especially in the throat engine needs for each flight configuration and provides the area where this flow is transonic, with multiple interactions engine input with a flow of good homogeneity (low between shock waves and boundary layers in the presence distortion) to ensure correct engine operation, which is of internal boundary layer bleeds, called for a large essential for turbojets. number of tests. Some of the set-ups developed for the Minimum drag will be obtained with air intakes that are French ONERA wind tunnels are presented. The author dimensioned to just what the engine needs (critical regime) concludes this general overview of air intakes with three and whatever the Mach number (Shock-on-lip Mach remarks concerning the air intake specifications, the number). Careful attention is paid to the side walls and captured air flow and the internal design. cowls in light of the small variations in angle of attack and yaw angle about the flight configurations. Acknowledgments 3. Constraints (Figure 1) Air intakes have been one of my themes of work for more than thirty years, and are now essentially a permanent 3.1 Flight Envelopes centre of interest. I would like to take the opportunity of Air intake design depends essentially on the flight envelope this summary to give my hearty thanks to Jacky Leynaert of the vehicle considered, and this envelope is very closely and Pierre Carrière who taught this speciality to me at tied to the type of vehicle itself. Sup’Aéro and were then my supervisors when I set out as a The first envelope concerns subsonic flight alone; and thus young engineer at ONERA's Aerodynamics Department. helicopters and subsonic aircraft, the latter of which Without them, the Concorde would not have its air intakes constitute the vast majority of today's air transport vehicles. and this paper would never have seen the light of day. Then come supersonic aircraft, which have to cover the sub-, trans-, and supersonic domains. A compromise has to 1. Introduction be found depending on how long the aircraft stays in each envelope in practice. After many years working on mainly supersonic air intakes, The supersonic transport will call for a high optimisation in it is important to make an overall review and present a few supersonic cruise flight, while air combat in high subsonic documents collected over these last thirty years. The reader cannot be ignored for the Mach 1.5 air-fighters. For ramjet- may acquire some knowledge from this paper, but the propelled supersonic missiles, these are generally boosted author may also get some answers he has been looking for directly to the supersonic envelope by a solid booster phase to understand certain choices that are made in designing during which the air intakes are shut, so they will be and positioning air intakes. designed only for supersonic flight. If reusable air- 2. Role of the air intakes breathing space launchers appear in the coming decades, Any vehicle with air-breathing propulsion needs at least the air intakes used will have to cover an enormous one air intake to feed its engine so it can move. So the role operating envelope ranging from Mach 0 to 10-12, and will of the air intake is to capture the airflow the propulsion certainly have to supply several different types of engines (engines) and conditioning (radiators) systems need. in succession. A number of projects are on the drawing They must do this in such a way as to yield the best boards but nothing has been built yet. Copyright Ó 2002 by Gérard Laruelle Published by the International Council of the Aeronautical Sciences, with permission. 643.1 G. Laruelle FIGURE 1 3.2 Flight Attitudes The first generations of air intakes were always designed in Flight attitudes vary widely from one vehicle to another. accordance with performance objectives, such as thrust, For all aircraft, the take-off phase with maximum thrust at a weight, and cost. For a few years now, it is essential that air standstill has to be considered as well as roll-out on the intakes have a low radar signature for military applications. runway, and without forgetting the possibility of dangerous Actually, if this parameter were not taken into account, the crosswinds. Usually, ascent and descent are considered, and air intake would constitute a very large share of the the cruise configuration is generally the one that is vehicle's overall signature. This problem will be dealt with optimised. All the failure configurations having to do with more precisely in section 8. For certain military the vehicle itself and its propulsion system must not be applications, notably for helicopters, a low infrared forgotten. For helicopters and vertical take-off aircraft, signature is needed. But this problem generally concerns hovering flight has to be considered with possible astern the nozzle more than it does the air intake. and crosswinds, without forgetting the aerodynamic field 3.4 Special Conditions induced by the rotor. For air-fighters and missiles, Air intakes are faced with many special conditions