The Development of Nanomaterials and “Green” Methods for Separation Science

Total Page:16

File Type:pdf, Size:1020Kb

The Development of Nanomaterials and “Green” Methods for Separation Science The Development of Nanomaterials and “Green” Methods for Separation Science DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Michael C. Beilke Graduate Program in Chemistry The Ohio State University 2015 Dissertation Committee: Dr. Susan V. Olesik, Advisor Dr. Heather Allen Dr. Vicki Wysocki Dr. Abigail Shoben Copyright by Michael C. Beilke 2015 Abstract A primary focus of current separations research is directed toward the reduction of both the diameter and particle size distribution of the material utilized as a stationary phase. The work reported herein follows a common theme. Research is focused on novel approaches for the application of electrospun nanomaterials or the search for improved efficiency in separation science. Electrospinning is a cost-effective and simple technique that relies on repulsive electrostatic forces to generate nanofibers from a conductive polymeric solution. Electrospun nanofibers have proven to be an effective stationary phase in ultra-thin layer chromatography (UTLC), giving more efficient separations in shorter analysis time than traditional particle-based stationary phases. This technology was further enhanced by aligning the nanofibrous mats in a single direction. Aligned electrospun UTLC (AE- UTLC) devices showed improved performance relative to non-aligned electrospun (E- UTLC) phases, demonstrating higher separation efficiency and reduced time of analysis. A major disadvantage of conventional TLC analysis is that the mobile phase velocity decreases with increasing separation distance. Here, the chromatographic performance of electrospun (UTLC) stationary phases were explored with induced forced-flow of mobile phase across the stationary phase with applied potential. This type of forced-flow is used in planar electrochromatography (PEC). Compared to UTLC, improved efficiency resulted from analytes with greater migration distance. ii Utilization of nanofibers to provide a co-reactant electrochemiluminescent determination for nucleobases was examined. Nafion, a cation-exchange polymer becomes electrospun with the aid of a second polymer, poly(acrylic) acid (PAA). Good linear agreement between concentration and the evolution of electrochemiluminescent signal for guanine solutions are demonstrated. A “green” hydrophilic interaction chromatography (HILIC), a liquid-liquid partition mechanism, method for separating mixtures with broad ranges in polarities is explored using enhanced-fluidity mobile phases. Under HILIC conditions, analytes elute with increasing polarity. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquefied gas to conventional liquid mobile phases. The liquefied gas provides greater diffusivity and lower viscosity character to the mobile phase. The impact of carbon dioxide addition to a methanol:water mobile phase was studied to optimize HILIC conditions. Additionally, the buffer type, pH, and ionic strength were adjusted to achieve optimal chromatographic performance. For the first time a separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved in 16 minutes with greater than 1.3 resolution for all analyte pairs. An optimized separation using carbon dioxide:methanol:water mobile phase was compared to methanol:water and acetonitrile:water mobile phases. Based on chromatographic performance parameters (efficiency, resolution, and speed of analysis) and the environmental impact of the mobile phase mixtures, carbon dioxide:methanol:water mixtures are preferred over acetonitrile:water or methanol:water mobile phases for the separation of mixtures of nucleosides and nucleotides. The separation of 16 nucleosides and nucleotides, iii representing a large group of compounds with wide ranging polarities, is taken as an example to assess the usefulness of EFL-HILIC. Addition of gradient elution conditions were also explored to provide reduced analysis time for the wide ranging polar mixture. iv Dedication This document is dedicated to my beautiful wife and our sugar bear along with family lost along my graduate school journey. Grandpa, I miss you and can’t wait to see you again. Aliyah, I will always love you. v Acknowledgments I would like to acknowledge all members of the Olesik research group both past and present for their support both professionally and personally. I would like to especially recognize Cherie (Owens) Pomeranz, Toni Newsome, Martin “The Mick” Beres, and Joe Zewe for helping me get through graduate school. Chemistry talk with Hui Wang during “tea time” helped to not only mold me into a better chemist but also a better person. I wish to extend a special thanks to my research advisor; Dr. Susan Olesik, for her