1. Introduction, Fluid Properties (1.1, and Handouts)

Total Page:16

File Type:pdf, Size:1020Kb

1. Introduction, Fluid Properties (1.1, and Handouts) VVR 120 Fluid Mechanics 1. Introduction, fluid properties (1.1, and handouts) • Introduction, general information • Course overview • Fluids as a continuum • Density • Compressibility • Viscosity Exercises: A1 VVR 120 Fluid Mechanics Applications of fluid mechanics • Societal supply of safe energy and water by gas and fluids in pipes and channels • Energy production (oil, hydropower, nuclear energy, natural gas) • Environmental engineering and water treatment (channels, basins, filtering) • Industrial process technology (relationship temperature, pressure, and energy) • Protection against climate extremes/catastrophes (flooding, harbours, wind forces) • Biomedical engineering • Ecological evolution of species (predator-prey) VVR 120 Fluid Mechanics Major ”Fluid mechanics” employers • SWECO • Thyréns • WSPgroup • Skanska • Eon, VA SYD • Community offices • Governmental, Naturvårdsverket VVR 120 Fluid Mechanics Fluid mechanics • Fluid properties (2) • Hydrostatics (3) • Basic equations (6) • Pipe flow (5) • Flow around submerged bodies (1) • Channel flow (3) • Repetition (2) VVR 120 Fluid Mechanics FLUID AS A CONTINUUM • A fluid is considered to be a continuum in which there are no holes or voids velocity, pressure, and temperature fields are continuous. • Validity criteria: Smallest length scale in a flow >> average spacing between molecules composing the fluid. VVR 120 Fluid Mechanics VVR 120 Fluid Mechanics DENSITY () Mass/ unit volume (kg/m3) Density decreases normally with increasing temperature water = (T,S,p) i.e., dependent on - Temperature - Salt content ( 1000 + 0.741S, S in per mille; S = 3.5% in ocean = 1026 kg/m3) - Pressure (but only a small variability) VVR 120 Fluid Mechanics OTHER DEFINITIONS • Weight = mass gravity acceleration (W = mg, [N = kgm/s2]) (Eqn. 1.4) • Weight density (or specific weight)= density gravity acceleration (w = g, [N/m3 = kg/(m2s2)]) (Eqn. 1.6) (Note w = γ in exercises) • Specific volume = reciprocal of density ( = 1/, [m3/kg]) • Relative density (or specific gravity), s, is the density normalized with the density of water at a specific temperature and pressure (normally 4C and atmospheric pressure): s = R.d. = /water (often = /1000) (Eqn. 1.7) • Power P [W = J/s = kgm2/s3 = Nm/s]; P = T ω (T = torque, ω = angular velocity [rad/s, 360o = 2rad]; V = ω r (V = velocity, r = radius) VVR 120 Fluid Mechanics Example – density. The specific weight of water at ordinary temperature and pressure is 9.81 kN/m3. The specific gravity of mercury is 13.56. Compute the density of water and the specific weight and density of mercury. VVR 120 Fluid Mechanics COMPRESSIBILITY • All fluids can be compressed by application of pressure elastic energy being stored • Modulus of elasticity describes the compressibility properties of the fluid and is defined on the basis of volume VVR 120 Fluid Mechanics • Modulus of elasticity: E=-dp/(dV/V1) [Pa] • For liquids, region of engineering interest is when V/V1 1 V p V E 9 • Ewater ~ 210 Pa (function of temperature) VVR 120 Fluid Mechanics A1 What pressure must be applied to water to reduce its volume 1 % ? VVR 120 Fluid Mechanics Example – compressibility. At a depth of 8 km in the ocean the pressure is 81.8 MPa. Assume that the specific weight of sea water at the surface is 10.05 kN/m3 and that the average volume modulus of elasticity is 2.34*109 N/m2 for the pressure range. A) What will be the change in specific volume between that at the surface and at that depth? B) What will be the specific volume at that depth? C) What will be the specific weight at that depth VVR 120 Fluid Mechanics IDEAL FLUID A fluid in which there is no friction REAL FLUID A fluid in which shearing forces always exist whenever motion takes place due to the fluid’s inner friction – viscosity. VVR 120 Fluid Mechanics VISCOSITY • Viscosity is a measure of a fluid’s “inner friction” or resistance to shear stress. • It arises from the interaction and cohesion of fluid molecules. • All fluids posses viscosity, but to a varying degree. For instance, syrup has