Medicinal Plant Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Diversity of Aloe Species in Kenya and the Efficacy of Aloe Secundiflora, Aloe Lateritia and Aloe Turkanesis on Fusarium
(icnetic diversity of Aloe species in Kenya and the efficacy of Aloe secundiflora, Aloe lateritia and Aloe turkanesis on Fusarium oxysporum and Pythium ultimum 1 A research thesis submitted for examination in partial fulfillment for the requirements for the award of Master of Science in Microbiology 156/68748/2011 SCHOOL OF BIOLOGICAL SCIENCES COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY OF NAIROBI December, 2015 University of N AIROBI Library DECLARATION I his thesis is my original work and has not been presented for a degree in anj other University or any other institution of higher learning. Micheni C. Mugambi Da.e...2j..i .'.l2 ..:,.2 -O lS .......... I his thesis has been submitted with our approval as Supervisors. Dr. Maina Wagacha School of Biological Sciences Universiii_tt£-Nairobi Date .J.V l.& l. Dr. Nelson Amugune School of Biological Sciences University of Nairobi Sign..!!p^.^ff.. ........ Dr. Simon T. Gichuki Kenya Agricultural and Livestock Research Organization (KALRO) Sign.....C ^dLJ ..... Date....c£-£)t5 ii DEDICATION This thesis is dedicated to my loving mum Elyjoy Muthoni Michcni and dad Isaac Micheni Nkari who have gone out of their way to support my education. I also dedicate this work to my brothers Maurice Murimi and Brian Muchiri Micheni who have been a constant source of encouragement. iii ACKNOWLEDGEMENTS I am heavily indebted to my supervisors Dr. Maina Wagacha, Dr. Nelson Amugune and Dr.Simon Gichuki for their invaluable support, training, mentorship, and advice throughout this work. Without your support, this work would not have achieved anything significant. I would also like to thank Dr. -
2011 Issn 0976-4550 Comparative Pharmacognostic and Phytochemical Investigation of Two Plant Species Valued As Medhya Rasayanas
Volume: 2: Issue-3: July-Sept -2011 ISSN 0976-4550 COMPARATIVE PHARMACOGNOSTIC AND PHYTOCHEMICAL INVESTIGATION OF TWO PLANT SPECIES VALUED AS MEDHYA RASAYANAS. 1Trivedi Manisha N*, 2Khemani Archana, 3Vachhani Urmila D. 4Shah Charmi P. 5Santani D.D. 1 3,4 and 5ROFEL, Shri G M Bilakhia College of Pharmacy. Vapi. 396191. Gujarat. INDIA. 2The Zandu Pharmaceutical Works Ltd. (Now Emami Limited). Vapi. 396195. Gujarat. India. ABSTRACT : Centella asiatica and Bacopa monnieri widely known as Brahmi are considered as ‘Medhya rasayanas’ in Ayurveda meaning brain tonic. However, these plants are distinctly different. The name Brahmi, Jala-brahmi or water-brahmi is assigned to Bacopa monnieri whereas "mandukaparni", often confused with Brahmi, refers to Centella asiatica. A detailed investigation of whole plant and roots of both the crude drugs was carried out. The diagnostic characteristics includes presence of stomata, vessels with spiral thickening, rosette crystals of calcium oxalate in Centella asiatica and xylem vessels with reticulate thickening, glandular hairs, simple, round and oval starch grains, measuring 4-14 μ in diameter in Bacopa monnieri. Various physicochemical parameters were also established. Phytochemical screening revealed the presence of many therapeutically important classes of phytoconstituents such as glycosides, alkaloids, saponins, protiens and carbohydrates. The present work was undertaken to generate information regarding relevant pharmacognostical, phytochemical and physicochemical data needed for proper identification and authentification of two crude drugs belonging to two different families, mainly focusing and exploring the aspects leading to common effect of improving memory. Key words: Brahmi, Mandukaparni , Medhya rasayanas, memory, tonic INTRODUCTION In India, Bacopa monnieri, known as "Brahmi", is revered in the indigenous system of medicine as a nerve tonic. -
