6. the Spinal Nerves

Total Page:16

File Type:pdf, Size:1020Kb

6. the Spinal Nerves 6. The Spinal Nerves (Nervi Spinales) 1 The spinal nerves spring from the medulla spinalis, and are transmitted through the intervertebral foramina. They number thirty-one pairs, which are grouped as follows: Cervical, 8; Thoracic, 12; Lumbar, 5; Sacral, 5; Coccygeal, 1. The first cervical nerve emerges from the vertebral canal between the occipital bone and the atlas, and is therefore called the suboccipital 2 nerve; the eighth issues between the seventh cervical and first thoracic vertebræ. Nerve Roots.—Each nerve is attached to the medulla spinalis by two roots, an anterior orventral, and a posterior or dorsal, the latter being 3 characterized by the presence of a ganglion, the spinal ganglion. The Anterior Root (radix anterior; ventral root) emerges from the anterior surface of the medulla spinalis as a number of rootlets or filaments 4 (fila radicularia), which coalesce to form two bundles near the intervertebral foramen. The Posterior Root (radix posterior; dorsal root) is larger than the anterior owing to the greater size and number of its rootlets; these are 5 attached along the posterolateral furrow of the medulla spinalis and unite to form two bundles which join the spinal ganglion. The posterior root of the first cervical nerve is exceptional in that it is smaller than the anterior; it is occasionally wanting. The Spinal Ganglia (ganglion spinale) are collections of nerve cells on the posterior roots of the spinal nerves. Each ganglion is oval in shape, 6 reddish in color, and its size bears a proportion to that of the nerve root on which it is situated; it is bifid medially where it is joined by the two bundles of the posterior nerve root. The ganglia are usually placed in the intervertebral foramina, immediately outside the points where the nerve roots perforate the dura mater, but there are exceptions to this rule; thus the ganglia of the first and second cervical nerves lie on the vertebral arches of the atlas and axis respectively, those of the sacral nerves are inside the vertebral canal, while that on the posterior root of the coccygeal nerve is placed within the sheath of dura mater. Structure (Fig. 638).—The ganglia consist chiefly of unipolar nerve cells, and from these the fibers of the posterior root take origin—the single 7 process of each cell dividing after a short course into a central fiber which enters the medulla spinalis and a peripheral fiber which runs into the spinal nerve. Two other forms of cells are, however, present, viz.: (a) the cells of Dogiel, whose axons ramify close to the cell (type II, of Golgi), and are distributed entirely within the ganglion; and (b) multipolar cells similar to those found in the sympathetic ganglia. The ganglia of the first cervical nerve may be absent, while small aberrant gangliaconsisting of groups of nerve cells are sometimes found on 8 the posterior roots between the spinal ganglia and the medulla spinalis. Each nerve root receives a covering from the pia mater, and is loosely invested by the arachnoid, the latter being prolonged as far as the points 9 where the roots pierce the dura mater. The two roots pierce the dura mater separately, each receiving a sheath from this membrane; where the roots join to form the spinal nerve this sheath is continuous with the epineurium of the nerve. FIG. 796– A portion of the spinal cord, showing its right lateral surface. The dura is opened and arranged to show the nerve roots. (Testut.) (See enlarged image) Size and Direction.—The roots of the upper four cervical nerves are small, those of the lower four are large. The posterior roots of the cervical 10 nerves bear a proportion to the anterior of three to one, which is greater than in the other regions; their individual filaments are also larger than those of the anterior roots. The posterior root of the first cervical is an exception to this rule, being smaller than the anterior root; in eight per cent. of cases it is wanting. The roots of the first and second cervical nerves are short, and run nearly horizontally to their points of exit from the vertebral canal. From the second to the eighth cervical they are directed obliquely downward, the obliquity and length of the roots successively increasing; the distance, however, between the level of attachment of any of these roots to the medulla spinalis and the points of exit of the corresponding nerves never exceeds the depth of one vertebra. The roots of the thoracic nerves, with the exception of the first, are of small size, and the posterior only slightly exceed the anterior in 11 thickness. They increase successively in length, from above downward, and in the lower part of the thoracic region descend in contact with the medulla spinalis for a distance equal to the height of at least two vertebræ before they emerge from the vertebral canal. FIG. 797– Distribution