Coal Workers' Pneumoconiosis: an Australian Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Coal Workers' Pneumoconiosis: an Australian Perspective Clinical focus Coal workers’ pneumoconiosis: an Australian perspective neumoconiosis” refers to a group of fibrotic Summary lung diseases caused by the retention of dust “ ’ Coal workers’ pneumoconiosis (CWP) is an in the lung. Coal workers pneumoconiosis P untreatable but preventable lung disease arising “ ” (CWP), also known as black lung , is an irreversible from chronic inhalation of coal dust. interstitial lung disease resulting from chronic inhalation Recent reports of CWP in Queensland, along with 1 fi of coal dust. CWP has a long history, with the rst case international data, suggest that there is a resurgence 2 being reported in 1831. Workers exposed to coal dust are in pneumoconiosis. 1 at risk of a range of chronic lung diseases including CWP, The prevalence of CWP varies considerably between 1 3 silicosis, mixed dust pneumoconiosis, chronic obstruc- countries. In Australia, there is no mandatory tive pulmonary disease4 and chronic bronchitis.4 In cases reporting system and no national data on the prevalence of CWP. Graeme R Zosky of heavy dust exposure, CWP may develop into pro- 5 PhD, MBiostat1 gressive massive fibrosis (PMF), which can be fatal. In The symptoms and manifestations of CWP vary 6 depending on the composition of the inhaled dust, Ryan F Hoy 2013, CWP resulted in 25 000 deaths globally. Most cases MB BS, FRACP, MOccEnvHlth2 of CWP occur in the setting of poor occupational hygiene duration of exposure, stage of disease and host- and dust control.7 related factors. CWP may develop into progressive Elizabeth J Silverstone massive fibrosis (PMF), which can be fatal. MB BS, FRANZCR3 Recent reports of CWP in Australia — six confirmed cases Radiological assessment should be performed Fraser J Brims were reported by nominated medical advisers in the according to evidence-based standards using the MB ChB, MD, FRACP4,5 Queensland coal industry between May 2015 and ILO (International Labour Office) International Susan Miles February 20168 — are highly concerning and point to a Classification of Radiographs of Pneumoconioses. BMed, FRACP6,7 potential decline in exposure control in Australian mines As preventing exposure to coal dust prevents CWP, it Anthony R Johnson or a failure of the screening process, or both. If true, this is is important to implement and enforce appropriate MB BS, MOHS, FRACP8 particularly disappointing given the historical success of standards limiting exposure. In Australia, these Peter G Gibson Australian systems, such as the Joint Coal Board (formed standards currently vary between states and are not MB BS, FRACP6 in keeping with international understanding of the in 19469), in reducing the burden of lung disease in the levels of coal dust that cause disease. Deborah H Yates coal industry through comprehensive screening pro- MB BChir, MD, FRACP9 Longitudinal screening programs are crucial for grams and oversight of dust exposure control. Given the monitoring the health of coal workers to identify 1 School of Medicine, potential resurgence of CWP, it is important that we un- individuals with early-stage disease and prevent University of Tasmania, derstand the potential determinants of disease preven- Hobart, TAS. progression from mild disease to PMF. 2 Allergy, Immunology and tion. Here, we consider CWP in the Australian context but We recommend: Respiratory Medicine, do not discuss the other lung diseases attributable to coal < Alfred Hospital, standardisation of coal dust exposure limits, with Melbourne, VIC. dust exposure. harmonisation to international regulations; 3 Department of < implementation of a national screening program Medical Imaging, St Vincent’s Hospital, for at-risk workers, with use of standardised Sydney, NSW. Epidemiology of coal workers’ questionnaires, imaging and lung function testing; 4 Department of pneumoconiosis < development of appropriate training materials to Respiratory Medicine, Sir Charles Gairdner Hospital, assist general practitioners in identifying Perth, WA. There is a strong relationship between inhaled dust dose pneumoconiosis; and 5 School of 10 < a system of mandatory reporting of CWP to a Population Health, and the risk of developing CWP. Airborne respirable University of dust in coal mines consists of a number of dusts that are centralised occupational lung disease register. Western Australia, Perth, WA. potentially dangerous to the lung. It originates from 6 Department of Respiratory within the coal seam or from adjacent fractured rock and and Sleep Medicine, is caused by coal cutting and other operations such as roof John Hunter Hospital, Newcastle, NSW. bolting. The proportion of different dusts affects the type 7 Faculty of Medicine and and severity of lung disease that may develop. reader technique may explain the some of the increase in Public Health, CWP, the concomitant increase in PMF suggests that this University of Newcastle, In 1990 and 2013, 29 000 and 25 000 deaths, respectively, Newcastle, NSW. is a true increase in disease prevalence. In the 2010 ex- 8 Thoracic Medicine, were