The Case for Sparse Files
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cygwin User's Guide
Cygwin User’s Guide Cygwin User’s Guide ii Copyright © Cygwin authors Permission is granted to make and distribute verbatim copies of this documentation provided the copyright notice and this per- mission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this documentation under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this documentation into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. Cygwin User’s Guide iii Contents 1 Cygwin Overview 1 1.1 What is it? . .1 1.2 Quick Start Guide for those more experienced with Windows . .1 1.3 Quick Start Guide for those more experienced with UNIX . .1 1.4 Are the Cygwin tools free software? . .2 1.5 A brief history of the Cygwin project . .2 1.6 Highlights of Cygwin Functionality . .3 1.6.1 Introduction . .3 1.6.2 Permissions and Security . .3 1.6.3 File Access . .3 1.6.4 Text Mode vs. Binary Mode . .4 1.6.5 ANSI C Library . .4 1.6.6 Process Creation . .5 1.6.6.1 Problems with process creation . .5 1.6.7 Signals . .6 1.6.8 Sockets . .6 1.6.9 Select . .7 1.7 What’s new and what changed in Cygwin . .7 1.7.1 What’s new and what changed in 3.2 . -
Backing up Linux and Other Unix(- Like) Systems
BACKING UP LINUX AND OTHER UNIX(- LIKE) SYSTEMS There are two kinds of people: those who do regular backups and those who never had a hard drive failure — Unknown. 1. Introduction The topic of doing backups of a (live) Un*x (mostly Linux) system regularly comes up on Linux mailing lists and forums and invariably the advice to simply do tar cvfz backup.tgz /bin /boot /etc ... is given. Unfortunately, a good backup takes more effort than that. In this article I will outline a great deal (but not necessarily all) of the pitfalls and details you will have to be watchful of when making backups. Note that this is not an application how-to, so you should not use the given examples verbatim, nor does it give an exhaustive list of backup programs and examples. It also doesn't give step-by-step instructions. It is meant to create awareness for people who already have a general understanding of Un*x systems. Reading all of the documentation of the tool itself is and remains important, for it may make you think of things you wouldn't otherwise have considered. Also note that this article mostly describes the process of making backups to an external device or location. If data protection is important to you, I also highly recommend using RAID. While RAID offers no protection against fires, earthquakes, data corruption or humans, it does offer protection against failing disks. It has saved me more than once. Additionally, I'd advice you to consider using a UPS. Although my personal experience is limited to Linux, the issues I'll discuss should (could) work as well on all or most Un*x systems. -
Freebsd File Formats Manual Libarchive-Formats (5)
libarchive-formats (5) FreeBSD File Formats Manual libarchive-formats (5) NAME libarchive-formats —archive formats supported by the libarchive library DESCRIPTION The libarchive(3) library reads and writes a variety of streaming archive formats. Generally speaking, all of these archive formats consist of a series of “entries”. Each entry stores a single file system object, such as a file, directory,orsymbolic link. The following provides a brief description of each format supported by libarchive,with some information about recognized extensions or limitations of the current library support. Note that just because a format is supported by libarchive does not imply that a program that uses libarchive will support that format. Applica- tions that use libarchive specify which formats theywish to support, though manyprograms do use libarchive convenience functions to enable all supported formats. TarFormats The libarchive(3) library can read most tar archives. However, itonly writes POSIX-standard “ustar” and “pax interchange” formats. All tar formats store each entry in one or more 512-byte records. The first record is used for file metadata, including filename, timestamp, and mode information, and the file data is stored in subsequent records. Later variants have extended this by either appropriating undefined areas of the header record, extending the header to multiple records, or by storing special entries that modify the interpretation of subsequent entries. gnutar The libarchive(3) library can read GNU-format tar archives. It currently supports the most popular GNU extensions, including modern long filename and linkname support, as well as atime and ctime data. The libarchive library does not support multi-volume archives, nor the old GNU long filename format. -
TAR(5) BSD File Formats Manual TAR(5)
