A Review of Mathematical Models for the Atmospheric Dispersion of Heavy Gases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The New Hadley Centre Climate Model (Hadgem1): Evaluation of Coupled Simulations
1APRIL 2006 J OHNS ET AL. 1327 The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations T. C. JOHNS,* C. F. DURMAN,* H. T. BANKS,* M. J. ROBERTS,* A. J. MCLAREN,* J. K. RIDLEY,* ϩ C. A. SENIOR,* K. D. WILLIAMS,* A. JONES,* G. J. RICKARD, S. CUSACK,* W. J. INGRAM,# M. CRUCIFIX,* D. M. H. SEXTON,* M. M. JOSHI,* B.-W. DONG,* H. SPENCER,@ R. S. R. HILL,* J. M. GREGORY,& A. B. KEEN,* A. K. PARDAENS,* J. A. LOWE,* A. BODAS-SALCEDO,* S. STARK,* AND Y. SEARL* *Met Office, Exeter, United Kingdom ϩNIWA, Wellington, New Zealand #Met Office, Exeter, and Department of Physics, University of Oxford, Oxford, United Kingdom @CGAM, University of Reading, Reading, United Kingdom &Met Office, Exeter, and CGAM, University of Reading, Reading, United Kingdom (Manuscript received 30 May 2005, in final form 9 December 2005) ABSTRACT A new coupled general circulation climate model developed at the Met Office’s Hadley Centre is pre- sented, and aspects of its performance in climate simulations run for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) documented with reference to previous models. The Hadley Centre Global Environmental Model version 1 (HadGEM1) is built around a new atmospheric dynamical core; uses higher resolution than the previous Hadley Centre model, HadCM3; and contains several improvements in its formulation including interactive atmospheric aerosols (sulphate, black carbon, biomass burning, and sea salt) plus their direct and indirect effects. The ocean component also has higher resolution and incorporates a sea ice component more advanced than HadCM3 in terms of both dynamics and thermodynamics. -
Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model Jean-Baptiste Filippi, Frédéric Bosseur, Céline Mari, Christine Lac
Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model Jean-Baptiste Filippi, Frédéric Bosseur, Céline Mari, Christine Lac To cite this version: Jean-Baptiste Filippi, Frédéric Bosseur, Céline Mari, Christine Lac. Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model. Atmosphere, MDPI 2018, 9 (6), pp.218. 10.3390/atmos9060218. hal-02325311 HAL Id: hal-02325311 https://hal.archives-ouvertes.fr/hal-02325311 Submitted on 17 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. atmosphere Article Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model Jean-Baptiste Filippi 1,* ID , Frédéric Bosseur 1, Céline Mari 2 ID and Christine Lac 3 1 SPE—Sciences Pour l’Environnement, Université de Corse, CNRS, Campus Grimaldi, 20250 Corte, France; [email protected] 2 LA—Laboratoire D’Aérologie, Université de Toulouse, CNRS, UPS, 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected] 3 CNRM—Centre National de Recherches Météorologiques, Météo-France, CNRS, 42 Avenue Coriolis, 31057 Toulouse, France; [email protected] * Correspondence: fi[email protected] Received: 6 April 2018; Accepted: 28 May 2018; Published: 7 June 2018 Abstract: The Aullene fire devastated more than 3000 ha of Mediterranean maquis and pine forest in July 2009. -
Development and Evaluation of an Earth-System Model – Hadgem2
Geosci. Model Dev., 4, 1051–1075, 2011 www.geosci-model-dev.net/4/1051/2011/ Geoscientific doi:10.5194/gmd-4-1051-2011 Model Development © Author(s) 2011. CC Attribution 3.0 License. Development and evaluation of an Earth-System model – HadGEM2 W. J. Collins1, N. Bellouin1, M. Doutriaux-Boucher1, N. Gedney1, P. Halloran1, T. Hinton1, J. Hughes1, C. D. Jones1, M. Joshi2, S. Liddicoat1, G. Martin1, F. O’Connor1, J. Rae1, C. Senior1, S. Sitch3, I. Totterdell1, A. Wiltshire1, and S. Woodward1 1Met Office Hadley Centre, Exeter, UK 2National Centres for Atmospheric Science, Climate Directorate, Dept. of Meteorology, University of Reading, Earley Gate, Reading, UK 3School of Geography, University of Leeds, Leeds, UK Received: 23 March 2011 – Published in Geosci. Model Dev. Discuss.: 13 May 2011 Revised: 9 September 2011 – Accepted: 14 November 2011 – Published: 29 November 2011 Abstract. We describe here the development and evaluation 1 Introduction of an