attributed to CWP globally, compared with 55 000 plosion that killed 29 miners in West Virginia, post mor- Liverpool Hospital, and 46 000 for silicosis.6 In the United States, there has Sydney, NSW. tem examination showed pathological changes consistent been a resurgence of CWP. While there was a decrease in 9 Department of with CWP in 17 of 24 victims; 16 of these workers had Thoracic Medicine, the prevalence of CWP in coal miners in the US from the started working after modern dust limits were applied.12 St Vincent’s Hospital, Sydney, NSW. 1970s to 1990s (from 6.5% to 2.1%), prevalence then increased from the 1990s to the 2000s (to 3.2%).11 This was The recent increase in CWP is concerning and has been deborahy88@ hotmail.com accompanied by a substantial increase in the prevalence attributed to several potential causes: changes in the of coal mine workers with PMF (1990s, 0.14%; 2000s, physicochemical characteristics of the dust, reduction in doi: 10.5694/mja16.00357 0.31%).11 While improvements in the quality of x-rays and dust suppression activities, and increased workload (ie, 414 MJA 204 (11) j 20 June 2016 Clinical focus increased exposure).11 CWP is still an important occupa- gas trapping and impaired diffusion capacity.22 Restric- tional lung disease, even in developed countries, and any tive deficits may also occur as a result of fibrosis,3 and late reduction in vigilance regarding inhaled coal dust is likely complications include pulmonary hypertension,23 cor to result in a significant increase in morbidity and pulmonale24 and death. The symptoms of CWP are non- mortality. specific and identical to those of lung disease from other causes. Chronic bronchitis and emphysema are also well The prevalence of CWP varies considerably by country. documented to occur with coal dust exposure,25 further In the United Kingdom, the incidence of CWP declined complicating diagnosis. dramatically between 2004 and 2008 and has remained relatively stable since; it is unclear how these data reflect Pure carbon, the main constituent of coal, is largely inert. CWP prevalence in coal workers.13 In some countries, the However, the physicochemical properties of processed prevalence of CWP in coal workers remains high, such as coal are complex and include organic and inorganic China (6.02%) and India (3.03%).14,15 In Australia, there contaminants with known pro-inflammatory and carci- are very few data regarding the true prevalence of CWP nogenic properties, such as silica, iron, cadmium, lead, in coal workers, although long-term data from Coal Ser- kaolin, pyrite and polycyclic aromatic hydrocarbons.1,26 vices (which replaced the Joint Coal Board) suggest that The nature and extent of these, along with the physical there have been no new cases of CWP in New South Wales properties of the carbon particles, have a significant since the 1980s.16 It is difficult to access information about “As the only impact on the risk of developing pneumoconiosis.27 cases due to a lack of mandatory reporting in Australia. cause of CWP Crystalline free silica, the commonest contaminant, independently causes silicosis28 and is often found in high One retrospective study of pneumoconiosis mortality in is coal dust, quantities in dust associated with coal mining.29 Thus, Australia found that, of the more than 1000 deaths prevention is CWP and silicosis have significant overlap. attributed to pneumoconiosis between 1979 and 2002, only 6% were classified as CWP, with the number of fa- straightforward CWP results from the aberrant repair processes that occur 17 talities decreasing steadily over time. Data from the — preventing when prolonged exposure leads to the activation of pro- fl fi 30 National Occupational Health and Safety Commission, exposure to in ammatory and pro- brotic pathways in the lung. based on potentially unreliable workers compensation Coal dust stimulates pathways that lead to fibrosis due statistics, suggest that between 2001 and 2003 there were coal dust to the cytotoxic effects of the particles31 and the release of 750 new cases of pneumoconiosis (including CWP, prevents pro-inflammatory and pro-fibrotic mediators by cells asbestosis and silicosis), with 92 deaths in 2003.18 Mor- 30 disease” responding to the particles. Central to this is the capacity tality from pneumoconiosis in this period of < 1 per of coal particles to produce abundant reactive oxygen 100 000 population is in stark contrast to the 1950s rate of species32 and induce oxidative stress.33 3.9 per 100 000.18 Again, it is difficult to determine the current prevalence of CWP among coal workers based The manifestations of CWP can vary greatly between individuals, depending on the composition of the dust on these data, and it is likely that CWP incidence is 34 underestimated. One study comparing the prevalence of and duration of exposure, as well as host-related factors. CWP in the US and NSW suggested that CWP was almost Accumulation of dust occurs initially in the walls of the absent in Australian coal workers (prevalence < 0.5%).19 respiratory bronchioles, the adventitia of the blood This is despite documented higher levels of dust in vessels and the bronchoalveolar canals.