TAR(5) BSD File Formats Manual TAR(5) NAME tar —format of tape archive files DESCRIPTION The tar archive format collects anynumber of files, directories, and other file system objects (symbolic links, device nodes, etc.) into a single stream of bytes. The format was originally designed to be used with tape drivesthat operate with fixed-size blocks, but is widely used as a general packaging mechanism. General Format A tar archive consists of a series of 512-byte records. Each file system object requires a header record which stores basic metadata (pathname, owner,permissions, etc.) and zero or more records containing any file data. The end of the archive isindicated by tworecords consisting entirely of zero bytes. Forcompatibility with tape drivesthat use fixed block sizes, programs that read or write tar files always read or write a fixed number of records with each I/O operation. These “blocks” are always a multiple of the record size. The maximum block size supported by early implementations was 10240 bytes or 20 records. This is still the default for most implementations although block sizes of 1MiB (2048 records) or larger are commonly used with modern high-speed tape drives. (Note: the terms “block” and “record” here are not entirely standard; this document follows the convention established by John Gilmore in documenting pdtar.) Old-Style Archive Format The original tar archive format has been extended manytimes to include additional information that various implementors found necessary.This section describes the variant implemented by the tar command included in Version 7 AT&T UNIX,which seems to be the earliest widely-used version of the tar program. -
Linear Algebra Libraries
Linear Algebra Libraries Claire Mouton [email protected] March 2009 Contents I Requirements 3 II CPPLapack 4 III Eigen 5 IV Flens 7 V Gmm++ 9 VI GNU Scientific Library (GSL) 11 VII IT++ 12 VIII Lapack++ 13 arXiv:1103.3020v1 [cs.MS] 15 Mar 2011 IX Matrix Template Library (MTL) 14 X PETSc 16 XI Seldon 17 XII SparseLib++ 18 XIII Template Numerical Toolkit (TNT) 19 XIV Trilinos 20 1 XV uBlas 22 XVI Other Libraries 23 XVII Links and Benchmarks 25 1 Links 25 2 Benchmarks 25 2.1 Benchmarks for Linear Algebra Libraries . ....... 25 2.2 BenchmarksincludingSeldon . 26 2.2.1 BenchmarksforDenseMatrix. 26 2.2.2 BenchmarksforSparseMatrix . 29 XVIII Appendix 30 3 Flens Overloaded Operator Performance Compared to Seldon 30 4 Flens, Seldon and Trilinos Content Comparisons 32 4.1 Available Matrix Types from Blas (Flens and Seldon) . ........ 32 4.2 Available Interfaces to Blas and Lapack Routines (Flens and Seldon) . 33 4.3 Available Interfaces to Blas and Lapack Routines (Trilinos) ......... 40 5 Flens and Seldon Synoptic Comparison 41 2 Part I Requirements This document has been written to help in the choice of a linear algebra library to be included in Verdandi, a scientific library for data assimilation. The main requirements are 1. Portability: Verdandi should compile on BSD systems, Linux, MacOS, Unix and Windows. Beyond the portability itself, this often ensures that most compilers will accept Verdandi. An obvious consequence is that all dependencies of Verdandi must be portable, especially the linear algebra library. 2. High-level interface: the dependencies should be compatible with the building of the high-level interface (e. -
Technical Computing on the OS … That Is Not Linux! Or How to Leverage Everything You‟Ve Learned, on a Windows Box As Well
Tools of the trade: Technical Computing on the OS … that is not Linux! Or how to leverage everything you‟ve learned, on a Windows box as well Sean Mortazavi & Felipe Ayora Typical situation with TC/HPC folks Why I have a Windows box How I use it It was in the office when I joined Outlook / Email IT forced me PowerPoint I couldn't afford a Mac Excel Because I LIKE Windows! Gaming It's the best gaming machine Technical/Scientific computing Note: Stats completely made up! The general impression “Enterprise community” “Hacker community” Guys in suits Guys in jeans Word, Excel, Outlook Emacs, Python, gmail Run prepackaged stuff Builds/runs OSS stuff Common complaints about Windows • I have a Windows box, but Windows … • Is hard to learn… • Doesn‟t have a good shell • Doesn‟t have my favorite editor • Doesn‟t have my favorite IDE • Doesn‟t have my favorite compiler or libraries • Locks me in • Doesn‟t play well with OSS • …. • In summary: (More like ) My hope … • I have a Windows box, and Windows … • Is easy to learn… • Has excellent shells • Has my favorite editor • Supports my favorite IDE • Supports my compilers and libraries • Does not lock me in • Plays well with OSS • …. • In summary: ( or at least ) How? • Recreating a Unix like veneer over windows to minimize your learning curve • Leverage your investment in know how & code • Showing what key codes already run natively on windows just as well • Kicking the dev tires using cross plat languages Objective is to: Help you ADD to your toolbox, not take anything away from it! At a high level… • Cygwin • SUA • Windowing systems “The Unix look & feel” • Standalone shell/utils • IDE‟s • Editors General purpose development • Compilers / languages / Tools • make • Libraries • CAS environments Dedicated CAS / IDE‟s And if there is time, a couple of demos… Cygwin • What is it? • A Unix like environment for Windows. -
User Guide for CHOLMOD: a Sparse Cholesky Factorization and Modification Package