guidance. Thank you for exemplifying what is takes to always forge ahead in your pursuits despite any perceived obstacles encountered along the way. Lastly, I could never have made it this far in school without my family. Mom you are my rock, I am me because of you, thank you. Christina, you my dear sister are special. You have always been there, no matter what, no questions asked, thank you. Granny, I love watching baseball and chatting sports with you (yes he did play for Green Bay 5 year ago), thank you. Dad, your stories are ridiculous. The burger was worth it. The screen was tiny. My cribbage board was finer, thank you. Gary, you have showed me, unwillingly as it may be, how to be responsible and to do things right the first time, thank you. vi Vita 2005................................................................B.S. Chemistry, Missouri Southern State University, Joplin, MO 2007................................................................M.S. Chemistry, Saint Louis University, St. Louis, MO 2008................................................................Analytical Chemist, Aerotek, Chesterfield, MO 2009-2010 ......................................................Graduate Teaching Assistant, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 2010-2014 ......................................................Nanoscale Science and Engineering Fellow, The Ohio State University, Columbus, OH 2014-Present ..................................................Graduate Research Assistant, The Ohio State University, Columbus, OH Publications M.C. Beilke, M.J. Beres, S.V. Olesik, Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of RNA nucleosides and nucleotides: a “green” technique, J. Chromatogr. A, (submitted 2015). M.C. Beilke, J.W. Zewe, J.E. Clark, S.V. Olesik, Aligned electrospun nanofibers for ultra-thin layer chromatography, Anal. Chim. Acta, (2013), 761, 201-208. vii M.C. Beilke, T.L. Klotzbach, B.L. Treu, D. Sokic-Lazic, R.L. Arechedarra, J. Wildrick, M.J. Moehlenbrock, M. Germain, S.D. Minteer, “Enzymatic biofuel cells,” in Micro Fuel Cells, Burlington, Mass., Elsevier Inc., 2009, pp. 179-241. M.C. Beilke, S.D. Minteer, Immobilization of glycolysis enzymes in hydrophobically modified Nafion, PMSE Preprints, (2006), 94, 556-557. Presentations M.C. Beilke, S.V. Olesik, Electrospun silica nanoparticle/PVP nanofiber mat as a planar electrochromatography stationary phase, The Pittsburgh Conference 2015, New Orleans, LA. M.C. Beilke, S.V. Olesik, Development of electrochemiluminescent electrospun nanofibers, The Pittsburgh Conference 2014, Chicago, IL. M.C. Beilke, S.V. Olesik, Characterization and implementation of ion exchange electrospun nanofibers for nucleic acid detection, The Pittsburgh Conference 2012, Orlando, FL. M.C. Beilke, S.V. Olesik, DNA detection using electrochemiluminescence from electropun nanofibers, The Pittsburgh Conference 2011, Atlanta, GA. M.C. Beilke, S.D. Minteer, Glycolysis biomimic in hydrophobically modified Nafion, The Pittsburgh Conference 2007, Chicago, IL. M.C. Beilke, D. Sokic-Lazic, S.D. Minteer, Enzymatic biomimics for biofuel cell application, The Fuel Cell Seminar 2006, Honolulu, HI. M.C. Beilke, S.D. Minteer, Immobilization of glycolysis enzymes in hydrophobically modified Nafion, ACS National Meeting 2006, Atlanta, GA. Fields of Study Major Field: Chemistry viii Table of Contents Abstract ............................................................................................................................... ii Dedication ........................................................................................................................... v Acknowledgments.............................................................................................................. vi Vita .................................................................................................................................... vii Publications ....................................................................................................................... vii Presentations .................................................................................................................... viii Table of Contents ............................................................................................................... ix List of Tables ................................................................................................................... xiv List of Figures .................................................................................................................. xvi CHAPTER 1: INTRODUCTION ...................................................................................... 1 1.1 Overview ......................................................................................................................