of cutaneous nerves. Ventral aspect. (See enlarged image) The roots of the lower lumbar and upper sacral nerves are the largest, and their individual filaments the most numerous of all the spinal nerves, 12 while the roots of the coccygeal nerve are the smallest. The roots of the lumbar, sacral, and coccygeal nerves run vertically downward to their respective exits, and as the medulla spinalis ends near 13 the lower border of the first lumbar vertebra it follows that the length of the successive roots must rapidly increase. As already mentioned (page 750), the term cauda equina is applied to this collection of nerve roots. FIG. 798– Distribution of cutaneous nerves. Dorsal aspect. (See enlarged image) From the description given it will be seen that the largest nerve roots, and consequently the largest spinal nerves, are attached to the cervical 14 and lumbar swellings of the medulla spinalis; these nerves are distributed to the upper and lower limbs. Connections with Sympathetic.—Immediately beyond the spinal ganglion, the anterior and posterior nerve roots unite to form the spinal 15 nerve which emerges through the intervertebral foramen. Each spinal nerve receives a branch (gray ramus communicans) from the adjacent ganglion of the sympathetic trunk, while the thoracic, and the first and second lumbar nerves each contribute a branch (white ramus communicans) to the adjoining sympathetic ganglion. The second, third, and fourth sacral nerves also supply white rami; these, however, are not connected with the ganglia of the sympathetic trunk, but run directly into the pelvic plexuses of the sympathetic. FIG. 799– Scheme showing structure of a typical spinal nerve. 1. Somatic efferent. 2. Somatic afferent. 3,4,5. Sympathetic efferent. 6,7. Sympathetic afferent. (See enlarged image) Structure.—Each typical spinal nerve contains fibers belonging to two systems, viz., thesomatic, and the sympathetic or splanchnic, as well as 16 fibers connecting these systems with each other (Fig. 799). 1. The somatic fibers are efferent and afferent. The efferent fibers originate in the cells of the anterior column of the medulla spinalis, and run 17 outward through the anterior nerve roots to the spinal nerve. They convey impulses to the voluntary muscles, and are continuous from their origin to their peripheral distribution. The afferent fibers convey impressions inward from the skin, etc., and originate in the unipolar nerve cells of the spinal ganglia. The single processes of these cells divide into peripheral and central fibers, and the latter enter the medulla spinalis through the posterior nerve roots. 2. The sympathetic fibers are also efferent and afferent. The efferent fibers, preganglionic fibers, originate in the lateral column of the medulla 18 spinalis, and are conveyed through the anterior nerve root and the white ramus communicans to the corresponding ganglion of the sympathetic trunk; here they may end by forming synapses around its cells, or may run through the ganglion to end in another of the ganglia of the sympathetic trunk, or in a more distally placed ganglion in one of the sympathetic plexuses. In all cases they end by forming synapses around other nerve cells. From the cells of the ganglia of the sympathetic trunk other fibers, postganglionic fibers, take origin; some of these run through the gray rami communicantes to join the spinal nerves, along which they are carried to the bloodvessels of the trunk and limbs, while others pass to the viscera, either directly or after interruption in one of the distal ganglia. The afferent fibers are derived partly from the unipolar cells and partly from the multipolar cells of the spinal ganglia. Their peripheral processes are carred through the white rami communicantes, and after passing through one or more sympathetic ganglia (but always without interruption in them) finally end in the tissues of the viscera. The central processes of the unipolar cells enter the medulla spinalis through the posterior nerve root and form synapses around either somatic or sympathetic efferent neurons, thus completing reflex arcs. The dendrites of the multipolar nerve cells form synapses around the cells of type II (cells of Dogiel) in the spinal ganglia, and by this path the original impulse is transferred from the sympathetic to the somatic system, through which it is conveyed to the sensorium. Divisions.—After emerging from the intervertebral foramen, each spinal nerve gives off a small meningeal branch which reënters the vertebral canal through the intervertebral foramen and supplies the vertebræ and their ligaments, and the bloodvessels of the medulla spinalis and its membranes. The spinal nerve then splits into a posterior or dorsal, and ananterior or ventral division, each receiving fibres from both nerve roots. 6a. The Posterior Divisions (Rami Posteriores) 1 The posterior divisions are as a rule smaller than the anterior.