User Guide for CHOLMOD: a sparse Cholesky factorization and modification package Timothy A. Davis [email protected], http://www.suitesparse.com VERSION 3.0.14, Oct 22, 2019 Abstract CHOLMOD1 is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or AAT, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky factorization relies on LAPACK and the Level-3 BLAS, and obtains a substantial fraction of the peak performance of the BLAS. Both real and complex matrices are supported. It also includes a non-supernodal LDLT factorization method that can factorize symmetric indefinite matrices if all of their leading submatrices are well-conditioned (D is diagonal). CHOLMOD is written in ANSI/ISO C, with both C and MATLAB interfaces. This code works on Microsoft Windows and many versions of Unix and Linux. CHOLMOD Copyright c 2005-2015 by Timothy A. Davis. Portions are also copyrighted by William W. Hager (the Modify Module), and the University of Florida (the Partition and Core Modules). All Rights Reserved. See CHOLMOD/Doc/License.txt for the license. CHOLMOD is also available under other licenses that permit its use in proprietary applications; contact the authors for details. See http://www.suitesparse.com for the code and all documentation, including this User Guide. 1CHOLMOD is short for CHOLesky MODification, since a key feature of the package is its ability to up- date/downdate a sparse Cholesky factorization 1 Contents 1 Overview 8 2 Primary routines and data structures 9 3 Simple example program 11 4 Installation of the C-callable library 12 5 Using CHOLMOD in MATLAB 15 5.1 analyze: order and analyze . -
Apple File System Reference
Apple File System Reference Developer Contents About Apple File System 7 General-Purpose Types 9 paddr_t .................................................. 9 prange_t ................................................. 9 uuid_t ................................................... 9 Objects 10 obj_phys_t ................................................ 10 Supporting Data Types ........................................... 11 Object Identifier Constants ......................................... 12 Object Type Masks ............................................. 13 Object Types ................................................ 14 Object Type Flags .............................................. 20 EFI Jumpstart 22 Booting from an Apple File System Partition ................................. 22 nx_efi_jumpstart_t ........................................... 24 Partition UUIDs ............................................... 25 Container 26 Mounting an Apple File System Partition ................................... 26 nx_superblock_t ............................................. 27 Container Flags ............................................... 36 Optional Container Feature Flags ...................................... 37 Read-Only Compatible Container Feature Flags ............................... 38 Incompatible Container Feature Flags .................................... 38 Block and Container Sizes .......................................... 39 nx_counter_id_t ............................................. 39 checkpoint_mapping_t ........................................ -
Review NTFS Basics
Australian Journal of Basic and Applied Sciences, 6(7): 325-338, 2012 ISSN 1991-8178 Review NTFS Basics Behzad Mahjour Shafiei, Farshid Iranmanesh, Fariborz Iranmanesh Bardsir Branch, Islamic Azad University, Bardsir, Iran Abstract: The Windows NT file system (NTFS) provides a combination of performance, reliability, and compatibility not found in the FAT file system. It is designed to quickly perform standard file operations such as read, write, and search - and even advanced operations such as file-system recovery - on very large hard disks. Key words: Format, NTFS, Volume, Fat, Partition INTRODUCTION Formatting a volume with the NTFS file system results in the creation of several system files and the Master File Table (MFT), which contains information about all the files and folders on the NTFS volume. The first information on an NTFS volume is the Partition Boot Sector, which starts at sector 0 and can be up to 16 sectors long. The first file on an NTFS volume is the Master File Table (MFT). The following figure illustrates the layout of an NTFS volume when formatting has finished. Fig. 5-1: Formatted NTFS Volume. This chapter covers information about NTFS. Topics covered are listed below: NTFS Partition Boot Sector NTFS Master File Table (MFT) NTFS File Types NTFS File Attributes NTFS System Files NTFS Multiple Data Streams NTFS Compressed Files NTFS & EFS Encrypted Files . Using EFS . EFS Internals . $EFS Attribute . Issues with EFS NTFS Sparse Files NTFS Data Integrity and Recoverability The NTFS file system includes security features required for file servers and high-end personal computers in a corporate environment. -
Automatic Performance Tuning of Sparse Matrix Kernels