Recommended publications
  • 9.2.3.7 Retention Parameters in Column Chromatography
    9.2.3.7 Retention Parameters in Column Chromatography Retention parameters may be measured in terms of chart distances or times, as well as mobile phase volumes; e.g., tR' (time) is analogous to VR' (volume). If recorder speed is constant, the chart distances are directly proportional to the times; similarly if the flow rate is constant, the volumes are directly proportional to the times. Note: In gas chromatography, or in any chromatography where the mobile phase expands in the column, VM, VR and VR' represent volumes under column outlet pressure. If Fc, the carrier gas flow rate at the column outlet and corrected to column temperature (see Flow Rate), is used in calculating the retention volumes from the retention time values, these correspond to volumes at column temperatures. The various conditions under which retention volumes (times) are expressed are indicated by superscripts: thus, a prime ('; as in VR') refers to correction for the hold-up volume (and time) while a circle (º; as in VRº) refers to correction for mobile-phase compression. In the case of the net retention volume (time) both corrections should be applied: however, in order not to confuse the symbol by the use of a double superscript, a new symbol (VN, tN) is used for the net retention volume (time). Hold-up Volume (Time) (VM, tM ) The volume of the mobile phase (or the corresponding time) required to elute a component the concentration of which in the stationary phase is negligible compared to that in the mobile phase. In other words, this component is not retained at all by the stationary phase.
    [Show full text]
  • Quantitative Thin-Layer Chromatography
    Quantitative Thin-Layer Chromatography A Practical Survey Bearbeitet von Bernd Spangenberg, Colin F. Poole, Christel Weins 1. Auflage 2011. Buch. xv, 388 S. Hardcover ISBN 978 3 642 10727 6 Format (B x L): 15,5 x 23,5 cm Gewicht: 839 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Analytische Chemie > Instrumentelle Chemische Analytik, Chromatographie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Theoretical Basis of Thin Layer Chromatography (TLC) 2.1 Planar and Column Chromatography In column chromatography a defined sample amount is injected into a flowing mobile phase. The mix of sample and mobile phase then migrates through the column. If the separation conditions are arranged such that the migration rate of the sample components is different then a separation is obtained. Often a target compound (analyte) has to be separated from all other compounds present in the sample, in which case it is merely sufficient to choose conditions where the analyte migration rate is different from all other compounds. In a properly selected system, all the compounds will leave the column one after the other and then move through the detector. Their signals, therefore, are registered in sequential order as a chromatogram. Column chromatographic methods always work in sequence. When the sample is injected, chromatographic separation occurs and is measured.
    [Show full text]
  • 1 Novel Nanomaterials and Chromatographic System for Enhanced Separation and Characterization of Biomacromolecules and Nanoparti
    Novel Nanomaterials and Chromatographic System for Enhanced Separation and Characterization of Biomacromolecules and Nanoparticles Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yanhui Wang, M.S. Graduate Program in Chemistry The Ohio State University 2018 Dissertation Committee Dr. Susan V. Olesik, Advisor Dr. Philip Grandinetti Dr. Abraham Badu-Tawiah 1 Copyrighted by Yanhui Wang 2018 2 Abstract With recent advances in technologies and methodologies, proteomics, which is the large-scale analysis of proteins, has been continuously developed in the field of bioinformatics, biotherapeutics and biomarker discovery. Top-down proteomics, which focuses on the analysis of intact proteins, has emerged within the last decade with significant advantages over the traditional bottom-up approach, such as the characterization of labile protein structures and the universal detection of all existing modifications. The front-end separation technologies for intact proteins are of the primary importance for the successful implementation of top-down proteomics. The work reported herein focuses the development of miniaturized liquid chromatography (LC) system and an effective and eco-friendly solvent system to address the challenges faced in intact protein separation and characterization. Electrospun nanofibers featuring effective chromatographic performance as the stationary phase of the ultrathin layer chromatography (UTLC) was developed in this work for the separation of amino acids and intact proteins. Nafion, a synthetic perfluorinated cationic polymer, was incorporated into a carrier polymer, polyacrylonitrile (PAN), to fabricate the nanofibrous stationary phase via electrospinning method. The separation of charged amino acids and proteins on the Nafion-PAN UTLC was based on the ion exchange mechanism (IEX).