in flight. manoeuvrability is crucial in an extensive flight envelope Bird capture will call for structural reinforcements, and the with high angles of attack, yaw angles, and arbitrary roll- absorption of various debris from the ground can be angle for skid-to turn steering. And do not forget negative countered by a pivoting grid (as in the Su 27) to deviate angles of incidence in steep dives. them and then trap them by closing once in flight. Sand and 3.3 Discretion snow can also be trapped by grids or deflectors (Super The most common form of discretion, which especially Puma). Air intake position should be determined in light of applies to helicopters and transport aircraft, concerns the presence of hot air (from helicopter radiator) or acoustics. The standing international regulations must be combustion gases (aircraft thrust reverses, astern wind in complied with, and these are becoming more and more hovering flight, missile plumes and gun gases). If there is severe. To do this, we can work on the internal profile of gunfire, the possibility of unsteady flows due to the passage the air intake to create a quasi-sonic flow at the entrance, of waves induced by exit gases should be checked. For which will prevent the engine noise from coming out airborne missiles or those boosted by solid boosters, the air through the air intake. Perforated walls equipped with intakes are generally completely or partially shut during acoustic materials complement this treatment. these phases of flight to avoid instabilities and drag. 643.2 AIR INTAKES: ROLE, CONSTRAINTS AND DESIGN FIGURE 2 3.5 Design With all of the constraints, which are generally - first, it deviates the boundary layer, which is the local aerodynamic, air intakes can be designed which will of external flow, to either side of the intake; course have to be as light as possible despite the internal - then, by entraining the vortices, it introduces the higher loads, which may be steady or unsteady (as in buzz), flow into the intake, which has greater energy than the thermal behaviour for vehicles in high supersonic flight, and boundary layer. treatments (ferrites) for radar discretion. Air intake design These intakes have very low drag and excellent Radar and position depend strongly on the vehicle's steering mode Cross-Section and, since they are long, they have low (bank-to-turn or skid-to-turn type). distortion. As disadvantages, they take up much more Insofar as possible, the air intake is to be simple and of fixed internal space and are extremely sensitive to the vehicle's geometry to ensure rustic operation of the propulsion system attitude. They are generally used more for conditioning and minimum design, manufacturing, and maintenance vehicles (Airbus A320, Fig.3) than for supplying aircraft costs. This is what will lead to highly operational vehicles. propulsion systems (XF 93). Their stealth aspects are very Variable geometry will be needed either for high important for new projects. performance or operation over a broad flight envelope. Pilot type air intakes are very simple and more common. Transitory regimes then need to be analysed and, The principle is to place a tube in the wind and capture the technologically, sealing will have to be provided.
Recommended publications
  • Flying Model Rocket Catalog
    Flying Model Rocket Catalog TM TABLE OF CONTENTS Model Rocket Basics . 5 Fly Big with Advanced Rockets/Pro Series II . 66 Get Started with Launch Sets . 10 Model Rocket Engine Performance Chart . 70 Easy to Build Beginner Rockets . 16 Engine Time/Thrust Curves . 72-73 Challenge Yourself a Little More! . 22 Building Supplies . 84 Payload Rockets . 30 Altitude Tracking . 82 Multi-Stage Rockets . 34 Estes Education . 86 Fun Recovery Rockets . 40 Bulk Packs for Education . 88 Designer Signature Series . 45 Lifetime Launch System . 94 Imagine New Worlds with Space Voyagers . 46 Phantom Classroom Demonstrator Rocket . 96 Destination Mars™ Rockets . 50 Rocket Science Starter Set . 98 Space Corps™ Rockets . 54 Model Rocket Safety Code . 100 Scale Model Rockets . 58 Index . 102 Welcome to the exciting world of model rocketry. now this rocket science! here is no thrill quite like launching a model rocket you have built, watching it streak skyward, reach apogee (peak altitude), then gently Treturn to earth on its parachute. In a very real sense, model rocketeers experience the same excitement felt by America’s space scientists and astronauts as they push humankind’s horizons relentlessly forward to the stars. The best way to get started is with an Estes® launch set or starter set (see pages 10-15). Each launch set has nearly everything you need to build and fly your first rocket. Estes Industries, LLC encourages membership As you increase your rocketry skills, you can progress to new and exciting in the National Association projects including multi-stage rockets, payload experiments and scale models. of Rocketry for the active Whether you are a hobby beginner or expert, Estes Industries will help you model rocketry enthusiast.