Mapping Resistance to Stem Rust, Stripe Rust, and Powdery Mildew, and Genotype Screening of Breeding Germplasm for Disease Resistance
ABSTRACT VANGESSEL, CARL JOSEPH. Disease Resistance in Winter Wheat: Mapping Resistance to Stem Rust, Stripe Rust, and Powdery Mildew, and Genotype Screening of Breeding Germplasm for Disease Resistance. (Under the direction of Dr. David Marshall). Wheat production worldwide faces many challenges including fungal pathogens which can reduce growth, nutrient content, and yield. As the global population continues to increase, it is important to maximize production of wheat which provides a significant proportion of the human diet. Wheat breeders and pathologists are addressing the pathogen threat to wheat by breeding cultivars with improved resistance. However, as pathogen populations mutate and overcome resistance, it is important to identify sources of resistance to new pathogen races and understand the genetics of resistance in commercial cultivars. Stem rust (Puccinia graminis), stripe rust (Puccinia striiformis), and powdery mildew (Blumeria graminis) are among the most common and aggressive pathogens of wheat occurring worldwide. The stem rust resistance gene Sr31 was reliably effective until being overcome in 1999 by the race Ug99. This new race of stem rust has since evolved to include 12 related races and are potentially virulent to a majority of commercially produced wheat globally. The soft red winter wheat (SRWW) line, MD01W28- 08-11, was identified as having adult plant resistance (APR) to Ug99 in Njoro, Kenya. This line was crossed with the susceptible SRWW cultivar Coker 9553 and the subsequent 279 doubled haploid (DH) population used for linkage mapping analysis to better characterize the source of stem rust APR. A linkage map with 3,159 SNPs was produced that identified a significant quantitative trait loci (QTL) on the short arm of chromosome 6D and two QTL on the long arms of chromosomes 2B and 4B. -
Pharmacognostic and Pharmacological Aspect of Bacopa Monnieri: a Review
Vol 4, Issue 3, 2016 ISSN- 2321-6824 Review Article PHARMACOGNOSTIC AND PHARMACOLOGICAL ASPECT OF BACOPA MONNIERI: A REVIEW PUSHPENDRA KUMAR JAIN1, DEBAJYOTI DAS2, PUNEET JAIN3*, PRACHI JAIN4 1Department of Pharmacy, Naraina Vidyapeeth Group of Institutions, Panki-Kanpur, Uttar Pradesh, India. 2Department of Pharmacy, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India. 3Maharana Pratap Education Center, Kalyanpur, Kanpur, Uttar Pradesh, India. 4Dr. Virendra Swarup Education Centre, Panki, Kanpur, Uttar Pradesh, India. Email: [email protected] Received: 25 April 2016, Revised and Accepted: 29 April 2016 ABSTRACT It is said that the use of Bacopa monnieri (BM) for memory enhancement goes back 3000 years or more in India, when it was cited for its medicinal properties, especially the memory enhancing capacity, in the vedic texts “Athar-Ved Samhila” (3:1) of 800 BC and in Ayurveda. In the folklore of Indian medicine, several herbs have been used traditionally as brain or nerve tonics. One of the most popular of these neurotonics is BM, a well-known memory booster. Brahmi has been administered at religious institutions to help students to enhance their memory for learning ancient, religious hymns. It is also used as cardio-tonic, tranquilizer and sedative, improves the process of learning, restores memory, and enhances power of speech and imagination, diuretic and nervine tonic, antistress, for nervous and mental strain, use in insanity, epilepsy, hysteria, esthenia, nervous breakdown. It is a small, creeping succulent herb. The leaf and flower bearing stems are 10-30 cm long and arise from creeping stems that form roots at the nodes with pale blue or pinkish white flowers belonging to family Scrophulariaceae grown nearly banks of freshwater streams and ponds, paddy fields, and other damp places. -