Recommended publications
  • Occupational Airborne Particulates
    Environmental Burden of Disease Series, No. 7 Occupational airborne particulates Assessing the environmental burden of disease at national and local levels Tim Driscoll Kyle Steenland Deborah Imel Nelson James Leigh Series Editors Annette Prüss-Üstün, Diarmid Campbell-Lendrum, Carlos Corvalán, Alistair Woodward World Health Organization Protection of the Human Environment Geneva 2004 WHO Library Cataloguing-in-Publication Data Occupational airborne particulates : assessing the environmental burden of disease at national and local levels / Tim Driscoll … [et al.]. (Environmental burden of disease series / series editors: Annette Prüss-Ustun ... [et al.] ; no. 7) 1.Dust - adverse effects 2.Occupational exposure 3.Asthma - chemically induced 4.Pulmonary disease, Chronic obstructive - chemically induced 5.Pneumoconiosis - etiology 6.Cost of illness 7.Epidemiologic studies 8.Risk assessment - methods 9.Manuals I.Driscoll, Tim. II.Prüss-Üstün, Annette. III.Series. ISBN 92 4 159186 2 (NLM classification: WA 450) ISSN 1728-1652 Suggested Citation Tim Driscoll, et al. Occupational airborne particulates: assessing the environmental burden of disease at national and local levels. Geneva, World Health Organization, 2004. (Environmental Burden of Disease Series, No. 7). © World Health Organization 2004 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]).
    [Show full text]
  • Pneumoconiosis
    Prim Care Respir J 2013; 22(2): 249-252 PERSPECTIVE Pneumoconiosis *Paul Cullinan1, Peter Reid2 1 Consultant Physician, Royal Brompton and Harefield NHS Foundation Trust, London, UK 2 Consultant Physician, Western General Hospital, Edinburgh, UK Introduction Figure 1. Asbestosis; the HRCT scan shows the typical The pneumoconioses are parenchymal lung diseases that arise from picture of subpleural fibrosis (solid arrow); in addition inhalation of (usually) inorganic dusts at work. Some such dusts are there is diffuse, left-sided pleural thickening (broken biologically inert but visible on a chest X-ray or CT scan; thus, while arrow), characteristic too of heavy asbestos exposure they are radiologically alarming they do not give rise to either clinical disease or deficits in pulmonary function. Others – notably asbestos and crystalline silica – are fibrogenic so that the damage they cause is through the fibrosis induced by the inhaled dust rather than the dust itself. Classically these give rise to characteristic radiological patterns and restrictive deficits in lung function with reductions in diffusion capacity; importantly, they may progress long after exposure to the causative mineral has finished. In the UK and similar countries asbestosis is the commonest form of pneumoconiosis but in less developed parts of the world asbestosis is less frequent than silicosis; these two types are discussed in detail below. Other, rarer types of pneumoconiosis include stannosis (from tin fume), siderosis (iron), berylliosis (beryllium), hard metal disease (cobalt) and coal worker’s pneumoconiosis. Asbestosis Clinical scenario How is the diagnosis made? Asbestosis is the ‘pneumoconiosis’ that arises from exposure to A man of 78 reports gradually worsening breathlessness; he has asbestos in the workplace.1 The diagnosis is made when, on the no relevant medical history of note and has never been a regular background of heavy occupational exposure to any type of asbestos, smoker.
