THE DESCRIPTION LOGIC HANDBOOK: Theory, Implementation, and Applications

Total Page:16

File Type:pdf, Size:1020Kb

THE DESCRIPTION LOGIC HANDBOOK: Theory, Implementation, and Applications THE DESCRIPTION LOGIC HANDBOOK: Theory, implementation, and applications Edited by Franz Baader Deborah L. McGuinness Daniele Nardi Peter F. Patel-Schneider Contents List of contributors page 1 1 An Introduction to Description Logics D. Nardi, R. J. Brach- man 5 1.1 Introduction 5 1.2 From networks to Description Logics 8 1.3 Knowledge representation in Description Logics 16 1.4 From theory to practice: Description Logics systems 20 1.5 Applications developed with Description Logics systems 24 1.6 Extensions of Description Logics 34 1.7 Relationship to other fields of Computer Science 40 1.8 Conclusion 43 Part one: Theory 45 2 Basic Description Logics F. Baader, W. Nutt 47 2.1 Introduction 47 2.2 Definition of the basic formalism 50 2.3 Reasoning algorithms 78 2.4 Language extensions 95 3 Complexity of Reasoning F. M. Donini 101 3.1 Introduction 101 3.2 OR-branching: finding a model 105 3.3 AND-branching: finding a clash 112 3.4 Combining sources of complexity 119 3.5 Reasoning in the presence of axioms 121 3.6 Undecidability 127 3.7 Reasoning about individuals in ABoxes 133 3.8 Discussion 137 3.9 A list of complexity results for subsumption and satisfiability 138 iii iv Contents 4 Relationships with other Formalisms U. Sattler, D. Cal- vanese, R. Molitor 142 4.1 AI knowledge representation formalisms 142 4.2 Logical formalisms 154 4.3 Database models 166 5 Expressive Description Logics D. Calvanese, G. De Giacomo184 5.1 Introduction 184 5.2 Correspondence between Description Logics and Propositional Dy- namic Logics 185 5.3 Functional restrictions 192 5.4 Qualified number restrictions 200 5.5 Objects 204 5.6 Fixpoint constructs 207 5.7 Relations of arbitrary arity 211 5.8 Finite model reasoning 215 5.9 Undecidability results 222 6 Extensions to Description Logics F. Baader, R. K¨usters, F. Wolter 226 6.1 Introduction 226 6.2 Language extensions 227 6.3 Non-standard inference problems 257 Part two: Implementation 269 7 From Description Logic Provers to Knowledge Representation Systems D. L. McGuinness, P. F. Patel-Schneider 271 7.1 Introduction 271 7.2 Basic access 273 7.3 Advanced application access 276 7.4 Advanced human access 280 7.5 Other technical concerns 286 7.6 Public relations concerns 286 7.7 Summary 287 8 Description Logics Systems R. M¨oller, V. Haarslev 289 8.1 New light through old windows? 289 8.2 The first generation 290 8.3 Second generation Description Logics systems 298 8.4 The next generation: Fact , Dlp and Racer 308 8.5 Lessons learned 310 Contents v 9 Implementation and Optimisation Techniques I. Horrocks 313 9.1 Introduction 313 9.2 Preliminaries 315 9.3 Subsumption testing algorithms 320 9.4 Theory versus practice 324 9.5 Optimisation techniques 330 9.6 Discussion 354 Part three: Applications 357 10 Conceptual Modeling with Description Logics A. Borgida, R. J. Brachman 359 10.1 Background 359 10.2 Elementary Description Logics modeling 361 10.3 Individuals in the world 363 10.4 Concepts 365 10.5 Subconcepts 368 10.6 Modeling relationships 371 10.7 Modeling ontological aspects of relationships 373 10.8 A conceptual modeling methodology 378 10.9 The ABox: modeling specific states of the world 379 10.10 Conclusions 381 11 Software Engineering C. Welty 382 11.1 Introduction 382 11.2 Background 382 11.3 Lassie 383 11.4 CodeBase 388 11.5 CSIS and CBMS 389 12 Configuration D. L. McGuinness 397 12.1 Introduction 397 12.2 Configuration description and requirements 399 12.3 The Prose and Questar family of configurators 412 12.4 Summary 413 13 Medical Informatics A. Rector 415 13.1 Background and history 416 13.2 Example applications 419 13.3 Technical issues in medical ontologies 425 13.4 Ontological issues in medical ontologies 431 13.5 Architectures: terminology servers, views, and change management 434 13.6 Discussion: key lessons from medical ontologies 435 vi Contents 14 Digital Libraries and Web-Based Information Systems I. Horrocks, D. L. McGuinness, C. Welty 436 14.1 Background and history 436 14.2 Enabling the Semantic Web: DAML 441 14.3 OIL and DAML+OIL 443 14.4 Summary 457 15 Natural Language Processing E. Franconi 460 15.1 Introduction 460 15.2 Semantic interpretation 461 15.3 Reasoning with the logical form 465 15.4 Knowledge-based natural language generation 470 16 Description Logics for Data Bases A. Borgida, M. Lenzerini, R. Rosati 472 16.1 Introduction 472 16.2 Data models and Description Logics 475 16.3 Description Logics and database querying 484 16.4 Data integration 488 16.5 Conclusions 493 1 Description Logic Terminology F. Baader 495 A1.1 Notational conventions 495 A1.2 Syntax and semantics of common Description Logics 496 A1.3 Additional constructors 501 A1.4 A note on the naming scheme for Description Logics 504 1 An Introduction to Description Logics Daniele Nardi Ronald J. Brachman Abstract This introduction presents the main motivations for the development of Description Logics (DL) as a formalism for representing knowledge, as well as some important