Distribution and Frequency of Wheat Stem Rust Races (Puccinia Graminis F
©2018 Scienceweb Publishing Journal of Agricultural and Crop Research Vol. 6(5), pp. 88-96, November 2018 ISSN: 2384-731X Research Paper Distribution and frequency of wheat stem rust races (Puccinia graminis f. sp. tritici) in Ethiopia Netsanet Bacha Hei1* • Tsegaab Tesfaye1 • Getaneh Woldeab1 • Endale Hailu1 • Bekele Hundie2 • Daniel Kassa2 • Fikirte Yirga2 • Fufa Anbessa3 • Wubishet Alemu4 • Teklay Abebe5 • Miruts Legesse5 • Alemar Seid6 • Tesfaye Gebrekirstos7 1Ethiopian Institute of Agricultural Research, Ambo Plant Protection Research Center, Ambo, Ethiopia. 2Ethiopian Institute of Agricultural Research, Kulumsa Agricultural Research Center, Assela, Ethiopia. 3Oromia Agricultural Research Institute, Bore Agricultural Research Center, Bore, Ethiopia. 4Oromia Agricultural Research Institute, Sinana Agricultural Research Center, Bale Robe, Ethiopia. 5Tigray Agricultural Research Institute, Alamata Agricultural Research Center, Alamata, Ethiopia. 6Southern Agricultural Research Institute, Areka Agricultural Research Center, Ethiopia. 7Tigray Agricultural Research Institute, Mekele Agricultural Research Center, Mekele, Ethiopia. *Corresponding author. E-mail: [email protected]. Accepted 6th July, 2018 Abstract. Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is one of the most important diseases of wheat in Ethiopia. The stem rust pathogen is capable to rapidly develop new virulence to resistance genes owing to mutation and genetic recombination. Ethiopian highlands are known hot spots for the rapid evolution and spread of new rust races. The present study was conducted to investigate the virulence diversity and spatial distribution of races of Pgt in the major wheat growing areas of Ethiopia. The physiologic races of the rust fungus were determined on seedlings of the standard wheat stem rust differentials following the international system of nomenclature. Three hundred and forty- seven samples were analyzed in 2014 and 2015 cropping seasons from Oromia, Amhara, Tigray and Southern Nations and Nationalities Peoples’ regions. -
Copyrighted Material
Index Page numbers in italics refer to Figures; those in bold to Tables. Abies 32 albuminous cells 42, 44, 65, 65, Acacia alata 81, 85, 98 108 Acer 164 alcian blue 182 Acer pseudoplatanus 165, 166 alcohol-based fi xatives 171–2 achenes 128 aleurone grains 102 acid bog habitat 152 algae 6 Acmopyle pancheri 65 Alismatales 67 acrolein 172–3 Allium 18, 19, 111 fi xation procedure 174–5 Alnus glutinosa 28, 29, 37, 165, 167 adaptations 6–8, 135–53 Alnus nepalensis 29 ecological 73, 76, 137–8 Aloe 9, 76, 77, 78, 139 hydrophytes 150–2 Aloe lateritia var. kitaliensis 77, 79 mechanical 135–7 Aloe somaliensis 140 mesophytes 147–50 aloes 13, 76, 78, 86, 142, 157 practical aspects 152–3 Ammophila 139, 142 xerophytes see xerophytes Ammophila arenaria (marram grass) Aegilops crassa 95, 99, 102 82, 92, 141 aerial roots 49, 149 Anacardiaceae 86, 139 Aerva lanata 81 Anarthria 156 Aesculus hippocastanum 129 Anarthriaceae 156, 156 Aesculus pavia 44 angiosperms 4, 7, 10 Agave 10, 76 fl oral part vascularization 121–3 Agave franzonsinii 95, 102 phloem 65, 108 Agrostis 100, 138COPYRIGHTEDsecondary MATERIAL 43–5 Agrostis stolonifera 99 taxonomy 155 Ailanthus 159 wood (secondary xylem) 31–6, air spaces 36 hydrophytes 150 axial system 33 mesophyll 74, 97, 112 growth rings 33, 35, 41 xerophytes 146 rays 35–6 Ajuga reptans var. atropurpurescens ring porous 33–4, 41 110 animal feeds 159–60 Albuca 73 animal pests 162–3 288 Annonaceae 130 black ironwood (Krugiodendron annuals 7, 8, 57 ferreum) 33 Anthemis 128 Boehmeria 62 Index Anthemis arvenis 128, 130 Bombax (kapok) -
Medicinal Plant Conservation