    [Show full text]
  • Pneumoconiosis in Coalminers
    6I8 POSTGRADUATE MEDICAL JOURNAL December I949 Postgrad Med J: first published as 10.1136/pgmj.25.290.618 on 1 December 1949. Downloaded from IRVINE, L. G., SIMSON, F. W., and STRACHAN, A. S. (1930), NEW YORK STATE DEPARTMENT OF LABOUR (1949), Proc. Intern. Conf. on Silicosis in Johannesburg, I.L.O. Studies Monthly Review, 28, No. 4, April. and Reports, Series F. (Industrial Hygiene), No. I3, p. 259. PERRY, K. M. A. (1948), Proc. Ninth Intern. Cong. of Ind. Med., JONES, W. R. (I933), ,. of Hyg., 33, 307. London (in the press). KETTLE, E. H. (I932), Y. Path. and Bat., 35, 395. KETTLE, E. H. (I934), Ibid., 38, 20o. POLICARD, A. (1947), Proc. Conf. of the Institution of Mining KING, E. J. (I945), M.R.C. Special Report Series, No. 250, p. 73. Engineers and Institution of Mining and Metalurgy, London, KING, E. J. (I947) Occ. Med., 4, 26. P. 24. KING, E. J., WRI6HT, B. M., and RAY, S. C. (I949), Paper read ROGERS, E. (i944), Paper read to the British Tuberculosis Associa- to the Path. Soc., Great Britain, January, 1949. tion. McLAUGHLIN, A. I. G., ROGERS, E., and DUNHAM, K. C. (I949), Brit. 3Y. Ind. Med., 6, I84. SHAVER, C. G. (1948), Radiology, 50, 760. MINERS' PHTHISIS MEDICAL BUREAU OF SOUTH SHAVER, C. G., and RIDDELL, A. R. (I947), J. Id. Hyg. and AFRICA (1946), Report for the Three Years ending Jy 31, Tox., 29, 145. I944 (South African Government Printer). VORWALD, A. J., and CARR, J. W. (1938), Amer. J7. Path., 14,49. PNEUMOCONIOSIS IN COAL MINERS By J.
    [Show full text]
  • Progressive Plasterer's Pneumoconiosis Complicated By
    Kurosaki et al. BMC Pulmonary Medicine (2019) 19:6 https://doi.org/10.1186/s12890-018-0776-4 CASEREPORT Open Access Progressive plasterer’s pneumoconiosis complicated by fibrotic interstitial pneumonia: a case report Fumio Kurosaki1,2*, Tamiko Takemura3, Masashi Bando1, Tomonori Kuroki1,2, Toshio Numao2, Hiroshi Moriyama4 and Koichi Hagiwara1 Abstract Background: Although the prevalence of pneumoconiosis has been decreasing due to improvements in working conditions and regular health examinations, occupational hygiene measures are still being established. Plasterers encounter a number of hazardous materials that may be inhaled in the absence of sufficient protection. Case presentation: A 64-year-old man who plastered without any dust protection for more than 40 years was referred to our hospital with suspected interstitial pneumonia. Mixed dust pneumoconiosis and an unusual interstitial pneumonia (UIP) pattern with fibroblastic foci were diagnosed by video-assisted thoracoscopic surgery, and an elemental analysis detected elements included in plaster work materials. Despite the cessation of plaster work and administration of nintedanib, the patient developed advanced respiratory failure. Conclusion: Plasterers are at an increased risk of pneumoconiosis and may have a poor prognosis when complicated by the UIP pattern. Thorough dust protection and careful monitoring are needed. Keywords: Plasterer, Pneumoconiosis, Usual interstitial pneumonia, Elemental analysis Background unusual interstitial pneumonia (UIP) pattern, the cause of With energy transition from coal to oil and nuclear power, which was identified as plaster work by an elemental coal mines completely disappeared by the early first analysis. Therefore, plasterers need to take proper coun- decade of the 2000s in Japan. Furthermore, improvements termeasures for dust prevention and undergo regular in industrial hygiene and vocational education have examinations.
    [Show full text]
  • Misclassification of Occupational Disease in Lung Transplant Recipients
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Heart Manuscript Author Lung Transplant Manuscript Author . Author manuscript; available in PMC 2017 November 13. Published in final edited form as: J Heart Lung Transplant. 2017 May ; 36(5): 588–590. doi:10.1016/j.healun.2017.02.021. Misclassification of occupational disease in lung transplant recipients David J. Blackley, DrPHa, Cara N. Halldin, PhDa, Robert A. Cohen, MDa,b, Kristin J. Cummings, MDa, Eileen Storey, MDa, and A. Scott Laney, PhDa aRespiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA bSchool of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA Data from the United States Organ Procurement and Transplantation Network (OPTN) registry have been analyzed in recent years to assess post–lung transplant (LT) survival in occupational lung disease patients.1–3 Registry data include diagnosis codes with limited specificity; each patient is assigned a diagnosis code at waitlist candidacy, at listing, and at LT, and these codes can differ. The use of both numeric and free-text data can produce incompatible or unlikely diagnosis code pairings (such as a numeric code for idiopathic pulmonary fibrosis with a paired free-text entry of “silicosis”). The resulting misclassification could bias findings related to patient characteristics, post-LT survival comparisons and other measures used to summarize outcomes. Diagnosis codes from OPTN data could be inadequate for case finding and may result in missed occupational lung disease cases. Our objective was to identify and describe adult LT recipients documented as having conditions known to be entirely attributable to occupational exposure, and to calculate the proportion of those patients who were assigned an occupational lung disease diagnosis code at LT.