Recommended publications
  • Intrapartum Lesions to the Lumbar Portion of the Lumbosacral Plexus: an Anatomical Review
    REVIEW Eur. J. Anat. 23 (2): 83-90 (2019) Intrapartum lesions to the lumbar portion of the lumbosacral plexus: an anatomical review Shanna E. Williams, Asa C. Black, Jr. Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA SUMMARY Key words: Plexopathy – Radiculopathy – Neu- The lumbosacral plexus is formed by the ventral ropathy – Pregnancy – Foot drop rami of L2-S3 and provides sensory and motor branches to the lower extremity. The spatial orien- INTRODUCTION tation of the lumbar portion of the plexus above the pelvic brim leaves it particularly susceptible to in- The lumbosacral plexus is formed by the ventral trapartum injury by the fetal head. Such lesions are rami of the L2-S3 segments, with some contribu- subdivided into two groups: upper lumbar plexus tions from L1 and S4 segments. It gives rise to six (L1-L4) and lumbosacral trunk (L4-L5). Given the sensory nerves of the thigh and leg, and six major root levels involved, upper lumbar plexus lesions sensorimotor nerves responsible for innervating 43 produce symptoms suggestive of iliohypogastric, muscles of the lower extremity (Van Alfen and ilioinguinal, genitofemoral, femoral, and obturator Malessy, 2013). As the name would suggest, it neuropathies or L4 radiculopathies. Alternatively, consists of two components, the lumbar plexus involvement of the lumbosacral trunk can imitate a and the sacral plexus, which are spatially separat- common fibular (peroneal) neuropathy or L5 ed. This anatomical separation results in a clinical radiculopathy. This symptomatic overlap with vari- division of lumbosacral plexus lesions into those ous neuropathies and radiculopathies, makes di- affecting the lumbar plexus and those affecting the agnosis of such lesions particularly challenging.
    [Show full text]
  • Ischaemic Lumbosacral Plexopathy in Acute Vascular Compromise:Case Report
    Parapkgia 29 (1991) 70-75 © 1991 International Medical Soci<ty of Paraplegia Paraplegia L-_________________________________________________ � Ischaemic Lumbosacral Plexopathy in Acute Vascular Compromise: Case Report D.X. Cifu, MD, K.D. Irani, MD Department of Physical Medicine, Baylor College of Medicine, Houston, Texas, USA. Summary Anterior spinal artery syndrome (ASAS) is a well reported cause of spinal cord injury (SCI) following thoracoabdominal aortic surgery. The resultant deficits are often incom­ plete, typically attributed to the variable nature of the vascular distribution. Our Physi­ cal Medicine and Rehabilitation (PM and Rehabilitation) service was consulted about a 36-year-old patient with generalised deconditioning, 3 months after a stab wound to the left ventricle. Physical examination revealed marked lower extremity weakness, hypo­ tonia, hyporeflexia, and a functioning bowel and bladder. Further questioning disclosed lower extremity dysesthesias. Nerve conduction studies showed slowed velocities, pro­ longed distal latencies and decreased amplitudes of all lower extremity nerves. Electro­ myography revealed denervation of all proximal and distal lower extremity musculature, with normal paraspinalis. Upper extremity studies were normal. Recently, 3 cases of ischaemic lumbosacral plexopathy, mimicking an incomplete SCI, have been reported. This distinction is particularly difficult in the poly trauma patient with multiple musculo­ skeletal injuries or prolonged recuperation time, in addition to a vascular insult, as in this patient. The involved anatomical considerations will be discussed. A review of the elec­ trodiagnostic data from 30 patients, with lower extremity weakness following acute ischaemia, revealed a 20% incidence of spinal cord compromise, but no evidence of a plexopathy. Key words: Ischaemia; Lumbosacral plexopathy; Electromyography. Recent advances in cardiovascular and trauma surgery have led to increased survi­ val of patients following cardiac and great vessel trauma or insult.
    [Show full text]
  • Gross Anatomy
    www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H.