Earth system model suitable for centennial-scale cli- mate prediction. The principal new components added to the The Hadley Centre Global Environmental Model version 2 physical climate model are the terrestrial and ocean ecosys- (HadGEM2) family of models has been designed for the tems and gas-phase tropospheric chemistry, along with their specific purpose of simulating and understanding the cen- coupled interactions. tennial scale evolution of climate including biogeochemi- The individual Earth system components are described cal feedbacks. The Earth system configuration is the first briefly and the relevant interactions between the components in the Met Office Hadley Centre to run without the need are explained. Because the multiple interactions could lead to for flux corrections. -
Modeling and Simulation of Hazardous Material Releases for Homeland Security Applications
NISTIR 7786 Modeling and Simulation of Hazardous Material Releases for Homeland Security Applications Charles McLean Y. Tina Lee Dr. Sanjay Jain Dr. Charles Hutchings NISTIR 7786 Modeling and Simulation of Hazardous Material Releases for Homeland Security Applications Charles McLean Y. Tina Lee Manufacturing Systems Integration Division Engineering Laboratory Dr. Sanjay Jain George Washington University Dr. Charles Hutchings U.S. Department of Homeland Security September 2011 U.S. Department of Commerce Rebecca M. Blank, Acting Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary for Standards and Technology and Director ACKNOWLEDGMENTS The U.S. Department of Homeland Security Science and Technology Directorate sponsored the production of this material under Interagency Agreements HSHQDC-09-X-00009 and HSHQDC-09-X- 00357 with the National Institute of Standards and Technology (NIST). The work described was funded by the United States Government and is not subject to copyright. DISCLAIMERS The findings expressed or implied in this report do not necessarily reflect the official view or policy of the U.S. Department of Homeland Security, U.S. Department of Commerce, or the United States Government. Some software products may have been identified in context in this report. This does not imply a recommendation or endorsement of the software products by the authors or NIST, nor does it imply that such software products are necessarily the best available for the purpose. Comments or questions about this report may be e-mailed to: [email protected]. ii Contents 1. Purpose .................................................................................................................................................. 1 2. Introduction to Hazardous Material Releases (HMR) and Associated DHS Guidance ......................... 2 3. -
The Hadgem2 Family of Met Office Unified Model Climate Configurations
Geosci. Model Dev., 4, 723–757, 2011 www.geosci-model-dev.net/4/723/2011/ Geoscientific doi:10.5194/gmd-4-723-2011 Model Development © Author(s) 2011. CC Attribution 3.0 License. The HadGEM2 family of Met Office Unified Model climate configurations The HadGEM2 Development Team: G. M. Martin1, N. Bellouin1, W. J. Collins1, I. D. Culverwell1, P. R. Halloran1, S. C. Hardiman1, T. J. Hinton1, C. D. Jones1, R. E. McDonald1, A. J. McLaren1, F. M. O’Connor1, M. J. Roberts1, J. M. Rodriguez1, S. Woodward1, M. J. Best1, M. E. Brooks1, A. R. Brown1, N. Butchart1, C. Dearden2, S. H. Derbyshire1, I. Dharssi3, M. Doutriaux-Boucher1, J. M. Edwards1, P. D. Falloon1, N. Gedney1, L. J. Gray4, H. T. Hewitt1, M. Hobson1, M. R. Huddleston1, J. Hughes1, S. Ineson1, W. J. Ingram1,4, P. M. James5, T. C. Johns1, C. E. Johnson1, A. Jones1, C. P. Jones1, M. M. Joshi6, A. B. Keen1, S. Liddicoat1, A. P. Lock1, A. V. Maidens1, J. C. Manners1, S. F. Milton1, J. G. L. Rae1, J. K. Ridley1, A. Sellar1, C. A. Senior1, I. J. Totterdell1, A. Verhoef7, P. L. Vidale6, and A. Wiltshire1 1Met Office, FitzRoy Road, Exeter, UK 2School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK 3Centre for Australian Weather and Climate, Bureau of Meteorology, Melbourne, Australia 4Department of Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Oxford University, Parks Road, Oxford, UK 5Deutscher Wetterdienst, Offenbach, Germany 6National Centre for Atmospheric Science, Climate Directorate, Dept Of Meteorology, University of Reading, Earley Gate, Reading, UK 7Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Whiteknights Reading, UK Received: 21 February 2011 – Published in Geosci. -