    [Show full text]
  • European Respiratory Society Classification of the Idiopathic
    This copy is for personal use only. To order printed copies, contact [email protected] 1849 CHEST IMAGING American Thoracic Society– European Respiratory Society Classification of the Idiopathic Interstitial Pneumonias: Advances in Knowledge since 20021 Nicola Sverzellati, MD, PhD David A. Lynch, MB In the updated American Thoracic Society–European Respira- David M. Hansell, MD, FRCP, FRCR tory Society classification of the idiopathic interstitial pneumonias Takeshi Johkoh, MD, PhD (IIPs), the major entities have been preserved and grouped into Talmadge E. King, Jr, MD (a) “chronic fibrosing IIPs” (idiopathic pulmonary fibrosis and id- William D. Travis, MD iopathic nonspecific interstitial pneumonia), (b) “smoking-related IIPs” (respiratory bronchiolitis–associated interstitial lung disease Abbreviations: H-E = hematoxylin-eosin, and desquamative interstitial pneumonia), (c) “acute or subacute IIP = idiopathic interstitial pneumonia, IPF = IIPs” (cryptogenic organizing pneumonia and acute interstitial idiopathic pulmonary fibrosis, NSIP = nonspe- cific interstitial pneumonia, RB-ILD = respi- pneumonia), and (d) “rare IIPs” (lymphoid interstitial pneumonia ratory bronchiolitis–associated interstitial lung and idiopathic pleuroparenchymal fibroelastosis). Furthermore, it disease, UIP = usual interstitial pneumonia has been acknowledged that a final diagnosis is not always achiev- RadioGraphics 2015; 35:1849–1872 able, and the category “unclassifiable IIP” has been proposed. The Published online 10.1148/rg.2015140334 diagnostic interpretation of
    [Show full text]
  • A Breathless Builder
    case presentations no03.qxd 17/05/2007 15:38 Page 2 CASE PRESENTATION A breathless builder J.J. Lyons1 P.J. Sime1 Case report hand-grinder, a common task known as "tuck- D. Ward2 The patient was a 30-year-old male mason whose pointing" (figure 2), while intermittently using a T. Watson3 work frequently involved cutting and grinding disposable particle mask. After completing this J.L. Abraham4 brick and cement with powered tools. He was an job, he felt well for ~2 months and then gradu- R. Evans5 active smoker (1–1.5 packs per day). He had ally began to develop a nonproductive cough, 6 M. Budev worked in building construction since the age of dyspnoea on exertion and an 11 kg weight loss K. Costas3 W.S. Beckett1 14 yrs, as a labourer then as a mason and had without fever. Serial pulmonary function testing been a mason for the previous 13 years. He showed restriction and a marked reduction in dif- reported frequent exposure to cement and brick fusing capacity. Chest computed tomography 1Division of Pulmonary and dust while removing stone floors with a jackham- (CT) showed bilateral diffuse infiltrates. A purified Critical Care Medicine, 2Dept of mer. From 8–2 months prior to presentation, he protein derivative test was negative. Anesthesiology and Biomedical had been employed repairing exterior brick on Bronchoalveolar lavage fluid was mucoid, and 3 Engineering and Division of three large apartment buildings (figure 1). This culture was negative. A transbronchial biopsy Thoracic/Foregut Surgery, University of Rochester, Rochester, required cutting through brick and mortar with a was nondiagnostic and the post-bronchoscopy 4Dept of Pathology, SUNY Upstate powered, high-speed demolition saw and grind- chest film showed a very small right apical pneu- Medical University, Syracuse, ing mortar from between bricks with a powered mothorax.