basic notions underlying all systems that have been created in the DL tradition. In addition, we provide the reader with an overview of the entire book and some guidelines for reading it. We first address the relationship between Description Logics and earlier seman- tic network and frame systems, which represent the original heritage of the field. We delve into some of the key problems encountered with the older efforts. Subse- quently, we introduce the basic features of Description Logic languages and related reasoning techniques. Description Logic languages are then viewed as the core of knowledge represen- tation systems, considering both the structure of a DL knowledge base and its associated reasoning services. The development of some implemented knowledge representation systems based on Description Logics and the first applications built with such systems are then reviewed. Finally, we address the relationship of Description Logics to other fields of Com- puter Science. We also discuss some extensions of the basic representation language machinery; these include features proposed for incorporation in the formalism that originally arose in implemented systems, and features proposed to cope with the needs of certain application domains. 1.1 Introduction Research in the field of knowledge representation and reasoning is usually focused on methods for providing high-level descriptions of the world that can be effectively used to build intelligent applications. In this context, “intelligent” refers to the abil- 5 6 D. Nardi, R. J. Brachman ity of a system to find implicit consequences of its explicitly represented knowledge. Such systems are therefore characterized as knowledge-based systems. Approaches to knowledge representation developed in the 1970’s—when the field enjoyed great popularity—are sometimes divided roughly into two categories: logic- based formalisms, which evolved out of the intuition that predicate calculus could be used unambiguously to capture facts about the world; and other, non-logic-based representations. The latter were often developed by building on more cognitive notions—for example, network structures and rule-based representations derived from experiments on recall from human memory and human execution of tasks like mathematical puzzle solving. Even though such approaches were often developed for specific representational chores, the resulting formalisms were usually expected to serve in general use. In other words, the non-logical systems created from very specific lines of thinking (e.g., early Production Systems) evolved to be treated as general purpose tools, expected to be applicable in different domains and on different types of problems. On the other hand, since first-order logic provides very powerful and general ma- chinery, logic-based approaches were more general-purpose from the very start. In a logic-based approach, the representation language is usually a variant of first-order predicate calculus, and reasoning amounts to verifying logical consequence. In the non-logical approaches, often based on the use of graphical interfaces, knowledge is represented by means of some ad hoc data structures, and reasoning is accomplished by similarly ad hoc procedures that manipulate the structures. Among these spe- cialized representations we find semantic networks and frames. Semantic Networks were developed after the work of Quillian [1967], with the goal of characterizing by means of network-shaped cognitive structures the knowledge and the reasoning of the system. Similar goals were shared by later frame systems [Minsky, 1981], which rely upon the notion of a “frame” as a prototype and on the capability of expressing relationships between frames. Although there are significant differences between se- mantic networks and frames, both in their motivating cognitive intuitions and in their features, they have a strong common basis. In fact, they can both be regarded as network structures, where the structure of the network aims at representing sets of individuals and their relationships. Consequently, we use the term network-based structures to refer to the representation networks underlying semantic networks and frames (see [Lehmann, 1992] for a collection of papers concerning various families of network-based structures). Owing to their more human-centered origins, the network-based systems were often considered more appealing and more effective from a practical viewpoint than the logical systems. Unfortunately they were not fully satisfactory because of their usual lack of precise semantic characterization. The end result of this was that every system behaved differently from the others, in many cases despite virtually identical- An Introduction to Description Logics 7 looking components and even identical relationship names. The question then arose as to how to provide semantics to representation structures, in particular to semantic networks and frames, which carried the intuition that, by exploiting the notion of hierarchical structure, one could gain both in terms of ease of representation and in terms of the efficiency of reasoning.