    [Show full text]
  • Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions
    Hindawi International Journal of Rheumatology Volume 2020, Article ID 2919625, 13 pages https://doi.org/10.1155/2020/2919625 Review Article Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions Worku Abie Liyew Biomedical Science Department, School of Medicine, Debre Markos University, Debre Markos, Ethiopia Correspondence should be addressed to Worku Abie Liyew; [email protected] Received 25 April 2020; Revised 26 June 2020; Accepted 13 July 2020; Published 29 August 2020 Academic Editor: Bruce M. Rothschild Copyright © 2020 Worku Abie Liyew. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lumbar disc degeneration is defined as the wear and tear of lumbar intervertebral disc, and it is mainly occurring at L3-L4 and L4-S1 vertebrae. Lumbar disc degeneration may lead to disc bulging, osteophytes, loss of disc space, and compression and irritation of the adjacent nerve root. Clinical presentations associated with lumbar disc degeneration and lumbosacral nerve lesion are discogenic pain, radical pain, muscular weakness, and cutaneous. Discogenic pain is usually felt in the lumbar region, or sometimes, it may feel in the buttocks, down to the upper thighs, and it is typically presented with sudden forced flexion and/or rotational moment. Radical pain, muscular weakness, and sensory defects associated with lumbosacral nerve lesions are distributed on
    [Show full text]
  • 4-Brachial Plexus and Lumbosacral Plexus (Edited).Pdf
    Color Code Brachial Plexus and Lumbosacral Important Doctors Notes Plexus Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of this lecture, the students should be able to : Describe the formation of brachial plexus (site, roots) List the main branches of brachial plexus Describe the formation of lumbosacral plexus (site, roots) List the main branches of lumbosacral plexus Describe the important Applied Anatomy related to the brachial & lumbosacral plexuses. Brachial Plexus Formation Playlist o It is formed in the posterior triangle of the neck. o It is the union of the anterior rami (or ventral) of the 5th ,6th ,7th ,8th cervical and the 1st thoracic spinal nerves. o The plexus is divided into 5 stages: • Roots • Trunks • Divisions • Cords • Terminal branches Really Tired? Drink Coffee! Brachial Plexus A P A P P A Brachial Plexus Trunks Divisions Cords o Upper (superior) trunk o o Union of the roots of Each trunk divides into Posterior cord: C5 & C6 anterior and posterior From the 3 posterior division divisions of the 3 trunks o o Middle trunk Lateral cord: From the anterior Continuation of the divisions of the upper root of C7 Branches and middle trunks o All three cords will give o Medial cord: o Lower (inferior) trunk branches in the axilla, It is the continuation of Union of the roots of the anterior division of C8 & T1 those will supply their respective regions. the lower trunk The Brachial Plexus Long Thoracic (C5,6,7) Anterior divisions Nerve to Subclavius(C5,6) Posterior divisions Dorsal Scapular(C5) Suprascapular(C5,6) upper C5 trunk Lateral Cord C6 middle (2LM) trunk C7 lower C8 trunk T1 Posterior Cord (ULTRA) Medial Cord (4MU) In the PowerPoint presentation this slide is animated.
    [Show full text]
  • Comparing the Injectate Spread and Nerve
    Journal name: Journal of Pain Research Article Designation: Original Research Year: 2018 Volume: 11 Journal of Pain Research Dovepress Running head verso: Baek et al Running head recto: Ultrasound-guided GON block open access to scientific and medical research DOI: http://dx.doi.org/10.2147/JPR.S17269 Open Access Full Text Article ORIGINAL RESEARCH Comparing the injectate spread and nerve involvement between different injectate volumes for ultrasound-guided greater occipital nerve block at the C2 level: a cadaveric evaluation In Chan Baek1 Purpose: The spread patterns between different injectate volumes have not yet been investigated Kyungeun Park1 in ultrasound-guided greater occipital nerve (GON) block at the C2 level. This cadaveric study Tae Lim Kim1 was undertaken to compare the spread pattern and nerve involvements of different volumes of Jehoon O2 dye using this technique. Hun-Mu Yang2,* Materials and methods: After randomization, ultrasound-guided GON blocks with 1 or 5 mL dye solution were performed at the C2 level on the right or left side of five fresh cadavers. The Shin Hyung Kim1,* suboccipital regions were dissected, and nerve involvement was investigated. 1 Department of Anesthesiology and Results: Ten injections were successfully completed. In all cases of 5 mL dye, we observed the Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University deeply stained posterior neck muscles, including the suboccipital triangle space. The suboccipital College of Medicine, Seoul, Republic and third occipital nerves, in addition to GONs, were consistently stained when 5-mL dye was 2 of Korea; Department of Anatomy, used in all injections (100%). Although all GONs were successfully stained in the 1-mL dye Yonsei University College of Medicine, Seoul, Republic of Korea cases, three of five injections (60%) concomitantly stained the third occipital nerves.