    [Show full text]
  • WORKSHOP on ILO INTERNATIONAL CLASSIFICATION of RADIOGRAPHS of PNEUMOCONIOSES 9 – 13 NOVEMBER 2020 TURIN, ITALY Information Note INTRODUCTION
    OCCUPATIONAL SAFETY AND HEALTH WORKSHOP ON ILO INTERNATIONAL CLASSIFICATION OF RADIOGRAPHS OF PNEUMOCONIOSES 9 – 13 NOVEMBER 2020 TURIN, ITALY Information Note INTRODUCTION The prevention of occupational respiratory diseases has a high priority in the ILO. Despite all international and national efforts to prevent them, they continue to be the leading occupational illnesses in many countries that may amount to as many as 30% of all registered work-related diseases. Pneumoconiosis cause significant numbers of cases of disabilities and premature deaths because they are highly disabling and incurable. They also represent a huge burden on national economies and compensation systems in terms of sickness, absenteeism, lost working days, disabilities, compensatory payments and loss of qualified labour. The ILO International Classification of Radiographs of Pneumoconiosis provides a means for describing and recording systematically the radiographic abnormalities in the chest provoked by the inhalation of dusts. The purpose of the ILO Classification is to describe and codify radiographic abnormalities of the pneumoconiosis in a simple, systematic, and reproducible manner. The ILO Classification of Radiographs of Pneumoconiosis is an important international standard which is widely used around the world in early detection of pneumoconiosis, medical screening and health surveillance of workers exposed to noxious dusts, as well as epidemiological evaluations. The use of the Classification is mandatory in many countries. Use of the ILO Classification may lead to better international comparability of data concerning the pneumoconiosis. Some countries have established legal requirements for use of the ILO Classification in the assessment of compensation claims, although the Classification was not originally designed for this purpose.
    [Show full text]
  • Pneumoconiosis and Byssinosis
    British Journal of Industrial Medicine, 1974, 31, 322-328 Br J Ind Med: first published as 10.1136/oem.31.4.322 on 1 October 1974. Downloaded from Notes and miscellanea Pneumoconiosis and byssinosis D. C. F. MUIR Institute of Occupational Medicine, Roxburgh Place, Edinburgh, EH8 9SU On 1 August 1968 the Minister of Social Security loggerheads over the question of pneumoconiosis in referred the following question to the Industrial general and of related disability in particular. Injuries Advisory Council for consideration and The less controversial aspects of the report should advice: perhaps be mentioned first in order to clear the way Whether in the light of experience and current for a review of its more fundamental features. It is knowledge any adjustment should be made in the well written and has concise and clear explanations terms of the definition of pneumoconiosis in of the problems considered. The historical back- section 58 (3) of the National Insurance (In- ground is reviewed in detail, and there is an excellent copyright. dustrial Injuries) Act 1965; and whether any and, description of the work of the Pneumoconiosis if so, what special provision should be made for Medical Panels. There is a great deal of information disablement due to other respiratory conditions in the report which is not available in textbooks of found in the presence of such pneumoconiosis to occupational medicine, and it should be essential be taken into account in assessing the extent of reading for all who have an interest in this field. The disablement due to the disease. summary and conclusions are short and explicit.
    [Show full text]
  • Readers' Interpretations of Chest Radiographs for Asbestos Related
    Original Investigations Comparison of “B” Readers’ Interpretations of Chest Radiographs for Asbestos Related Changes1 Joseph N. Gitlin, DPH, Leroy L. Cook, BA, Otha W. Linton, MSJ, Elizabeth Garrett-Mayer, PhD Rationale and Objectives. The purpose of this study was to determine if chest radiographic interpretations by physicians retained by attorneys representing persons alleging respiratory changes from occupational exposure to asbestos would be confirmed by independent consultant readers. Materials and Methods. For 551 chest radiographs read as positive for lung changes by initial “B” readers retained by plain- tiffs’ attorneys, 492 matching interpretative reports were made available to the authors. Six consultants in chest radiology, also B readers, agreed to reinterpret the radiographs independently without knowledge of their provenance. The film source, patient name, and other identifiers on each film were masked. The International Labor Office 1980 Classification of Chest Radiographs (ILO 80) was used with forms designed by the US National Institute of Occupational Safety and Health to record the consult- ants’ findings. The results were compared with initial readings for film quality, complete negativity, parenchymal abnormalities, small opacities profusion, and pleural abnormalities using chi-square tests and kappa statistics. Results. Initial readers interpreted study radiographs as positive for parenchymal abnormalities (ILO small opacity profu- sion category of 1/0 or higher) in 95.9% of 492 cases. Six consultants classified the films as 1/0 or higher in 4.5% of 2,952 readings. Statistical tests of these and other comparable data from the study showed highly significant differences between the interpretations of the initial readers and the findings of the consultants.