    [Show full text]
  • Water Rocket Booklet
    A guide to building and understanding the physics of Water Rockets Version 1.02 June 2007 Warning: Water Rocketeering is a potentially dangerous activity and individuals following the instructions herein do so at their own risk. Exclusion of liability: NPL Management Limited cannot exclude the risk of accident and, for this reason, hereby exclude, to the maximum extent permissible by law, any and all liability for loss, damage, or harm, howsoever arising. Contents WATER ROCKETS SECTION 1: WHAT IS A WATER ROCKET? 1 SECTION 3: LAUNCHERS 9 SECTION 4: OPTIMISING ROCKET DESIGN 15 SECTION 5: TESTING YOUR ROCKET 24 SECTION 6: PHYSICS OF A WATER ROCKET 29 SECTION 7: COMPUTER SIMULATION 32 SECTION 8: SAFETY 37 SECTION 9: USEFUL INFORMATION 38 SECTION 10: SOME INTERESTING DETAILS 40 Copyright and Reproduction Michael de Podesta hereby asserts his right to be identified as author of this booklet. The copyright of this booklet is owned by NPL. Michael de Podesta and NPL grant permission to reproduce the booklet in part or in whole for any not-for-profit educational activity, but you must acknowledge both the author and the copyright owner. Acknowledgements I began writing this guide to support people entering the NPL Water Rocket Competition. So the first acknowledgement has to be to Dr. Nick McCormick, who founded the competition many years ago and who is still the driving force behind the activity at NPL. Nick’s instinct for physics and fun has brought pleasure to thousands. The inspiration to actually begin writing this document instead of just saying that someone ought to do it, was provided by Andrew Hanson.
    [Show full text]
  • CHAPTER 11 Subsonic and Supersonic Aircraft Emissions
    CHAPTER 11 Subsonic and Supersonic Aircraft Emissions Lead Authors: A. Wahner M.A. Geller Co-authors: F. Arnold W.H. Brune D.A. Cariolle A.R. Douglass C. Johnson D.H. Lister J.A. Pyle R. Ramaroson D. Rind F. Rohrer U. Schumann A.M. Thompson CHAPTER 11 SUBSONIC AND SUPERSONIC AIRCRAFT EMISSIONS Contents SCIENTIFIC SUMMARY ......................................................................................................................................... 11.1 11.1 INTRODUCTION ............................................................................................................................................ 11.3 11.2 AIRCRAFT EMISSIONS ................................................................................................................................. 11.4 11.2.1 Subsonic Aircraft .................................................................................................................................. 11.5 11.2.2 Supersonic Aircraft ............................................................................................................................... 11.6 11.2.3 Military Aircraft .................................................................................................................................... 11.6 11.2.4 Emissions at Altitude ............................................................................................................................ 11.6 11.2.5 Scenarios and Emissions Data Bases ...................................................................................................
    [Show full text]
  • Model Rocketry Technical Manual Welcome to the Exciting World of Estes Model Rocketry!
    ™ Model Rocketry Technical Manual Welcome to the Exciting World of Estes Model Rocketry! By William Simon Updated and edited by Thomas Beach and Joyce Guzik EstesEducator.com ® [email protected] 800.820.0202 © 2012 Estes-Cox Corp. INTRODUCTION TABLE OF CONTENTS Topic Page Welcome to the exciting world of Estes® Why Estes Model Rocketry 3 A Safe Program 3 Your First Model Rocket 3 model rocketry! This technical manual was Construction Techniques 3 Types of Glues 3 written to provide both an easy-to-follow guide Finishing 6 Stability 7 for the beginner and a reference for the experi- Swing Test For Stability 8 Preparing For Flight 8 enced rocket enthusiast. Here you’ll find the Igniter Installation 9 Launching 9 answers to the most frequently asked ques- Countdown Checklist 10 Tracking 10 Trackers 10 tions. More complete technical information on Recovery Systems 11 Multi-Staging 11 all the subjects can be found on the Estes® Clustering 13 Model Rocket Engines 14 website (www.estesrockets.com) and the Estes NAR Safety Code 15 Publications back cover Educator™ website (www.esteseducator.com) *Copyright 1970, 1989,1993, 2003 Estes-Cox Corp. All Rights Reserved. Estes is a registered trademark of Estes-Cox Corp. 2 WHY ESTES MODEL ROCKETRY? As your knowledge of rocketry and your modeling skills increase you can move up to building higher skill level models, The hobby of model rocketry originated at the dawn of the and eventually to building your own custom designs from parts space age in the late 1950’s. Seeing space boosters carry the available in the Estes catalog.