MEDICINAL Medicinal Plant PLANT SPECIALIST GROUP Conservation Silphion Volume 11 Newsletter of the Medicinal Plant Specialist Group of the IUCN Species Survival Commission Chaired by Danna J. Leaman Chair’s note . 2 Sustainable sourcing of Arnica montana in the International Standard for Sustainable Wild Col- Apuseni Mountains (Romania): A field project lection of Medicinal and Aromatic Plants – Wolfgang Kathe . 27 (ISSC-MAP) – Danna Leaman . 4 Rhodiola rosea L., from wild collection to field production – Bertalan Galambosi . 31 Regional File Conservation data sheet Ginseng – Dagmar Iracambi Medicinal Plants Project in Minas Gerais Lange . 35 (Brazil) and the International Standard for Sus- tainable Wild Collection of Medicinal and Aro- Conferences and Meetings matic Plants (ISSC-MAP) – Eleanor Coming up – Natalie Hofbauer. 38 Gallia & Karen Franz . 6 CITES News – Uwe Schippmann . 38 Conservation aspects of Aconitum species in the Himalayas with special reference to Uttaran- Recent Events chal (India) – Niranjan Chandra Shah . 9 Conservation Assessment and Management Prior- Promoting the cultivation of medicinal plants in itisation (CAMP) for wild medicinal plants of Uttaranchal, India – Ghayur Alam & Petra North-East India – D.K. Ved, G.A. Kinhal, K. van de Kop . 15 Ravikumar, R. Vijaya Sankar & K. Haridasan . 40 Taxon File Notices of Publication . 45 Trade in East African Aloes – Sara Oldfield . 19 Towards a standardization of biological sustain- List of Members. 48 ability: Wildcrafting Rhatany (Krameria lap- pacea) in Peru – Maximilian -
Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects. -
Ecology of the Olearia Colensoi Dominated Sub-Alpine Scrub in the Southern Ruahine Range, New Zealand
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. 581 .509 9355 Ess ECOLOGY OF THE OLEARIA COLENSOI DOMINATED SUB-ALPINE SCRUB IN THE SOUTHERN RUAHINE RANGE, NEW ZEALAND. A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Botany at Massey University New Zealand Peter Ronald van Essen 1992 Olearia colensoi in flower. Reproduced from a lithograph by Walter Fitch in Flora Novae-Zelandiae (J.D. Hooker 1852). Source: Alexander Turnbull Library in New Zealand Heritage, Paul Hamlyn Ltd ABSTRACT The Olearia colensoi (leatherwood or tupari) dominated southern Ruahine sub-alpine scrub is the largest continuous area of sub-alpine asteraceous scrub in New Zealand - the result of a lowered treeline due to climatic conditions characterised by high cloud cover, high rainfall, and high winds and the absence of high altitude Nothofagus species. Meteorological investigation of seven sites in the southern Ruahine found that altitude alone was the main environmental detenninant of climatic variation, particularly temperature regime. Temperatures varied between sites at a lapse rate of 0.61°C lOOm-1 while daily fluctuation patterns were uniform for all sites. Rainfall increased with altitude over the Range-at a rate of 3.8mm m-1. Cloud interception, unrecorded by standard rain gauges, adds significantly to total 'rainfall'. Vegetative phenology of Olearia colensoi is highly seasonal and regular with an annual growth flush from mid November to January. -
Vegetative Propagation of Berberis Aristata DC. an Endangered Himalayan Shrub
Journal of Medicinal Plants Research Vol. 2(12), pp. 374-377, December, 2008 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875© 2008 Academic Journals Full Length Research Paper Vegetative propagation of Berberis aristata DC. An endangered Himalayan shrub Majid Ali1, A. R. Malik2* and K. Rai Sharma1 1Department of Forest product, Collage of Forestry, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni- 173230, Solan, (Himachal Pradesh), India. 