    [Show full text]
  • Original Article
    Artigo Original Broncoscopia no diagnóstico de tuberculose pulmonar em pacientes com baciloscopia de escarro negativa* Bronchoscopy for the diagnosis of pulmonary tuberculosis in patients with negative sputum smear microscopy results Márcia Jacomelli, Priscila Regina Alves Araújo Silva, Ascedio Jose Rodrigues, Sergio Eduardo Demarzo, Márcia Seicento, Viviane Rossi Figueiredo Resumo Objetivo: Avaliar a acurácia diagnóstica da broncoscopia em pacientes com suspeita clínica ou radiológica de tuberculose, com baciloscopia negativa ou incapazes de produzir escarro. Métodos: Estudo transversal prospectivo de 286 pacientes com suspeita clínica/radiológica de tuberculose pulmonar e submetidos à broncoscopia — LBA e biópsia transbrônquica (BTB). As amostras de LBA foram testadas por pesquisas diretas e culturas de BAAR e de fungos, e as de BTB por exame histopatológico. Resultados: Dos 286 pacientes estudados, a broncoscopia contribuiu para o diagnóstico em 225 (79%): tuberculose pulmonar em 127 (44%); inflamações crônicas inespecíficas em 51 (18%); pneumocistose, infecções fúngicas ou nocardiose em 20 (7%); bronquiolite obliterante com pneumonia em organização, alveolites ou pneumoconioses em 14 (5%); neoplasias pulmonares ou metastáticas em 7 (2%); e micobacterioses não tuberculosas em 6 (2%). Para o diagnóstico de tuberculose, o LBA mostrou sensibilidade e especificidade de 60% e 100% respectivamente, havendo um aumento importante da sensibilidade quando associado à biópsia (84%) e à baciloscopia após a broncoscopia (94%). Complicações controláveis decorrentes do procedimento ocorreram em 5,6% dos casos. Conclusões: A broncoscopia representa um método diagnóstico confiável para pacientes com tuberculose pulmonar, apresentando baixos índices de complicações. A associação de biópsia transbrônquica ao lavado broncoalveolar elevou a sensibilidade diagnóstica do método e permitiu o diagnóstico diferencial com outras doenças.
    [Show full text]
  • Cryptogenic Organizing Pneumonia
    462 Cryptogenic Organizing Pneumonia Vincent Cottin, M.D., Ph.D. 1 Jean-François Cordier, M.D. 1 1 Hospices Civils de Lyon, Louis Pradel Hospital, National Reference Address for correspondence and reprint requests Vincent Cottin, Centre for Rare Pulmonary Diseases, Competence Centre for M.D., Ph.D., Hôpital Louis Pradel, 28 avenue Doyen Lépine, F-69677 Pulmonary Hypertension, Department of Respiratory Medicine, Lyon Cedex, France (e-mail: [email protected]). University Claude Bernard Lyon I, University of Lyon, Lyon, France Semin Respir Crit Care Med 2012;33:462–475. Abstract Organizing pneumonia (OP) is a pathological pattern defined by the characteristic presence of buds of granulation tissue within the lumen of distal pulmonary airspaces consisting of fibroblasts and myofibroblasts intermixed with loose connective matrix. This pattern is the hallmark of a clinical pathological entity, namely cryptogenic organizing pneumonia (COP) when no cause or etiologic context is found. The process of intraalveolar organization results from a sequence of alveolar injury, alveolar deposition of fibrin, and colonization of fibrin with proliferating fibroblasts. A tremen- dous challenge for research is represented by the analysis of features that differentiate the reversible process of OP from that of fibroblastic foci driving irreversible fibrosis in usual interstitial pneumonia because they may determine the different outcomes of COP and idiopathic pulmonary fibrosis (IPF), respectively. Three main imaging patterns of COP have been described: (1) multiple patchy alveolar opacities (typical pattern), (2) solitary focal nodule or mass (focal pattern), and (3) diffuse infiltrative opacities, although several other uncommon patterns have been reported, especially the reversed halo sign (atoll sign).
    [Show full text]