    [Show full text]
  • Appendix 1 Glossary of Chromatographic Terms
    Appendix 1 Glossary of chromatographic terms Definition of chromatography, IUPAC (1993) "Chromatography is a physical method of separation in which the components to be separated are distributed between two phases, one of which is stationary while the other moves in a definite direction." Adjusted retention time t~, also known as corrected retention time, takes into account the dead time tM of the column; see retention time and dead time. t~ = tR - tM Adsorption chromatography mode of separation in which a solute or sample components are attracted to a solid surface, the stationary phase, by adsorp­ tion retention forces, the mobile phase may be a gas or liquid. Adsorption retention forces attraction of a solute onto a solid stationary phase due to microporosity (pores 5~ 50 nm) and polar character (formation of van der Waal's forces and hydrogen bonding) of the surface, described by Langmuir isotherms (see isotherms). Affinity chromatography separation effected by affinity of solute molecules for a bio-specific stationary phase consisting of complex organic molecules bonded to an inert support material, e.g. separation of proteins on a bonded antibody stationary phase. The technique is really selective filtration rather than chromatography. Alumina A120 3, slightly basic adsorbent used in liquid chromatography, particularly TLC, as a less acidic alternative to silica gel. Anion exchange chromatography see ion exchange chromatography. Asymmetry, As term used to describe non-symmetrical peaks measured by obtaining the ratio at 10% peak height h of the forward part, a and the rear part, b of a peak measured from the perpendicular line drawn from the peak maxima to the baseline.
    [Show full text]
  • Development of Nanomaterial Supports for the Study of Affinity
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Chemistry, Department of Theses - Chemistry Department 4-2019 Development of Nanomaterial Supports for the Study of Affinity-Based Analytes Using Ultra-Thin Layer Chromatography Allegra Pekarek University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemistrydiss Part of the Analytical Chemistry Commons Pekarek, Allegra, "Development of Nanomaterial Supports for the Study of Affinity-Based Analytes Using Ultra-Thin Layer Chromatography" (2019). Student Research Projects, Dissertations, and Theses - Chemistry Department. 93. https://digitalcommons.unl.edu/chemistrydiss/93 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DEVELOPMENT OF NANOMATERIAL SUPPORTS FOR THE STUDY OF AFFINITY-BASED ANALYTES USING ULTRA- THIN LAYER CHROMATOGRAPHY By Allegra Pekarek A Thesis Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Chemistry Under the Supervision of Professor David S. Hage Lincoln, Nebraska April 2019 DEVELOPMENT OF NANOMATERIAL SUPPORTS FOR THE STUDY OF AFFINITY-BASED ANALYTES USING ULTRA-THIN LAYER CHROMATOGRAPHY Allegra Pekarek, M.S. University of Nebraska, 2019 Advisor: David Hage Ultra-thin layer chromatography (UTLC) is a growing field in analytical separations. UTLC is a branch of planar and liquid chromatography that is related to thin layer chromatography.
    [Show full text]
  • Nanostructured Diatom Biosilica Stationary Phase for Thin-Layer Chromatography Separation of Polar, Ionic Analytes
    AN ABSTRACT OF THE THESIS OF Joseph A. Kraai for the degree of Master of Science in Chemical Engineering presented on October 9, 2019. Title: Nanostructured Diatom Biosilica Stationary Phase for Thin-layer Chromatography Separation of Polar, Ionic Analytes. Abstract approved: _____________________________________________________ Gregory L. Rorrer Alan X. Wang Despite an expansive selection of available thin-layer chromatography (TLC) stationary phases, almost none are Well-suited for separation of polar, ionic analytes. This Work demonstrated that a highly porous stationary phase layer comprised solely of nanostructured biosilica frustules, isolated from living Pinnularia sp. diatom microalgae, improved TLC separation of the polar, ionic analytes Malachite Green (MG) and Fast Green FCF (FG) relative to silica gel. Intact biosilica frustules Were isolated from Pinnularia sp. cell culture via oxidation With acidified hydrogen peroxide. Diatom biosilica TLC layers Were fabricated using a facile, binder-free, drop-cast technique. FT-IR spectroscopy was employed to compare surface chemistries of biosilica vs. commercial silica gel TLC layers. Pore structure parameters of the stationary phases Were characteriZed via SEM imaging as Well as experimental measurement and analytical modeling of capillary flow through the films. TLC separations of MG and FG Were performed on both stationary phases using tWo different mobile phase mixtures (9:1:1 v/v 1-butanol:ethanol:Water and 5:1:2 v/v 1- butanol:acetic acid:Water). Plate height versus solvent front migration distance relationships Were measured and mathematically modeled for the reference analytes MG and FG on both stationary phases to characteriZe TLC separation efficiencies. Although both stationary phases Were composed of amorphous silica rich in silanol groups With particle siZe of 10–12 µm, diatom biosilica frustules Were highly porous, hollow shells With surface structure dominated by 200 nm pore arrays.