    [Show full text]
  • Subsonic Aircraft Wing Conceptual Design Synthesis and Analysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by GSSRR.ORG: International Journals: Publishing Research Papers in all Fields International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=JournalOfBasicAndApplied --------------------------------------------------------------------------------------------------------------------------- Subsonic Aircraft Wing Conceptual Design Synthesis and Analysis Abderrahmane BADIS Electrical and Electronic Communication Engineer from UMBB (Ex.INELEC) Independent Electronics, Aeronautics, Propulsion, Well Logging and Software Design Research Engineer Takerboust, Aghbalou, Bouira 10007, Algeria [email protected] Abstract This paper exposes a simplified preliminary conceptual integrated method to design an aircraft wing in subsonic speeds up to Mach 0.85. The proposed approach is integrated, as it allows an early estimation of main aircraft aerodynamic features, namely the maximum lift-to-drag ratio and the total parasitic drag. First, the influence of the Lift and Load scatterings on the overall performance characteristics of the wing are discussed. It is established that the optimization is achieved by designing a wing geometry that yields elliptical lift and load distributions. Second, the reference trapezoidal wing is considered the base line geometry used to outline the wing shape layout. As such, the main geometrical parameters and governing relations for a trapezoidal wing are
    [Show full text]
  • Investigation of Surface Roughness on the Transient Point of a Blunt Nose Cone
    Investigation of Surface Roughness on the Transient Point of a Blunt Nose Cone A Project Presented to The Faculty of the Department of Aerospace Engineering San Jose State University In Partial Fulfillment to the Requirements of the Degree Master of Science in Aerospace Engineering By Terrence Soares Approved by Dr. Periklis E. Papadopoulos Faculty Advisor ©May 2020 Table of Contents Table of contents i List of figures iii List of tables iv Abstract v Nomenclature v Symbols vi Greek symbols vi Subscripts vi Acronyms vi 1. Introduction 1 1.1 Motivation 1 1.2 Literature 1 1.2.1 Additive manufacturing 1 1.2.2 Surface roughness 5 1.2.3 Blunt nose cone angle 6 1.2.4 Boundary layer transitions 9 1.2.5 Shock wave - oblique v expansion 10 1.2.6 Turbulent heating 12 1.3 Project proposal 13 1.4 Methodology 13 2. Experimental tools and methods 17 2.1 Blunt cone designs 17 2.2 3D Models 21 2.3 Simulations 22 2.3.1 Enclosure 22 2.3.2 Mesh 24 2.3.3 Setup 26 3. Results 28 3.1 Reda results 28 3.2 ANSYS results 28 3.2.1 Cone angle 30 degrees 28 3.2.2 Cone angle 45 degrees 30 3.2.3 Cone angle 60 degrees 32 4. Discussion 35 4.1 Reda vs base model CFD 35 4.2 CFD nose cone comparison 35 i 4.2.1 Surface roughness 35 4.2.2 Nose cone angle 36 4.2.3 Transient point 37 5. Conclusion 38 6.
    [Show full text]
  • Aircraft of Today. Aerospace Education I
    DOCUMENT RESUME ED 068 287 SE 014 551 AUTHOR Sayler, D. S. TITLE Aircraft of Today. Aerospace EducationI. INSTITUTION Air Univ.,, Maxwell AFB, Ala. JuniorReserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 179p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Instruction; National Defense; *PhysicalSciences; *Resource Materials; Supplementary Textbooks; *Textbooks ABSTRACT This textbook gives a brief idea aboutthe modern aircraft used in defense and forcommercial purposes. Aerospace technology in its present form has developedalong certain basic principles of aerodynamic forces. Differentparts in an airplane have different functions to balance theaircraft in air, provide a thrust, and control the general mechanisms.Profusely illustrated descriptions provide a picture of whatkinds of aircraft are used for cargo, passenger travel, bombing, and supersonicflights. Propulsion principles and descriptions of differentkinds of engines are quite helpful. At the end of each chapter,new terminology is listed. The book is not available on the market andis to be used only in the Air Force ROTC program. (PS) SC AEROSPACE EDUCATION I U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCH) EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN 'IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU CATION POSITION OR POLICY AIR FORCE JUNIOR ROTC MR,UNIVERS17/14AXWELL MR FORCEBASE, ALABAMA Aerospace Education I Aircraft of Today D. S. Sayler Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA 2 1971 Thispublication has been reviewed and approvedby competent personnel of the preparing command in accordance with current directiveson doctrine, policy, essentiality, propriety, and quality.