Simulation of a Large Wildfire in a Coupled Fire
atmosphere Article Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model Jean-Baptiste Filippi 1,* ID , Frédéric Bosseur 1, Céline Mari 2 ID and Christine Lac 3 1 SPE—Sciences Pour l’Environnement, Université de Corse, CNRS, Campus Grimaldi, 20250 Corte, France; [email protected] 2 LA—Laboratoire D’Aérologie, Université de Toulouse, CNRS, UPS, 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected] 3 CNRM—Centre National de Recherches Météorologiques, Météo-France, CNRS, 42 Avenue Coriolis, 31057 Toulouse, France; [email protected] * Correspondence: fi[email protected] Received: 6 April 2018; Accepted: 28 May 2018; Published: 7 June 2018 Abstract: The Aullene fire devastated more than 3000 ha of Mediterranean maquis and pine forest in July 2009. The simulation of combustion processes, as well as atmospheric dynamics represents a challenge for such scenarios because of the various involved scales, from the scale of the individual flames to the larger regional scale. A coupled approach between the Meso-NH (Meso-scale Non-Hydrostatic) atmospheric model running in LES (Large Eddy Simulation) mode and the ForeFire fire spread model is proposed for predicting fine- to large-scale effects of this extreme wildfire, showing that such simulation is possible in a reasonable time using current supercomputers. The coupling involves the surface wind to drive the fire, while heat from combustion and water vapor fluxes are injected into the atmosphere at each atmospheric time step. To be representative of the phenomenon, a sub-meter resolution was used for the simulation of the fire front, while atmospheric simulations were performed with nested grids from 2400-m to 50-m resolution. -
The Hadgem2-ES Implementation of CMIP5 Centennial Simulations
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Geosci. Model Dev. Discuss., 4, 689–763, 2011 www.geosci-model-dev-discuss.net/4/689/2011/ Geoscientific Model Development GMDD doi:10.5194/gmdd-4-689-2011 Discussions 4, 689–763, 2011 © Author(s) 2011. CC Attribution 3.0 License. The HadGEM2-ES This discussion paper is/has been under review for the journal Geoscientific Model implementation of Development (GMD). Please refer to the corresponding final paper in GMD if available. CMIP5 centennial The HadGEM2-ES implementation of simulations C. D. Jones et al. CMIP5 centennial simulations C. D. Jones1, J. K. Hughes1, N. Bellouin1, S. C. Hardiman1, G. S. Jones1, Title Page J. Knight1, S. Liddicoat1, F. M. O’Connor1, R. J. Andres2, C. Bell3,†, K.-O. Boo4, Abstract Introduction A. Bozzo5, N. Butchart1, P. Cadule6, K. D. Corbin7,*, M. Doutriaux-Boucher1, P. Friedlingstein8, J. Gornall1, L. Gray9, P. R. Halloran1, G. Hurtt10,16, Conclusions References W. Ingram1,11, J.-F. Lamarque12, R. M. Law7, M. Meinshausen13, S. Osprey9, Tables Figures E. J. Palin1, L. Parsons Chini10, T. Raddatz14, M. Sanderson1, A. A. Sellar1, A. Schurer5, P. Valdes15, N. Wood1, S. Woodward1, M. Yoshioka15, and M. Zerroukat1 J I 1Met Office Hadley Centre, Exeter, EX1 3PB, UK J I 2 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Back Close 37831-6335, USA 3 Meteorology Dept, University of Reading, Reading, RG6 6BB, UK Full Screen / Esc 4National Institute of Meteorological Research, Korea Meteorological Administration, Korea -
NIC Symposium 2018
NIC Symposium 2018 22 – 23 February 2018 Forschungszentrum Jülich, Germany Programme Bus Schedule Poster Abstracts Participants Programme Thursday, 22 February 2018 8:30 Transfer from Jülich 9:00 Registration 9:30 Welcome Address by S. M. Schmidt, Member of the Board of Directors, Forschungszentrum Jülich 9:45 Th. Lippert, Forschungszentrum Jülich Supercomputer Evolution at JSC 10:30 Coffee 11:00 T. Korzec, Bergische Universität Wuppertal How Strong are the Strong Interactions? 