    [Show full text]
  • Investigation of Glycosyltransferases from Oat
    Investigation of glycosyltransferases from oat Thomas LOUVEAU A thesis submitted to the University of East Anglia for the degree of Doctor of Philosophy University of East Anglia John Innes Centre Norwich, the United Kingdoms © October 2013 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there-from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. I Abstract Plants produce a diversity of secondary metabolites crucial for their survival into specific ecological niches. Many of these compounds are glycosides generated by the action of family one UDP-dependant glycosyltransferases (UGTs). Glycosylated products of UGTs are known to be essential for reproductive fitness, defence against pathogens, and signalling; UGTs also have a role in the detoxification of xenobiotics. To date, little is known about monocot UGTs compare to their dicot counterparts, despite their potential role in defence and modification of health-promoting component of cereals essential to human diet. This thesis focuses on identification and functional investigation of UGTs expressed in in the diploid oat species Avena strigosa. Chapters 1 and 2 consist of the General Introduction and Material and Methods, respectively. In chapter 3, a systematic analysis of root-expressed UGTs was carried out using transcriptomic and proteomic approaches. A subset of UGTs was then selected for biochemical analysis. Of particular interest were candidates for glycosylation of avenacin, an antimicrobial triterpenoid glycoside that protects oat against fungi infection.
    [Show full text]
  • Lab.2. Thin Layer Chromatography
    Lab.2. Thin layer chromatography Key words: Separation techniques, compounds and their physicochemical properties (molecular volume/size, polarity, molecular interactions), mobile phase, stationary phase, liquid chromatography, thin layer chromatography, column chromatography, retardation factor, elution, chromatogram development, qualitative and quantitative analysis with chromatography techniques, eluotropic series, elution strength. Literature: D.A. Skoog, F.J. Holler, T.A. Nieman: Principles of Instrumental Analysis; 637 - 718 Search on www pages “Thin-layer chromatography principles” For example: MIT Digital Lab Techniques Manual you find on http://www.youtube.com/watch?v=e99nsCAsJrw&feature=player_detailpage Basic equipment for modern thin layer chromatography: www.camag.com/downloads/free/brochures/CAMAG-basic-equipment-08.pdf other examples: en.wikipedia.org/wiki/Thin_layer_chromatography www.chemguide.co.uk/analysis/chromatography/thinlayer.html www.wellesley.edu/Chemistry/chem211lab/Orgo_Lab_Manual/Appendix/Techniques/TLC/th in_layer_chrom.html Theoretical background Chromatography is the separation technique in which separated solutes are distributed between two phases: stationary and mobile. The first phase can pose a layer of sorbent/adsorbent (0.1 to 0.25 mm in thickness) fixed to a carrier plate made of glass, plastic or aluminum (used in technique named as thin-layer chromatography, TLC) or placed inside of a steel tube as a column bed (used in a technique named as high-performance liquid chromatography, HPLC, or generally in column liquid chromatography, LC). The second phase, mentioned above, constitute liquid or gas phase. Various organic (e.g. methanol, hexane, acetone) and inorganic (e.g. water) solvents or their mixtures (e.g. acetone and Lab.2. Thin layer chromatography hexane, methanol and water) can be used as the mobile phases.
    [Show full text]
  • THE Technique of Chromatography Is Vastly Used for the Separation
    UNIT-5 Chromatography HE technique of chromatography is vastly used for the separation, purification and identification of compounds. According to IUPAC, Tchromatography is a physical method of separation in which the components to be separated are distributed between two phases, one of which is stationary while the other moves in a definite direction. The stationary phase is usually in the form of a packed column (column chromatography) but may take other forms such as flat sheet or a thin layer adhering to a suitable form of backing material such as glass (thin-layer chromatography). In column chromatography, mobile phase flows through the packed column, while in thin layer chromatography, mobile phase moves by capillary action. In this the thin film stationary phase may be either a liquid or a solid and the mobile phase may be a liquid or a gas. Different possible combinations of these phases give rise to principal techniques of chromatography. Two of these are described below. In partition chromatography, stationary phase is thin film of liquid adsorbed on an essentially inert support. Mobile phase may be a liquid or a gas. Paper chromatography is an example of partition chromatography in which liquid present in the pores of paper is stationary phase and some other liquid is movable phase. Separation depends upon partition of substance between two phases and the adsorption effects of inert support on compounds undergoing chromatographic separation. In adsorption chromatography, the stationary phase is a finely divided solid adsorbent and the mobile phase is usually a liquid. Process of separation depends upon selective adsorption of components of a mixture on the surface of a solid.