a considerably higher viscosity than water. VVR 120 Fluid Mechanics DEFINITION OF DYNAMIC VISCOSITY - y Shearing of thin fluid film between two plates. The upper plate has an area A. • Experiments have shown that for a large number of fluids: F ~ AV/h (if V and h not too large) • Linear velocity profile V/h = dv/dy VVR 120 Fluid Mechanics • Introduction of the proportionality constant , named dynamic viscosity, gives Newton’s viscosity law shear force: F V dv 2 (Eqn. 4.1-4.2) N/m A h dy [Pas or kg/ms] • = / [m2/s] - Kinematic viscosity • No-slip condition – water particles adjacent to solid boundary has zero velocity (observational fact) VVR 120 Fluid Mechanics μ (Pa·s) VVR 120 Fluid Mechanics Implication of viscosity: a fluid cannot sustain a shear stress without deformation VVR 120 Fluid Mechanics Implications of Newton’s law: • , independent of pressure (in contrast to solids) • no velocity gradient no shear stress Restriction of Newton’s law: • law only valid if the fluid flow is laminar in which viscous action is strong VVR 120 Fluid Mechanics • Laminar flow: smooth, orderly motion in which fluid elements appears to slide over each other in layers (little exchange between layers). • Turbulent flow: random or chaotic motion of individual fluid particles, and rapid mixing and exchange of these particles through the flow Turbulent flow is most common in nature. VVR 120 Fluid Mechanics Newtonian – non-Newtonian fluids Examples non-Newtonian fluids: Plastics, blood, suspensions, paints, foods Shear vs. rate of strain re- lations for non-Newtonian fluids: Bingham plastic du , i dy i n>1: Shear-thickening fluid, n<1: Shear-thinning fluid du n ( ) dy VVR 120 Fluid Mechanics Example – density. The specific weight of water at ordinary temperature and pressure is 9.81 kN/m3. The specific gravity of mercury is 13.56. Compute the density of water and the specific weight and density of mercury. VVR 120 Fluid Mechanics A1 What pressure must be applied to water to reduce its volume 1 % ? VVR 120 Fluid Mechanics Example – compressibility. At a depth of 8 km in the ocean the pressure is 81.8 MPa. Assume that the specific weight of sea water at the surface is 10.05 kN/m3 and that the average volume modulus of elasticity is 2.34*109 N/m2 for the pressure range. A) What will be the change in specific volume between that at the surface and at that depth? B) What will be the specific volume at that depth? C) What will be the specific weight at that depth.
Recommended publications
  • Simple Experiment Confirming the Negative Temperature Dependence of Gravity Force
    SIMPLE EXPERIMENT CONFIRMING THE NEGATIVE TEMPERATURE DEPENDENCE OF GRAVITY FORCE Alexander L. Dmitriev St-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverksky Prospect, St-Petersburg, 197101, Russia Results of weighing of the tight vessel containing a thermo-isolated copper sample heated by a tungstic spiral are submitted. The increase of temperature of a sample with masse of 28 g for about 10 0 С causes a reduction of its apparent weight for 0.7 mg. The basic sources of measurement errors are briefly considered, the expediency of researches of temperature dependence of gravity is recognized. Key words: gravity force, weight, temperature, gravity mass. PACS: 04.80-y. Introduction The question on influence of temperature of bodies on the force of their gravitational interaction was already raised from the times when the law of gravitation was formulated. The first exact experiments in this area were carried out at the end of XIXth - the beginning of XXth century with the purpose of checking the consequences of various electromagnetic theories of gravitation (Mi, Weber, Morozov) according to which the force of a gravitational attraction of bodies is increased with the growth of their absolute temperature [1-3]. That period of experimental researches was completed in 1923 by the publication of Shaw and Davy’s work who concluded that the temperature dependence of gravitation forces does not exceed relative value of 2⋅10 −6 K −1 and can be is equal to zero [4]. Actually, as shown in [5], those authors confidently registered the negative temperature dependence of gravitation force.