Recommended publications
  • Schema.Org As a Description Logic
    Schema.org as a Description Logic Andre Hernich1, Carsten Lutz2, Ana Ozaki1 and Frank Wolter1 1University of Liverpool, UK 2University of Bremen, Germany fandre.hernich, anaozaki, [email protected] [email protected] Abstract Patel-Schneider [2014] develops an ontology language for Schema.org with a formal syntax and semantics that, apart Schema.org is an initiative by the major search en- from some details, can be regarded as a fragment of OWL DL. gine providers Bing, Google, Yahoo!, and Yandex that provides a collection of ontologies which web- In this paper, we abstract slightly further and view the masters can use to mark up their pages. Schema.org Schema.org ontology language as a DL, in line with the for- comes without a formal language definition and malization by Patel-Schneider. Thus, what Schema.org calls a without a clear semantics. We formalize the lan- type becomes a concept name and a property becomes a role guage of Schema.org as a Description Logic (DL) name. The main characteristics of the resulting ‘Schema.org and study the complexity of querying data using DL’ are that (i) the language is very restricted, allowing only (unions of) conjunctive queries in the presence of inclusions between concept and role names, domain and range ontologies formulated in this DL (from several per- restrictions, nominals, and datatypes; (ii) ranges and domains spectives). While querying is intractable in general, of roles can be restricted to disjunctions of concept names (pos- we identify various cases in which it is tractable and sibly mixed with datatypes in range restrictions) and nominals where queries are even rewritable into FO queries are used in ‘one-of enumerations’ which also constitute a form or datalog programs.
    [Show full text]
  • A Framework for Comparing the Use of a Linguistic Ontology in an Application
    A Framework for Comparing the use of a Linguistic Ontology in an Application Julieanne van Zyl1 and Dan Corbett2 Abstract. A framework recently developed for understanding and “a body of knowledge about the world (or a domain) that a) is classifying ontology applications provides opportunities to review a repository of primitive symbols used in meaning the state of the art, and to provide guidelines for application b) organises these symbols in a tangled subsumption developers from different communities [1]. The framework hierarchy; and identifies four main categories of ontology applications: neutral c) further interconnects these symbols using a rich system of authoring, ontology as specification, common access to semantic and discourse-pragmatic relations defined among information, and ontology-based search. Specific scenarios are the concepts” [2]. described for each category and a number of features have been identified to highlight the similarities and differences between There has been some work on comparing ontology applications, them. In this paper we identify additional scenarios, describing the which refer to “the application that makes use of or benefits from use of a linguistic ontology in an application. We populate the the ontology (possibly directly)” [1]. A framework [3] was scenarios with a number of prominent research and industrial developed for comparing various projects in ontology design, applications from diverse communities such as knowledge-based which considered the differences and similarities in the way the machine translation, medical databases, heterogenous information projects treat some basic knowledge representation aspects. The systems integration, multilingual text generation, Web-based projects compared include three natural language ontologies, two applications, and information retrieval.