    [Show full text]
  • Injury to Perineal Branch of Pudendal Nerve in Women: Outcome from Resection of the Perineal Branches
    Original Article Injury to Perineal Branch of Pudendal Nerve in Women: Outcome from Resection of the Perineal Branches Eric L. Wan, BS1 Andrew T. Goldstein, MD2 Hillary Tolson, BS2 A. Lee Dellon, MD, PhD1,3 1 Department of Plastic and Reconstructive Surgery, Johns Hopkins Address for correspondence A. Lee Dellon, MD, PhD, 1122 University School of Medicine, Baltimore, Maryland Kenilworth Dr., Suite 18, Towson, MD 21204 2 The Centers for Vulvovaginal Disorders, Washington, DC (e-mail: [email protected]). 3 Department of Neurosurgery, Johns Hopkins University School of Medicine,Baltimore,Maryland J Reconstr Microsurg Abstract Background This study describes outcomes from a new surgical approach to treat “anterior” pudendal nerve symptoms in women by resecting the perineal branches of the pudendal nerve (PBPN). Methods Sixteen consecutive female patients with pain in the labia, vestibule, and perineum, who had positive diagnostic pudendal nerve blocks from 2012 through 2015, are included. The PBPN were resected and implanted into the obturator internus muscle through a paralabial incision. The mean age at surgery was 49.5 years (standard deviation [SD] ¼ 11.6 years) and the mean body mass index was 25.7 (SD ¼ 5.8). Out of the 16 patients, mechanisms of injury were episiotomy in 5 (31%), athletic injury in 4 (25%), vulvar vestibulectomy in 5 (31%), and falls in 2 (13%). Of these 16 patients, 4 (25%) experienced urethral symptoms. Outcome measures included Female Sexual Function Index (FSFI), Vulvar Pain Functional Questionnaire (VQ), and Numeric Pain Rating Scale (NPRS). Results Fourteen patients reported their condition pre- and postoperatively. Mean postoperative follow-up was 15 months.
    [Show full text]
  • Compiled for Lower Limb
    Updated: December, 9th, 2020 MSI ANATOMY LAB: STRUCTURE LIST Lower Extremity Lower Extremity Osteology Hip bone Tibia • Greater sciatic notch • Medial condyle • Lesser sciatic notch • Lateral condyle • Obturator foramen • Tibial plateau • Acetabulum o Medial tibial plateau o Lunate surface o Lateral tibial plateau o Acetabular notch o Intercondylar eminence • Ischiopubic ramus o Anterior intercondylar area o Posterior intercondylar area Pubic bone (pubis) • Pectineal line • Tibial tuberosity • Pubic tubercle • Medial malleolus • Body • Superior pubic ramus Patella • Inferior pubic ramus Fibula Ischium • Head • Body • Neck • Ramus • Lateral malleolus • Ischial tuberosity • Ischial spine Foot • Calcaneus Ilium o Calcaneal tuberosity • Iliac fossa o Sustentaculum tali (talar shelf) • Anterior superior iliac spine • Anterior inferior iliac spine • Talus o Head • Posterior superior iliac spine o Neck • Posterior inferior iliac spine • Arcuate line • Navicular • Iliac crest • Cuboid • Body • Cuneiforms: medial, intermediate, and lateral Femur • Metatarsals 1-5 • Greater trochanter • Phalanges 1-5 • Lesser trochanter o Proximal • Head o Middle • Neck o Distal • Linea aspera • L • Lateral condyle • L • Intercondylar fossa (notch) • L • Medial condyle • L • Lateral epicondyle • L • Medial epicondyle • L • Adductor tubercle • L • L • L • L • 1 Updated: December, 9th, 2020 Lab 3: Anterior and Medial Thigh Anterior Thigh Medial thigh General Structures Muscles • Fascia lata • Adductor longus m. • Anterior compartment • Adductor brevis m. • Medial compartment • Adductor magnus m. • Great saphenous vein o Adductor hiatus • Femoral sheath o Compartments and contents • Pectineus m. o Femoral canal and ring • Gracilis m. Muscles & Associated Tendons Nerves • Tensor fasciae lata • Obturator nerve • Iliotibial tract (band) • Femoral triangle: Boundaries Vessels o Inguinal ligament • Obturator artery o Sartorius m. • Femoral artery o Adductor longus m.