    [Show full text]
  • Weight and Lifestyle Inventory (Wali)
    WEIGHT AND LIFESTYLE INVENTORY (Bariatric Surgery Version) © 2015 Thomas A. Wadden, Ph.D. and Gary D. Foster, Ph.D. 1 The Weight and Lifestyle Inventory (WALI) is designed to obtain information about your weight and dieting histories, your eating and exercise habits, and your relationships with family and friends. Please complete the questionnaire carefully and make your best guess when unsure of the answer. You will have an opportunity to review your answers with a member of our professional staff. Please allow 30-60 minutes to complete this questionnaire. Your answers will help us better identify problem areas and plan your treatment accordingly. The information you provide will become part of your medical record at Penn Medicine and may be shared with members of our treatment team. Thank you for taking the time to complete this questionnaire. SECTION A: IDENTIFYING INFORMATION ______________________________________________________________________________ 1 Name _________________________ __________ _______lbs. ________ft. ______inches 2 Date of Birth 3 Age 4 Weight 5 Height ______________________________________________________________________________ 6 Address ____________________ ________________________ ______________________/_______ yrs. 7 Phone: Cell 8 Phone: Home 9 Occupation/# of yrs. at job __________________________ 10 Today’s Date 11 Highest year of school completed: (Check one.) □ 6 □ 7 □ 8 □ 9 □ 10 □ 11 □ 12 □ 13 □ 14 □ 15 □ 16 □ Masters □ Doctorate Middle School High School College 12 Race (Check all that apply): □ American Indian □ Asian □ African American/Black □ Pacific Islander □White □ Other: ______________ 13 Are you Latino, Hispanic, or of Spanish origin? □ Yes □ No SECTION B: WEIGHT HISTORY 1. At what age were you first overweight by 10 lbs. or more? _______ yrs. old 2. What has been your highest weight after age 21? _______ lbs.
    [Show full text]
  • Density and Specific Weight Estimation for the Liquids and Solid Materials
    Laboratory experiments Experiment no 2 – Density and specific weight estimation for the liquids and solid materials. 1. Theory Density is a physical property shared by all forms of matter (solids, liquids, and gases). In this lab investigation, we are mainly concerned with determining the density of solid objects; both regular-shaped and irregular-shaped. In general regular-shaped solid objects are those that have straight sides that can be measured using a metric ruler. These shapes include but are not limited to cubes and rectangular prisms. In general, irregular-shaped solid objects are those that do not have straight sides that cannot be measured with a metric ruler or slide caliper. The density of a material is defined as its mass per unit volume. The symbol of density is ρ (the Greek letter rho). m kg (1) V m3 The specific weight (also known as the unit weight) is the weight per unit volume of a material. The symbol of specific weight is γ (the Greek letter Gamma). W N (2) V m3 On the surface of the Earth, the weight W of an object is related to its mass m by: W = m · g, (3) where g is the acceleration due to the Earth's gravity, equal to about 9.81 ms-2. Using eq. 1, 2 and 3 we will obtain dependence between specific weight of the body and its density: g (4) Apparatus: Vernier caliper, balance with specific gravity platform (additional table in our case), 250 ml graduate beaker. Unknowns: a) Various solid samples (regular and irregular shaped) b) Light liquid sample (alcohol-water mixture) or heavy liquid sample (salt-water mixture).
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • Ideal Gasses Is Known As the Ideal Gas Law
    ESCI 341 – Atmospheric Thermodynamics Lesson 4 –Ideal Gases References: An Introduction to Atmospheric Thermodynamics, Tsonis Introduction to Theoretical Meteorology, Hess Physical Chemistry (4th edition), Levine Thermodynamics and an Introduction to Thermostatistics, Callen IDEAL GASES An ideal gas is a gas with the following properties: There are no intermolecular forces, except during collisions. All collisions are elastic. The individual gas molecules have no volume (they behave like point masses). The equation of state for ideal gasses is known as the ideal gas law. The ideal gas law was discovered empirically, but can also be derived theoretically. The form we are most familiar with, pV nRT . Ideal Gas Law (1) R has a value of 8.3145 J-mol1-K1, and n is the number of moles (not molecules). A true ideal gas would be monatomic, meaning each molecule is comprised of a single atom. Real gasses in the atmosphere, such as O2 and N2, are diatomic, and some gasses such as CO2 and O3 are triatomic. Real atmospheric gasses have rotational and vibrational kinetic energy, in addition to translational kinetic energy. Even though the gasses that make up the atmosphere aren’t monatomic, they still closely obey the ideal gas law at the pressures and temperatures encountered in the atmosphere, so we can still use the ideal gas law. FORM OF IDEAL GAS LAW MOST USED BY METEOROLOGISTS In meteorology we use a modified form of the ideal gas law. We first divide (1) by volume to get n p RT . V we then multiply the RHS top and bottom by the molecular weight of the gas, M, to get Mn R p T .