    [Show full text]
  • Denying a Dualism: Goodman's Repudiation of the Analytic/Synthetic Distinction
    Midwest Studies in Philosophy, 28, 2004, 226-238. Denying a Dualism: Goodman’s Repudiation of the Analytic/Synthetic Distinction Catherine Z. Elgin The analytic synthetic/distinction forms the backbone of much modern Western philosophy. It underwrites a conception of the relation of representations to reality which affords an understanding of cognition. Its repudiation thus requires a fundamental reconception and perhaps a radical revision of philosophy. Many philosophers believe that the repudiation of the analytic/synthetic distinction and kindred dualisms constitutes a major loss, possibly even an irrecoverable loss, for philosophy. Nelson Goodman thinks otherwise. He believes that it liberates philosophy from unwarranted restrictions, creating opportunities for the development of powerful new approaches to and reconceptions of seemingly intractable problems. In this article I want to sketch some of the consequences of Goodman’s reconception. My focus is not on Goodman’s reasons for denying the dualism, but on some of the ways its absence affects his position. I do not contend that the Goodman obsessed over the issue. I have no reason to think that the repudiation of the distinction was a central factor in his intellectual life. But by considering the function that the analytic/synthetic distinction has performed in traditional philosophy, and appreciating what is lost and gained in repudiating it, we gain insight into Goodman’s contributions. I begin then by reviewing the distinction and the conception of philosophy it supports. The analytic/synthetic distinction is a distinction between truths that depend entirely on meaning and truths that depend on both meaning and fact. In the early modern period, it was cast as a distinction between relations of ideas and matters of fact.
    [Show full text]
  • Philosophical Logic 2018 Course Description (Tentative) January 15, 2018
    Philosophical Logic 2018 Course description (tentative) January 15, 2018 Valentin Goranko Introduction This 7.5 hp course is mainly intended for students in philosophy and is generally accessible to a broad audience with basic background on formal classical logic and general appreciation of philosophical aspects of logic. Practical information The course will be given in English. It will comprise 18 two-hour long sessions combining lectures and exercises, grouped in 2 sessions per week over 9 teaching weeks. The weekly pairs of 2-hour time slots (incl. short breaks) allocated for these sessions, will be on Mondays during 10.00-12.00 and 13.00-15.00, except for the first lecture. The course will begin on Wednesday, April 4, 2018 (Week 14) at 10.00 am in D220, S¨odra huset, hus D. Lecturer's info: Name: Valentin Goranko Email: [email protected] Homepage: http://www2.philosophy.su.se/goranko Course webpage: http://www2.philosophy.su.se/goranko/Courses2018/PhilLogic-2018.html Prerequisites The course will be accessible to a broad audience with introductory background on classical formal logic. Some basic knowledge of modal logics would be an advantage but not a prerequisite. Brief description Philosophical logic studies a variety of non-classical logical systems intended to formalise and reason about various philosophical concepts and ideas. They include a broad family of modal logics, as well as many- valued, intuitionistic, relevant, conditional, non-monotonic, para-consistent, etc. logics. Modal logics extend classical logic with additional intensional logical operators, reflecting different modes of truth, including alethic, epistemic, doxastic, temporal, deontic, agentive, etc.
    [Show full text]
  • Introduction to Philosophy. Social Studies--Language Arts: 6414.16. INSTITUTION Dade County Public Schools, Miami, Fla
    DOCUMENT RESUME ED 086 604 SO 006 822 AUTHOR Norris, Jack A., Jr. TITLE Introduction to Philosophy. Social Studies--Language Arts: 6414.16. INSTITUTION Dade County Public Schools, Miami, Fla. PUB DATE 72 NOTE 20p.; Authorized Course of Instruction for the Quinmester Program EDRS PRICE MF-$0.65 HC-$3.29 DESCRIPTORS Course Objectives; Curriculum Guides; Grade 10; Grade 11; Grade 12; *Language Arts; Learnin4 Activities; *Logic; Non Western Civilization; *Philosophy; Resource Guides; Secondary Grades; *Social Studies; *Social Studies Units; Western Civilization IDENTIFIERS *Quinmester Program ABSTRACT Western and non - western philosophers and their ideas are introduced to 10th through 12th grade students in this general social studies Quinmester course designed to be used as a preparation for in-depth study of the various schools of philosophical thought. By acquainting students with the questions and categories of philosophy, a point of departure for further study is developed. Through suggested learning activities the meaning of philosopky is defined. The Socratic, deductive, inductive, intuitive and eclectic approaches to philosophical thought are examined, as are three general areas of philosophy, metaphysics, epistemology,and axiology. Logical reasoning is applied to major philosophical questions. This course is arranged, as are other quinmester courses, with sections on broad goals, course content, activities, and materials. A related document is ED 071 937.(KSM) FILMED FROM BEST AVAILABLE COPY U S DEPARTMENT EDUCATION OF HEALTH. NAT10N41
    [Show full text]
  • Curriculum Vitae
    BAS C. VAN FRAASSEN Curriculum Vitae Last updated 3/6/2019 I. Personal and Academic History .................................................................................................................... 1 List of Degrees Earned ........................................................................................................................................................ 1 Title of Ph.D. Thesis ........................................................................................................................................................... 1 Positions held ..................................................................................................................................................................... 1 Invited lectures and lecture series ........................................................................................................................................ 1 List of Honors, Prizes ......................................................................................................................................................... 4 Research Grants .................................................................................................................................................................. 4 Non-Academic Publications ................................................................................................................................................ 5 II. Professional Activities .................................................................................................................................