    [Show full text]
  • Shoulder Anatomy & Clinical Exam
    MSK Ultrasound - Spine - Incheon Terminal Orthopedic Private Clinic Yong-Hyun, Yoon C,T-spine Basic Advanced • Medial branch block • C-spine transforaminal block • Facet joint block • Thoracic paravertebral block • C-spine intra-discal injection • Superficial cervical plexus block • Vagus nerve block • Greater occipital nerve block(GON) • Third occipital nerve block(TON) • Hydrodissection • Brachial plexus(1st rib level) • Suboccipital nerve • Stellate ganglion block(SGB) • C1, C2 nerve root, C2 nerve • Brachial plexus block(interscalene) • Recurrent laryngeal nerve • Serratus anterior plane • Cervical nerve root Cervical facet joint Anatomy Diagnosis Cervical facet joint injection C-arm Ultrasound Cervical medial branch Anatomy Nerve innervation • Medial branch • Same level facet joint • Inferior level facet joint • Facet joint • Dual nerve innervation Cervical medial branch C-arm Ultrasound Cervical nerve root Anatomy Diagnosis • Motor • Sensory • Dermatome, myotome, fasciatome Cervical nerve root block C-arm Ultrasound Stallete ganglion block Anatomy Injection Vagus nerve Anatomy Injection L,S-spine Basic Advanced • Medial branch block • Lumbar sympathetic block • Facet joint block • Lumbar plexus block • Superior, inferior hypogastric nerve block • Caudal block • Transverse abdominal plane(TAP) block • Sacral plexus block • Epidural block • Hydrodissection • Interlaminal • Pudendal nerve • Transforaminal injection • Genitofemoral nerve • Superior, inferior cluneal nerve • Rectus abdominal sheath • Erector spinae plane Lumbar facet
    [Show full text]
  • Anatomy of Spinal Nerves in the First Turkish Illustrated Anatomy Handwritten Textbook
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace@HKU Childs Nerv Syst DOI 10.1007/s00381-016-3136-9 COVER EDITORIAL Anatomy of spinal nerves in the first Turkish illustrated anatomy handwritten textbook Murat Çetkin1 & Mustafa Orhan1 & İlhan Bahşi1 & Begümhan Turhan2 Received: 26 May 2016 /Accepted: 30 May 2016 # Springer-Verlag Berlin Heidelberg 2016 BTeşrih-ül Ebdan ve Tercümânı Kıbale-i Feylesûfan^ is the the book, İtâḳî acknowledges the contributions of the Grand first handwritten anatomy textbook with illustrations written Vizier [4, 7]. in Turkish in 17th century by Şemseddîn-i İtâḳî. BTeşrih^ has Not many textbooks about anatomy existed in the Islamic different meanings such as anatomy, skeleton, and cutting a World and the Ottoman Empire until İtâḳî’sbook[9]. In other corpse into pieces [1]. BTeşrih-ül Ebdan ve Tercümânı Kıbale- medical textbooks, anatomy occupies only a few pages in i Feylesûfan ^ means dissection of the body and scholars’ different sections [4]. İtâḳî’s book is a pioneer in its area as birth knowledge [2]. Since this is the first handwritten text- it is written in Turkish, and it is supported with illustrations book in Turkish, it has great importance in the development of [4]. In addition to Turkish, the book contains mostly Arabic medicine in Ottoman Empire. This book was written while and rarely Persian terms as well [4, 6, 7]. Some editions of this Grand Vizier Recep Pasha was in power, and it was dedicated book which was written in the 17th century were reprinted in to the Sultan of that period, Murat the IVth [3, 4].