    [Show full text]
  • MAXIMUM METABOLISM FOOD METABOLISM PLAN the MAXIMUM Hreshold Spinach Salad: 1 Cup Spinach, 1/2 Cup Mixed 6 Oz
    THE MAXIMUM METABOLISM FOOD PLAN™ WEEK ONE SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY Breakfast 3/4 oz. multi-grain cereal 1/2 cup oatmeal 2 lite pancakes (4” diameter); use non-stick 1 slice of wheat toast; top with 1/2 cup 1 1/2 oz. low fat granola Apple cinnamon crepe: 1 wheat tortilla, Omelet: 3 egg whites, 1 cup mixed zucchini, 1/2 sliced banana or 3/4 cup sliced 1/2 tbs. raisins pan; top with 1/2 cup peaches or 1/2 banana nonfat cottage cheese and 1/2 sliced 1 cup nonfat milk 1/3 cup nonfat ricotta cheese, 1 apple green peppers, onions, and tomatoes, 12 oz. of water before breakfast strawberries 1/2 cup nonfat milk 1 tbs. reduced calorie syrup apple; sprinkle with 1 tsp. cinnamon 1/2 medium banana (sliced), 1 tsp. cinnamon, 1/2 tsp. vanilla 2 oz. reduced calorie cheese, and salsa 1/2 cup nonfat milk 1 medium apple 1/2 cup low fat maple yogurt extract; heat in skillet over low flame 1 slice wheat toast 1/2 cup nonfat milk 1 tsp. butter Mid-Morning Snack 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 1/2 bagel 1/2 cup nonfat yogurt 1/2 cup low fat cottage cheese 1 cup nonfat flavored yogurt with 1 tsp. 1 cup flavored nonfat yogurt 1 cup flavored nonfat yogurt 1 cup flavored nonfat yogurt 1 tbs. nonfat cream cheese 1/2 cup pineapple chunks sliced almonds 1 tbs.
    [Show full text]
  • The Relation of Metabolic Rate to Body Weight and Organ Size
    Pediat.Res. 1: 185-195 (1967) Metabolism basal metabolic rate growth REVIEW kidney glomerular filtration rate body surface area body weight oxygen consumption organ growth The Relation of Metabolic Rate to Body Weight and Organ Size A Review M.A. HOLLIDAY[54J, D. POTTER, A.JARRAH and S.BEARG Department of Pediatrics, University of California, San Francisco Medical Center, San Francisco, California, and the Children's Hospital Medical Center, Oakland, California, USA Introduction Historical Background The relation of metabolic rate to body size has been a The measurement of metabolic rate was first achieved subject of continuing interest to physicians, especially by LAVOISIER in 1780. By 1839 enough measurements pediatricians. It has been learned that many quanti- had been accumulated among subjects of different tative functions vary during growth in relation to sizes that it was suggested in a paper read before the metabolic rate, rather than body size. Examples of Royal Academy of France (co-authored by a professor these are cardiac output, glomerular filtration rate, of mathematics and a professor of medicine and oxygen consumption and drug dose. This phenomenon science) that BMR did not increase as body weight may reflect a direct cause and effect relation or may be increased but, rather, as surface area increased [42]. a fortuitous parallel between the relatively slower in- In 1889, RICHET [38] observed that BMR/kg in rab- crease in metabolic rate compared to body size and the bits of varying size decreased as body weight increased; function in question. RUBNER [41] made a similar observation in dogs. Both The fact that a decrease in metabolism and many noted that relating BMR to surface area provided re- other measures of physiological function in relation to a sults that did not vary significantly with size.