11:45 C. Urbach, Universität Bonn Hadron-Hadron Interactions from Lattice QCD 12:30 Group Photograph 12:45 Lunch 14:00 L. Pastewka, Universität Freiburg Structure and Mechanical Properties of Cu|Au and Cu|Ni Nanolaminates 14:45 Ch. Scheurer, Technische Universität München Computational Modelling of Solid State Battery Materials 15:30 Coffee 16:00 T. D. Kühne, Universität Paderborn Linear-Scaling Self-Consistent Field Theory Based Molecular Dynamics: Application to C60-Buckyballs Colliding with Graphite 16:45 H.-P. Hsu, Max-Planck-Institut für Polymerforschung, Mainz Effect of Entanglements on Non-Equilibrium Polymer Dynamics 17:30 Poster Session and Reception 19:00 Transfer to Jülich Friday, 23 February 2018 8:30 Transfer from Jülich 9:00 M. Breit, Universität Frankfurt Numerical and High Performance Computing Methods for Multiscale Computational Neuroscience 9:45 M. B. Poulsen, Niels Bohr Institute, University of Copenhagen Southern Ocean Eddy Compensation Examined with a High-Resolution Ocean Model 10:30 Coffee 11:00 J. P. Mellado, Max-Planck-Institut für Meteorologie, Hamburg The Challenge of Small-Scale Turbulence in Planetary Boundary Layers 11:45 F. K. Röpke, Universität Heidelberg Towards Multidimensional Hydrodynamic Simulations of Stars 12:30 Lunch 14:00 C. -
The Hadgem2-ES Implementation of CMIP5 Centennial Simulations
Geosci. Model Dev., 4, 543–570, 2011 www.geosci-model-dev.net/4/543/2011/ Geoscientific doi:10.5194/gmd-4-543-2011 Model Development © Author(s) 2011. CC Attribution 3.0 License. The HadGEM2-ES implementation of CMIP5 centennial simulations C. D. Jones1, J. K. Hughes1, N. Bellouin1, S. C. Hardiman1, G. S. Jones1, J. Knight1, S. Liddicoat1, F. M. O’Connor1, R. J. Andres2, C. Bell3,†, K.-O. Boo4, A. Bozzo5, N. Butchart1, P. Cadule6, K. D. Corbin7,*, M. Doutriaux-Boucher1, P. Friedlingstein8, J. Gornall1, L. Gray9, P. R. Halloran1, G. Hurtt10,16, W. J. Ingram1,11, J.-F. Lamarque12, R. M. Law7, M. Meinshausen13, S. Osprey9, E. J. Palin1, L. Parsons Chini10, T. Raddatz14, M. G. Sanderson1, A. A. Sellar1, A. Schurer5, P. Valdes15, N. Wood1, S. Woodward1, M. Yoshioka15, and M. Zerroukat1 1Met Office Hadley Centre, Exeter, EX1 3PB, UK 2Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6335, USA 3Meteorology Dept, University of Reading, Reading, RG6 6BB, UK 4National Institute of Meteorological Research, Korea Meteorological Administration, Korea 5School of GeoSciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JW, UK 6Institut Pierre-Simon Laplace, Universite´ Pierre et Marie Curie Paris VI, 4 Place de Jussieu, case 101, 75252 cedex 05 Paris, France 7Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia 8College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK 9National Centre for Atmospheric -
Report on Review and Evaluation of Knowledge
Large forest fire risk assessment and fuel management: operational tools and integrated approach Edited by Míriam Piqué and José Ramón González‐Olabarria Contributors: Míriam Piqué, José Ramón González‐Olabarria, Teresa Valor, Andrea Duane, Mario Beltrán, Ángela Blázquez, Lluís Brotons (Forest Science Centre of Catalonia, CTFC) Thomas E. L. Smith (King’s College London, KCL) December 2015 Large forest fire risk assessment and fuel management: operational tools and integrated approach List of Authors Míriam Piqué, José Ramón González‐Olabarria, Teresa Valor, Andrea Duane, Mario Beltrán, Ángela Blázquez, Lluís Brotons (Forest Science Centre of Catalonia, CTFC) Thomas E. L. Smith (King’s College London, KCL) Acknowledges Juan Camaño, Dani Garcia, Jordi Pagès (Pau Costa Foundation) Edgar Nebot, Asier Larrañaga (General Directorate of Fire Prevention and Extinction, and Rescue, Government of Catalonia (UT‐GRAF, DGPEIS) Forest Sciences Centre of Catalonia (CTFC) December 2015 Content 1. INTRODUCTION ...................................................................................................................... 1 2. HAZARD/RISK ASSESSMENT TOOLS ........................................................................................ 2 2.1. Fire ignition models ......................................................................................................... 2 2.1.1. Modeling changes in fuel flammability: Fire Danger Rating Systems ...................... 2 2.1.2. Fire ignition modeling .............................................................................................