    [Show full text]
  • Introduction to Aerospace Engineering
    Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction to Aerospace Engineering Aerodynamics 11&12 Prof. H. Bijl ir. N. Timmer 11 & 12. Airfoils and finite wings Anderson 5.9 – end of chapter 5 excl. 5.19 Topics lecture 11 & 12 • Pressure distributions and lift • Finite wings • Swept wings 3 Pressure coefficient Typical example Definition of pressure coefficient : p − p -Cp = ∞ Cp q∞ upper side lower side -1.0 Stagnation point: p=p t … p t-p∞=q ∞ => C p=1 4 Example 5.6 • The pressure on a point on the wing of an airplane is 7.58x10 4 N/m2. The airplane is flying with a velocity of 70 m/s at conditions associated with standard altitude of 2000m. Calculate the pressure coefficient at this point on the wing 4 2 3 2000 m: p ∞=7.95.10 N/m ρ∞=1.0066 kg/m − = p p ∞ = − C p Cp 1.50 q∞ 5 Obtaining lift from pressure distribution leading edge θ V∞ trailing edge s p ds dy θ dx = ds cos θ 6 Obtaining lift from pressure distribution TE TE Normal force per meter span: = θ − θ N ∫ pl cos ds ∫ pu cos ds LE LE c c θ = = − with ds cos dx N ∫ pl dx ∫ pu dx 0 0 NN Write dimensionless force coefficient : C = = n 1 ρ 2 2 Vc∞ qc ∞ 1 1 p − p x 1 p − p x x = l ∞ − u ∞ C = ()C −C d Cn d d n ∫ pl pu ∫ q c ∫ q c 0 ∞ 0 ∞ 0 c 7 T=Lsin α - Dcosα N=Lcos α + Dsinα L R N α T D V α = angle of attack 8 Obtaining lift from normal force coefficient =α − α =α − α L Ncos T sin cl c ncos c t sin L N T =cosα − sin α qc∞ qc ∞ qc ∞ For small angle of attack α≤5o : cos α ≈ 1, sin α ≈ 0 1 1 C≈() CCdx − () l∫ pl p u c 0 9 Example 5.11 Consider an airfoil with chord length c and the running distance x measured along the chord.
    [Show full text]
  • After Concorde, Who Will Manage to Revive Civilian Supersonic Aviation?
    After Concorde, who will manage to revive civilian supersonic aviation? By François Sfarti and Sebastien Plessis December 2019 Commercial aircraft are flying at the same speed as 60 years ago. Since Concorde, which made possible to fly from Paris to New York in only 3h30, no civilian airplane has broken the sound barrier. The loudness of the sonic boom was a major technological lock to Concorde success, but 50 years after its first flight, an on-going project led by NASA is about to make supersonic flights over land possible. If successful, it will significantly increase the number of supersonic routes and increase the supersonic aircraft market size substantially. This technological improvement combined with R&D efforts on operational costs and a much larger addressable market than when Concorde flew may revive civilian supersonic aviation in the coming years. Who are the new players at the forefront and the early movers? What are the current investments in this field? What are the key success drivers and remaining technological and regulatory locks to revive supersonic aviation? EXECUTIVE SUMMARY Commercial aircraft are typically flying between 800 km/h and 900 km/h, which is between 75% and 85% of the speed of sound. It is the same speed as 60 years ago and since Concorde, which flew at twice the speed of sound, was retired in 2003, there has been no civilian supersonic aircraft in service. Due to a prohibition to fly supersonic over land and large operational costs, Concorde did not reach commercial success. Even if operational costs would remain larger than subsonic flights, current market environment seems much more favourable: since Concorde was retired in 2003, the air traffic has more than doubled and the willingness to pay can be supported by an increase in the number of high net worth individuals and the fact that business travellers value higher speed levels.