2G B Pant Institute of Himalayan Environment and Development (MOE&F, GOI) Kosi Katarmal Almora-263643 (Uttarakhand) India. Accepted 9 December 2008 Berberis aristata DC. is critically endangered species of Indian Himalaya due to it’s extensively collection of roots for its Berberine alkaloid. The objective of this research was to explore the possibility of propagating the species vegetatively to maintain its genetic identity and population. Therefore, an experiment was conducted by taking different cutting portions viz., apical, sub-apical and basal which were treated with various IBA concentrations viz., control, 2500, 5000 and 7500 ppm. Results shown that apical cuttings when treated with 5000 ppm IBA concentration performed significantly better in sprouting (85%) and rooting percentage (50%) in comparison to other treatments. While as control treatment had shown no rooting in all types of cutting portions. Key words: Berberis aristata, vegetative propagation, IBA. INTRODUCTION The Himalaya, as a whole is botanically rich in plant 5 - 7.5 mm, bright yellow with coarse reticulate fibres. wealth with a high degree of endemism (Maithani et al., Leaves 3.8 - 10 x 1.5 - 3.3 cm, obovate or elliptic, entire or 1986). -
Mahlo Et Al., Afr J Tradit Complement Altern Med. (2016) 13(4):216-222 Doi: 10.21010/Ajtcam.V13i4.28
Mahlo et al., Afr J Tradit Complement Altern Med. (2016) 13(4):216-222 doi: 10.21010/ajtcam.v13i4.28 ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI. Salome Mamokone Mahlo 1,2, Hasani Richard Chauke3, Lyndy McGaw2, Jacobus Eloff2 1Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa. 2Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa., 3Materials Modelling Centre, School of Physical and Mineral Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa. Author E-mail: [email protected] Abstract Background: Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Materials and methods: Leaf extracts of selected South African plant species (Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana) were investigated for activity against selected phytopathogenic fungi (Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens (Candida albicans and Cryptococcus neoformans). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). -
Written Report on a Joint AGS/Merlin Trust Funded Trip Charlotte Reynolds Merlin 607 30Th November – 16Th December 2013
Alpine Adventures in Argentina: In search of Violas Written report on a Joint AGS/Merlin Trust Funded Trip Charlotte Reynolds Merlin 607 30th November – 16th December 2013 Charlotte Reynolds 1 Contents Introduction - page 3 Day by day log - page 4 Monday 2nd December – Laguna Blanca - page 4 Tuesday 3rd December – Laguna del Burro & Rahue Pass - page 6 Wednesday 4th December – Primeros Pinos - page 8 Thursday 5th December - Volcan Batea Mahuida - page 9 Friday 6th December - Rio Litran - page 11 Saturday 7th December – Copahue - page 12 Sunday 8th December – Salta del Agrio & Cascada del Agrio - page 13 Monday 9th December - Cordon del Cajon Chico - page 14 Tuesday 10th December - Chos Malal - page 15 Wednesday 11th December – Tromen National Park - page 15 Thursday 12th December - Cerro Wayle -page 16 Friday 13th December - Lagunas Epu Lauquen - page 17 Plant family index – page 19 Violas - page 19 Trees and shrubs – page 23 Cushions - page 33 Bulbs - page 38 Orchids - page 42 Cactus – page 43 Wetland - page 45 Perennials – page 50 Conclusion – page 64 Charlotte Reynolds 2 Introduction & Background The Alpine Garden Society ran this tour to Northern Patagonia led by Martin Sheader, an expert in flora of the area. Patagonia is a region in the far south of South America which is divided between Chile and Argentina. We toured the Argentine Patagonian province Neuquen travelling around Zapala, Villa Pehuenia, Caviahue and Chos Malal. The landscape in these areas was dry, grassland steppes in the main. However we also saw a wide-range of micro-habitats, due to the different localised conditions. For instance, boggy wetlands caused by snow melt, shady cliff faces, Auracaria forest floors, rocky crevices and pumice-covered cliffs to name a few.