    [Show full text]
  • Fluid Mechanics
    I. FLUID MECHANICS I.1 Basic Concepts & Definitions: Fluid Mechanics - Study of fluids at rest, in motion, and the effects of fluids on boundaries. Note: This definition outlines the key topics in the study of fluids: (1) fluid statics (fluids at rest), (2) momentum and energy analyses (fluids in motion), and (3) viscous effects and all sections considering pressure forces (effects of fluids on boundaries). Fluid - A substance which moves and deforms continuously as a result of an applied shear stress. The definition also clearly shows that viscous effects are not considered in the study of fluid statics. Two important properties in the study of fluid mechanics are: Pressure and Velocity These are defined as follows: Pressure - The normal stress on any plane through a fluid element at rest. Key Point: The direction of pressure forces will always be perpendicular to the surface of interest. Velocity - The rate of change of position at a point in a flow field. It is used not only to specify flow field characteristics but also to specify flow rate, momentum, and viscous effects for a fluid in motion. I-1 I.4 Dimensions and Units This text will use both the International System of Units (S.I.) and British Gravitational System (B.G.). A key feature of both is that neither system uses gc. Rather, in both systems the combination of units for mass * acceleration yields the unit of force, i.e. Newton’s second law yields 2 2 S.I. - 1 Newton (N) = 1 kg m/s B.G. - 1 lbf = 1 slug ft/s This will be particularly useful in the following: Concept Expression Units momentum m! V kg/s * m/s = kg m/s2 = N slug/s * ft/s = slug ft/s2 = lbf manometry ρ g h kg/m3*m/s2*m = (kg m/s2)/ m2 =N/m2 slug/ft3*ft/s2*ft = (slug ft/s2)/ft2 = lbf/ft2 dynamic viscosity µ N s /m2 = (kg m/s2) s /m2 = kg/m s lbf s /ft2 = (slug ft/s2) s /ft2 = slug/ft s Key Point: In the B.G.
    [Show full text]
  • Glossary of Terms — Page 1 Air Gap: See Backflow Prevention Device
    Glossary of Irrigation Terms Version 7/1/17 Edited by Eugene W. Rochester, CID Certification Consultant This document is in continuing development. You are encouraged to submit definitions along with their source to [email protected]. The terms in this glossary are presented in an effort to provide a foundation for common understanding in communications covering irrigation. The following provides additional information: • Items located within brackets, [ ], indicate the IA-preferred abbreviation or acronym for the term specified. • Items located within braces, { }, indicate quantitative IA-preferred units for the term specified. • General definitions of terms not used in mathematical equations are not flagged in any way. • Three dots (…) at the end of a definition indicate that the definition has been truncated. • Terms with strike-through are non-preferred usage. • References are provided for the convenience of the reader and do not infer original reference. Additional soil science terms may be found at www.soils.org/publications/soils-glossary#. A AC {hertz}: Abbreviation for alternating current. AC pipe: Asbestos-cement pipe was commonly used for buried pipelines. It combines strength with light weight and is immune to rust and corrosion. (James, 1988) (No longer made.) acceleration of gravity. See gravity (acceleration due to). acid precipitation: Atmospheric precipitation that is below pH 7 and is often composed of the hydrolyzed by-products from oxidized halogen, nitrogen, and sulfur substances. (Glossary of Soil Science Terms, 2013) acid soil: Soil with a pH value less than 7.0. (Glossary of Soil Science Terms, 2013) adhesion: Forces of attraction between unlike molecules, e.g. water and solid.