    [Show full text]
  • M34 M34/1 Latin M34, M34/1
    M34 M34/1 M34 M34/1 Latin M34, M34/1 1 Tibia 34 Retinaculum 62 Vagina tendinum musculi 2 Malleolus medialis musculorum fibularium extensoris hallucis longi 3 Talus inferius [Retinaculum 63 A. dorsalis pedis 4 Lig. collaterale mediale musculorum peroneorum 64 M. extensor hallucis brevis [Lig. deltoideum] inferius] 65 N. cutaneus dorsalis 5 Lig. talonaviculare 35 Tendo musculi fibularis medialis 6 Os naviculare longus [Tendo musculi 66 Mm. interossei dorsales 7 Ligg. tarsi dorsalia fibularis longus] 67 Tendines musculi 8 Os metatarsi I 36 Lig. calcaneofibulare extensoris digitorum longi [Os metatarsale I] 37 Tendo calcaneus 68 Tendo musculi extensoris 9 Articualtio 38 Retinaculum musculo- hallucis longi metatarsophalangeae I rum fibularium superius 69 Nn. digitales dorsales pedis 10 Phalanx proximalis I [Retinaculum musculorum 70 Aa. digitales dorsales 11 Phalanx distalis I peroneorum superius] 71 M. abductor digiti minimi 12 Ligg. metatarsalia dorsalia 39 Lig. talocalcaneum 72 Tendines musculi 13 Os cuboideum interosseum extensoris digitorum brevis 14 Lig. bifurcatum 40 Lig. talofibulare posterius 73 Aa. metatarsales dorsales 15 Lig. talofibulare anterius 41 Articulationes metatarsop- 74 A. arcuata 16 Malleolus lateralis halangeae, Ligg. plantaria 75 M. fibularis tertius 17 Lig. tibio-fibulare anterius 42 Basis ossis metatarsi I [M. peroneus tertius] 18 Fibula 43 Ligg. tarsometatarsalia 76 Tendo musculi fibularis 19 Membrana interossea cruris plantaria brevis [Tendo musculi 20 Lig. collaterale mediale 44 Lig. cuboideonaviculare peronei brevis] [Lig. deltoideum], pars plantare 77® A. tarsalis lateralis tibiotalaris anterior 45 Lig. calcaneonaviculare 78 N. cutaneus dorsalis inter- 21 Lig. collaterale mediale plantare medius [Lig. deltoideum], pars 46 Sustentaculum tali 79 Retinaculum musculorum tibiocalcanea 47 Tuber calcanei extensorum superius 22 Lig.
    [Show full text]
  • Lower Extremity Focal Neuropathies
    LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Arturo A. Leis, MD S.H. Subramony, MD Vettaikorumakankav Vedanarayanan, MD, MBBS Mark A. Ross, MD AANEM 59th Annual Meeting Orlando, Florida Copyright © September 2012 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. 1 Please be aware that some of the medical devices or pharmaceuticals discussed in this handout may not be cleared by the FDA or cleared by the FDA for the specific use described by the authors and are “off-label” (i.e., a use not described on the product’s label). “Off-label” devices or pharmaceuticals may be used if, in the judgment of the treating physician, such use is medically indicated to treat a patient’s condition. Information regarding the FDA clearance status of a particular device or pharmaceutical may be obtained by reading the product’s package labeling, by contacting a sales representative or legal counsel of the manufacturer of the device or pharmaceutical, or by contacting the FDA at 1-800-638-2041. 2 LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Table of Contents Course Committees & Course Objectives 4 Faculty 5 Basic and Special Nerve Conduction Studies of the Lower Limbs 7 Arturo A. Leis, MD Common Peroneal Neuropathy and Foot Drop 19 S.H. Subramony, MD Mononeuropathies Affecting Tibial Nerve and its Branches 23 Vettaikorumakankav Vedanarayanan, MD, MBBS Femoral, Obturator, and Lateral Femoral Cutaneous Neuropathies 27 Mark A. Ross, MD CME Questions 33 No one involved in the planning of this CME activity had any relevant financial relationships to disclose.
    [Show full text]