    [Show full text]
  • Development of Novel Analytical Methods with the Aim of Forensic
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2016 Development of Novel Analytical Methods with the Aim of Forensic Analyte Detection using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, and Magneto-Elastic Wire Sensing Nichole Ann Crane University of Tennessee- Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Analytical Chemistry Commons Recommended Citation Crane, Nichole Ann, "Development of Novel Analytical Methods with the Aim of Forensic Analyte Detection using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, and Magneto- Elastic Wire Sensing. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/3688 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Nichole Ann Crane entitled "Development of Novel Analytical Methods with the Aim of Forensic Analyte Detection using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, and Magneto-Elastic Wire Sensing." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Michael J. Sepaniak, Major Professor We have read this dissertation and recommend its acceptance: Bhavya Sharma, Jimmy W.
    [Show full text]
  • Short Communications Pressurized Planar Electrochromatography As the Mode for Determination of Solvent Composition–Retention Relationships in Reversed-Phase Systems
    Short Communications Pressurized Planar Electrochromatography as the Mode for Determination of Solvent Composition–Retention Relationships in Reversed-Phase Systems Tadeusz H. Dzido*, Paweł W. Płocharz, Anna Klimek-Turek, Andrzej Torbicz, and Bogusław Buszewski Key Words Pressurized planar electrochromatography PPEC Retention–composition relationship 1 Introduction (HPLC) and capillary electrochromatography (CEC). Because the last two modes [8, 9] and planar chromatography [10] are Pressurized planar electrochromatography (PPEC) was intro- used for determination of solvent composition–retention rela- duced by Nurok et al. [1]. The mobile phase in PPEC is driven tionships, the question arises, why do not use PPEC for determi- by the electroosmotic effect through the adsorbent layer of the nation of solvent composition–retention relationships? In the chromatographic plate. A special plastic film or plate is pressed paper we report an attempt to find a preliminary answer to this on to the adsorbent layer to eliminate the vapor phase and flow question for the first time. of mobile phase to the surface of the adsorbent layer. The paper The most popular equation used for correlation of retention and mentioned above, and others [2–6], indicate that this method is mobile phase concentration in reversed-phase systems is: characterized by high-efficiency separation, making it very attractive for application in laboratory practice. Contemporary log k = log kw – mC (1) applications have, however, been mainly restricted to separation where kw is the retention factor of the compound in pure water or of test solutes to show the advantages, practical possibilities, buffer as the mobile phase, m is the slope, and C is the concen- and efficiency of PPEC in comparison with conventional planar tration [%, v/v] of organic component (modifier) in the water (or chromatography (TLC).
    [Show full text]
  • Phytochemical Analyses of Bioactive Compounds in the Roots of Cassia
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2009 Phytochemical Analyses of Bioactive Compounds in the Roots of Cassia Alata Linn and the Anti- Angiogenic Evaluation of Rhein as a Therapeutic Agent against Breast Cancer Cells Vivian Esther Fernand Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Fernand, Vivian Esther, "Phytochemical Analyses of Bioactive Compounds in the Roots of Cassia Alata Linn and the Anti-Angiogenic Evaluation of Rhein as a Therapeutic Agent against Breast Cancer Cells" (2009). LSU Doctoral Dissertations. 2412. https://digitalcommons.lsu.edu/gradschool_dissertations/2412 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PHYTOCHEMICAL ANALYSES OF BIOACTIVE COMPOUNDS IN THE ROOTS OF CASSIA ALATA LINN AND THE ANTI-ANGIOGENIC EVALUATION OF RHEIN AS A THERAPEUTIC AGENT AGAINST BREAST CANCER CELLS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Vivian Esther Fernand B.S. University of Suriname, 1998 M.S. Louisiana State University, 2003 May, 2009 DEDICATIO To my LORD and Savior, the Lover of my soul: Jesus Christ LORD GOD Almighty, all throughout my life and education, as I went through the valleys and hills, You have been always there for me.
    [Show full text]