    [Show full text]
  • Kozeny-Carman Equation and Hydraulic Conductivity of Compacted Clayey Soils
    Geomaterials, 2012, 2, 37-41 http://dx.doi.org/10.4236/gm.2012.22006 Published Online April 2012 (http://www.SciRP.org/journal/gm) Kozeny-Carman Equation and Hydraulic Conductivity of Compacted Clayey Soils Emmanouil Steiakakis, Christos Gamvroudis, Georgios Alevizos Department of Mineral Resources Engineering, Technical University of Crete, Chania, Greece Email: [email protected] Received January 24, 2012; revised February 27, 2012; accepted March 10, 2012 ABSTRACT The saturated hydraulic conductivity of a soil is the main parameter for modeling the water flow through the soil and determination of seepage losses. In addition, hydraulic conductivity of compacted soil layers is critical component for designing liner and cover systems for waste landfills. Hydraulic conductivity can be predicted using empirical relation- ships, capillary models, statistical models and hydraulic radius theories [1]. In the current research work the reliability of Kozeny-Carman equation for the determination of the hydraulic conductivity of compacted clayey soils, is evaluated. The relationship between the liquid limit and the specific surface of the tested samples is also investigated. The result- ing equation gives the ability for quick estimation of specific surface and hydraulic conductivity of the compacted clayey samples. The results presented here show that the Kozeny-Carman equation provides good predictions of the hydraulic conductivity of homogenized clayey soils compacted under given compactive effort, despite the consensus set out in the literature. Keywords: Hydraulic Conductivity; Kozeny-Carman Equation; Specific Surface; Clayey Soils 1. Introduction Chapuis and Aubertin [1] stated that for plastic - cohe- sive soils, the specific surface can be estimated from the As stated by Carrier [2], about a half-century ago Kozeny liquid limit (LL), obtained by standard Casagrande’s and Carman proposed the below expression for predict- method.
    [Show full text]
  • Chapter 28 Pressure in Fluids
    CHAPTER 28 PRESSURE IN FLUIDS EXERCISE 128, Page 281 1. A force of 280 N is applied to a piston of a hydraulic system of cross-sectional area 0.010 m 2 . Determine the pressure produced by the piston in the hydraulic fluid. force 280 N Pressure, p = = 28000Pa = 28 kPa area 0.010m2 That is, the pressure produced by the piston is 28 kPa 2. Find the force on the piston of question 1 to produce a pressure of 450 kPa. Pressure, p = 450 kPa = 450000 Pa force Pressure p = hence, force = pressure × area area = 4540000 × 0.010 = 4500 N = 4.5 kN 3. If the area of the piston in question 1 is halved and the force applied is 280 N, determine the new pressure in the hydraulic fluid. 0.010 New area = 0.005m2 2 force 280 N New pressure, p = = 56000Pa = 56 kPa area 0.005m2 331 © John Bird Published by Taylor and Francis EXERCISE 129, Page 283 1. Determine the pressure acting at the base of a dam, when the surface of the water is 35 m above base level. Take the density of water as 1000 kg/m 3 . Take the gravitational acceleration as 9.8 m/s 2 . Pressure at base of dam, p = gh = 1000 kg/m 3 9.8 m/s2 0.35 m = 343000 Pa = 343 kPa 2. An uncorked bottle is full of sea water of density 1030 kg/m 3 . Calculate, correct to 3 significant figures, the pressures on the side wall of the bottle at depths of (a) 30 mm, and (b) 70 mm below the top of the bottle.
    [Show full text]
  • 11 Archimedes Principle
    Exp 11-1 P Experiment 11. Archimedes' Principle An application of Archimedes' principle - a piece of iron - sinks while a steel cup of the same weight floats on water. Objective: (a) To determine the specific gravity of a liquid by using a hydrometer. (b) the specific gravity of a solid heavier than water, the specific gravity of a liquid and the specific gravity of a solid lighter than water by· apj51yThg___Arcn1medes' principle: -- ····------···· --·-···- Apparatus: A balance, a solid heavier than water, a wooden cylinder, a hydrometer, alcohol and distilled water Theory: According to Archimedes' principle, when a body is immersed in a fluid (Fig. 1 ), either wholly or partially, the fluid exerts a buoyant force 8 on it. This buoyant force is equal to the weight of the fluid displaced by the body. Thus the apparent weight of the body is less than its actual weight, the loss of weight being equal to the buoyant force. - W = weight of the body B = buoyant force T = tension in the string supporting the body Fig. 1 Fig. 2 Consider the following problem: Weight of the body in air (actual weight of the body), w = 600 gm-wt Volume of the body, V = 80 cm3 Density of the liquid, p = 1.2 gm/cm 3 Volume of the liquid displaced = volume of the bodyVe = 80 cm3 Weight of the liquid displaced, we= Vex p = 96 gm-wt Buoyant force, B = 96 gm-wt Apparent weight of the body, wa = 600 - 96 gm-wt = 504 gm-wt Note that the apparent loss of weight of the body is equal to the - buoyant force of the fluid acting on the body, which, in turn, is equal to Exp 11-2P the weight of the flui9 displaced by the body.
    [Show full text]