Automatic Performance Tuning of Sparse Matrix Kernels by Richard Wilson Vuduc B.S. (Cornell University) 1997 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor James W. Demmel, Chair Professor Katherine A. Yelick Professor Sanjay Govindjee Fall 2003 The dissertation of Richard Wilson Vuduc is approved: Chair Date Date Date University of California, Berkeley Fall 2003 Automatic Performance Tuning of Sparse Matrix Kernels Copyright 2003 by Richard Wilson Vuduc 1 Abstract Automatic Performance Tuning of Sparse Matrix Kernels by Richard Wilson Vuduc Doctor of Philosophy in Computer Science University of California, Berkeley Professor James W. Demmel, Chair This dissertation presents an automated system to generate highly efficient, platform- adapted implementations of sparse matrix kernels. These computational kernels lie at the heart of diverse applications in scientific computing, engineering, economic modeling, and information retrieval, to name a few. Informally, sparse kernels are computational oper- ations on matrices whose entries are mostly zero, so that operations with and storage of these zero elements may be eliminated. The challenge in developing high-performance im- plementations of such kernels is choosing the data structure and code that best exploits the structural properties of the matrix|generally unknown until application run-time|for high-performance on the underlying machine architecture (e.g., memory hierarchy con- figuration and CPU pipeline structure). We show that conventional implementations of important sparse kernels like sparse matrix-vector multiply (SpMV) have historically run at 10% or less of peak machine speed on cache-based superscalar architectures. -
Optimizing the TLB Shootdown Algorithm with Page Access Tracking
Optimizing the TLB Shootdown Algorithm with Page Access Tracking Nadav Amit, VMware Research https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit This paper is included in the Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC ’17). July 12–14, 2017 • Santa Clara, CA, USA ISBN 978-1-931971-38-6 Open access to the Proceedings of the 2017 USENIX Annual Technical Conference is sponsored by USENIX. Optimizing the TLB Shootdown Algorithm with Page Access Tracking Nadav Amit VMware Research Abstract their TLBs according to the information supplied by The operating system is tasked with maintaining the the initiator core, and they report back when they coherency of per-core TLBs, necessitating costly syn- are done. TLB shootdown can take microseconds, chronization operations, notably to invalidate stale causing a notable slowdown [48]. Performing TLB mappings. As core-counts increase, the overhead of shootdown in hardware, as certain CPUs do, is faster TLB synchronization likewise increases and hinders but still incurs considerable overheads [22]. scalability, whereas existing software optimizations In addition to reducing performance, shootdown that attempt to alleviate the problem (like batching) overheads can negatively affect the way applications are lacking. are constructed. Notably, to avoid shootdown la- We address this problem by revising the TLB tency, programmers are advised against using mem- synchronization subsystem. We introduce several ory mappings, against unmapping them, and even techniques that detect cases whereby soon-to-be against building multithreaded applications [28, 42]. invalidated mappings are cached by only one TLB But memory mappings are the efficient way to use or not cached at all, allowing us to entirely avoid persistent memory [18, 47], and avoiding unmap- the cost of synchronization. -
Comparing NTFS File System with ETX4 File System
Comparing NTFS File System with ETX4 File System Valbona Dhjaku Nevila Xoxa Albion Bame Igli Tafa Natural Science Faculty Natural Science Faculty Faculty of Information Polytechnic University Informatics Department Informatics Department Technology of Tirana valbona.dhjaku@banka [email protected] [email protected] [email protected] credins.com Abstract Disk Layout This paper presents a study and analysis of ETX4 file system and data structures comparing them with 2. Related Works the NTFS File System of Windows Operating System. It includes descriptions of ETX4 File With NTFS and ETX4 file system is been done various System Features, ETX4 Disk Layout and ETX4 work and some of them inspired me write this article. extent tree. All the components that we mentioned The information I had about this two file systems after above will be in comparison with the adequate working for almost four years with Windows and Ubuntu features of Windows Operating System that operating system helped me the most. I saw the need to expand my knowledge about this operating systems and corresponds to the Features of ETX4 File System. the file system that both of them use seemed a good Here we will talk about the volum size that support starting point for me to do this. For getting more each of the file system and the speed of each file knwoledges for this file systems i had to read a lot off system including their performance. articles and some of them are listed in references and others not. I have read o lot of information on different Keywords: NTFS, ETX4, performance, cluster, forums to and i do not regret it because it was very helpful iNode, hard drive sector, filesystem, features, to me.