    [Show full text]
  • Ontologies and Description Logics
    Symbolic and structural models for image understanding Part II: Ontologies and description logics Jamal Atif - Isabelle Bloch - Céline Hudelot IJCAI 2016 1 / 72 J. Atif, I. Bloch, C. Hudelot Image Understanding Outline 1 What is an ontology ? 2 Ontologies for image understanding: overview 3 Description Logics 4 Description Logics for image understanding 5 Conclusion What is an ontology ? What is an ontology ? Example from F. Gandon, WIMMICS Team, INRIA What is the last document that you have read? Documents 3 / 72 J. Atif, I. Bloch, C. Hudelot Image Understanding What is an ontology ? Ontologies: Definition Ontology ethymology: ontos (being, that which is) + logos (science, study, theory) Philosophy Study of the nature of being, becoming and reality. Study of the basic categories of being and their relations. Computer Science Formal representation of a domain of discourse. Explicit specification of a conceptualization [Gruber 95]. Ref: [Guarino 09] 4 / 72 J. Atif, I. Bloch, C. Hudelot Image Understanding What is an ontology ? Ontologies: Definition ontology Formal, explicit (and shared) specification of a conceptualization [Gruber 95, Studer 98] Formal, explicit specification: a formal language is used to refer to the elements of the conceptualization, e.g. description logics Conceptualization: Objects, concepts and other entities and their relationships Concept Relation Denoted by: Denoted by: a name a name a meaning (intensional definition) an intension a set of denoted objects (extensional an extension definition) 5 / 72 J. Atif, I. Bloch, C. Hudelot Image Understanding What is an ontology ? The different types of ontologies According to their expressivity Source : [Uschold 04] 6 / 72 J. Atif, I. Bloch, C.
    [Show full text]
  • Knowledge Representation in Bicategories of Relations
    Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR).
    [Show full text]
  • A Translation Approach to Portable Ontology Specifications
    Knowledge Systems Laboratory September 1992 Technical Report KSL 92-71 Revised April 1993 A Translation Approach to Portable Ontology Specifications by Thomas R. Gruber Appeared in Knowledge Acquisition, 5(2):199-220, 1993. KNOWLEDGE SYSTEMS LABORATORY Computer Science Department Stanford University Stanford, California 94305 A Translation Approach to Portable Ontology Specifications Thomas R. Gruber Knowledge System Laboratory Stanford University 701 Welch Road, Building C Palo Alto, CA 94304 [email protected] Abstract To support the sharing and reuse of formally represented knowledge among AI systems, it is useful to define the common vocabulary in which shared knowledge is represented. A specification of a representational vocabulary for a shared domain of discourse — definitions of classes, relations, functions, and other objects — is called an ontology. This paper describes a mechanism for defining ontologies that are portable over representation systems. Definitions written in a standard format for predicate calculus are translated by a system called Ontolingua into specialized representations, including frame-based systems as well as relational languages. This allows researchers to share and reuse ontologies, while retaining the computational benefits of specialized implementations. We discuss how the translation approach to portability addresses several technical problems. One problem is how to accommodate the stylistic and organizational differences among representations while preserving declarative content. Another is how
    [Show full text]
  • THE DATA COMPLEXITY of DESCRIPTION LOGIC ONTOLOGIES in Recent Years, the Use of Ontologies to Access Instance Data Has Become In
    THE DATA COMPLEXITY OF DESCRIPTION LOGIC ONTOLOGIES CARSTEN LUTZ AND FRANK WOLTER University of Bremen, Germany e-mail address: [email protected] University of Liverpool e-mail address: [email protected] ABSTRACT. We analyze the data complexity of ontology-mediated querying where the ontologies are formulated in a description logic (DL) of the ALC family and queries are conjunctive queries, positive existential queries, or acyclic conjunctive queries. Our approach is non-uniform in the sense that we aim to understand the complexity of each single ontology instead of for all ontologies for- mulated in a certain language. While doing so, we quantify over the queries and are interested, for example, in the question whether all queries can be evaluated in polynomial time w.r.t. a given on- tology. Our results include a PTIME/CONP-dichotomy for ontologies of depth one in the description logic ALCFI, the same dichotomy for ALC- and ALCI-ontologies of unrestricted depth, and the non-existence of such a dichotomy for ALCF-ontologies. For the latter DL, we additionally show that it is undecidable whether a given ontology admits PTIME query evaluation. We also consider the connection between PTIME query evaluation and rewritability into (monadic) Datalog. 1. INTRODUCTION In recent years, the use of ontologies to access instance data has become increasingly popular [PLC+08, KZ14, BO15]. The general idea is that an ontology provides domain knowledge and an enriched vocabulary for querying, thus serving as an interface between the query and the data, and enabling the derivation of additional facts. In this emerging area, called ontology-mediated querying, it is a central research goal to identify ontology languages for which query evaluation scales to large amounts of instance data.