    [Show full text]
  • Large Reusable Liquid Rocket Booster
    Determination of the Nose Cone Shape for a Large Reusable Liquid Rocket Booster by ROBERT LAUREN ACKER B.S., Massachusetts Institute of Technology 1987 SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1988 ©Robert L. Acker 1988 The author hereby grants M.I.T. and Hughes Aircraft Company permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author Department of Aeronautics and Astronautics January 12, 1988 Reviewed by C. P. Rubin Hughes Aircraft Company Certified by - rv -- - Prof. Walter M. Hollister Thesis Supervisor, Deprtment of Aeronautics and Astronautics Accepted by , {"' Prof. Harold Y. Wachman Chairman, Department Graduate Committee Department of Aeronautics and Astronautics MASSACHUSETTSINST:7, a OF TECHNOLOGY WHDAWN I FEB 0 4198 M.LT.W LIB-RAiES , J Determination of the Nose Cone Shape for a Large Reusable Liquid Rocket Booster by Robert L. Acker Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics January 15, 1988 Abstract Recently there has been a lot of interest in making reusable space vehicles in an effort to lower launch costs. In addition, the use of liquid propellant in a multistage vehicle provides for the maximum performance. This study examines the forces on the nose cone of the first stage of such a rocket and uses them to determine the best shape for the nose cone. The specific stage looked at is a strap-on booster on a design proposed at Hughes Aircraft Company.
    [Show full text]
  • Section 7, Lecture 3: Effects of Wing Sweep
    Section 7, Lecture 3: Effects of Wing Sweep • All modern high-speed aircraft have swept wings: WHY? 1 MAE 5420 - Compressible Fluid Flow • Not in Anderson Supersonic Airfoils (revisited) • Normal Shock wave formed off the front of a blunt leading g=1.1 causes significant drag Detached shock waveg=1.3 Localized normal shock wave Credit: Selkirk College Professional Aviation Program 2 MAE 5420 - Compressible Fluid Flow Supersonic Airfoils (revisited, 2) • To eliminate this leading edge drag caused by detached bow wave Supersonic wings are typically quite sharp atg=1.1 the leading edge • Design feature allows oblique wave to attachg=1.3 to the leading edge eliminating the area of high pressure ahead of the wing. • Double wedge or “diamond” Airfoil section Credit: Selkirk College Professional Aviation Program 3 MAE 5420 - Compressible Fluid Flow Wing Design 101 • Subsonic Wing in Subsonic Flow • Subsonic Wing in Supersonic Flow • Supersonic Wing in Subsonic Flow A conundrum! • Supersonic Wing in Supersonic Flow • Wings that work well sub-sonically generally don’t work well supersonically, and vice-versa à Leading edge Wing-sweep can overcome problem with poor performance of sharp leading edge wing in subsonic flight. 4 MAE 5420 - Compressible Fluid Flow Wing Design 101 (2) • Compromise High-Sweep Delta design generates lift at low speeds • Highly-Swept Delta-Wing design … by increasing the angle-of-attack, works “pretty well” in both flow regimes but also has sufficient sweepback and slenderness to perform very Supersonic Subsonic efficiently at high speeds. • On a traditional aircraft wing a trailing vortex is formed only at the wing tips.
    [Show full text]
  • Atmospheric Re-Entry Analysis of Sounding Rocket Payloads
    ATMOSPHERIC RE-ENTRY ANALYSIS OF SOUNDING ROCKET PAYLOADS Andreas Stamminger(1) (1) Deutsches Zentrum für Luft- und Raumfahrt (DLR), RB-MR, Oberpfaffenhofen, D-82234 Wessling, Germany, Tel.: +49-8153-28-2616, Fax:+49-8153-28-1344, Email: [email protected] ABSTRACT Because of the payload velocity which was still greater than 1500 m/s, the parachute system failed. This The atmospheric re-entry of sounding rocket payloads is example showed that a better understanding of payload an important phase of the ballistic flight, especially re-entry motion and drag coefficient is necessary, when instruments and experiments shall be recovered especially for vehicles in non-standard ballistic flights. for future flights or interpretation of experiment data. The understanding of the dynamic behaviour of 2. RE-ENTRY PAYLOAD CONFIGURATIONS cylindrical and cone-cylindrical payloads during the re- entry is a prerequisite to ensure a successful deployment Sounding rocket payloads are usually cylindrical or of the parachute system. This includes not only the cone-cylindrical bodies containing modules for knowledge of the payload vehicle attitude and rate data experiments, all necessary service systems and but also the “global view” on deceleration, descent time recovery. During re-entry all considered payloads have and terminal recovery velocity. The paper describes the a cylindrical shape, because the nose cone is separated analysis work that has been conducted at the Mobile after burn-out of the last stage. The payloads differ in Rocket base of the German Aerospace Center (DLR) on diameter DPL, 0.438 m for TEXUS and 0.64 m for flight data of several TEXUS and MAXUS payloads MAXUS, but the ratio of length LPL to diameter DPL is that have been reviewed and compared.
    [Show full text]