    [Show full text]
  • Complexity of the Description Logic ALCM
    Proceedings, Fifteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2016) Complexity of the Description Logic ALCM Monica´ Martinez and Edelweis Rohrer Paula Severi Instituto de Computacion,´ Facultad de Ingenier´ıa, Department of Computer Science, Universidad de la Republica,´ Uruguay University of Leicester, England Abstract in ALCM can be used for a knowledge base in ALC. Details of our ExpTime algorithm for ALCM along with In this paper we show that the problem of deciding the consis- proofs of correctness and the complexity result can be found tency of a knowledge base in the Description Logic ALCM is ExpTime-complete. The M stands for meta-modelling as in (Martinez, Rohrer, and Severi 2015). defined by Motz, Rohrer and Severi. To show our main result, we define an ExpTime Tableau algorithm as an extension of 2 A Flexible Meta-modelling Approach an algorithm for ALC by Nguyen and Szalas. A knowledge base in ALCM contains an Mbox besides of a Tbox and an Abox. An Mbox is a set of equalities of the form 1 Introduction a =m A where a is an individual and A is a concept (Motz, The main motivation of the present work is to study the com- Rohrer, and Severi 2015). Figure 1 shows an example of two plexity of meta-modelling as defined in (Motz, Rohrer, and ontologies separated by a horizontal line, where concepts are Severi 2014; 2015). No study of complexity has been done denoted by large ovals and individuals by bullets. The two so far for this approach and we would like to analyse if it ontologies conceptualize the same entities at different lev- increases the complexity of a given description logic.
    [Show full text]
  • The Analytic-Synthetic Distinction and the Classical Model of Science: Kant, Bolzano and Frege
    Synthese (2010) 174:237–261 DOI 10.1007/s11229-008-9420-9 The analytic-synthetic distinction and the classical model of science: Kant, Bolzano and Frege Willem R. de Jong Received: 10 April 2007 / Revised: 24 July 2007 / Accepted: 1 April 2008 / Published online: 8 November 2008 © The Author(s) 2008. This article is published with open access at Springerlink.com Abstract This paper concentrates on some aspects of the history of the analytic- synthetic distinction from Kant to Bolzano and Frege. This history evinces con- siderable continuity but also some important discontinuities. The analytic-synthetic distinction has to be seen in the first place in relation to a science, i.e. an ordered system of cognition. Looking especially to the place and role of logic it will be argued that Kant, Bolzano and Frege each developed the analytic-synthetic distinction within the same conception of scientific rationality, that is, within the Classical Model of Science: scientific knowledge as cognitio ex principiis. But as we will see, the way the distinction between analytic and synthetic judgments or propositions functions within this model turns out to differ considerably between them. Keywords Analytic-synthetic · Science · Logic · Kant · Bolzano · Frege 1 Introduction As is well known, the critical Kant is the first to apply the analytic-synthetic distinction to such things as judgments, sentences or propositions. For Kant this distinction is not only important in his repudiation of traditional, so-called dogmatic, metaphysics, but it is also crucial in his inquiry into (the possibility of) metaphysics as a rational science. Namely, this distinction should be “indispensable with regard to the critique of human understanding, and therefore deserves to be classical in it” (Kant 1783, p.
    [Show full text]