Dynamic Characteristics Analysis and Flight Control Design for Oblique Wing Air- Craft

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Characteristics Analysis and Flight Control Design for Oblique Wing Air- Craft Accepted Manuscript Dynamic characteristics analysis and flight control design for oblique wing air- craft Wang Lixin, Xu Zijian, Yue Ting PII: S1000-9361(16)30182-0 DOI: http://dx.doi.org/10.1016/j.cja.2016.10.010 Reference: CJA 711 To appear in: Chinese Journal of Aeronautics Received Date: 15 December 2015 Revised Date: 15 June 2016 Accepted Date: 17 August 2016 Please cite this article as: W. Lixin, X. Zijian, Y. Ting, Dynamic characteristics analysis and flight control design for oblique wing aircraft, Chinese Journal of Aeronautics (2016), doi: http://dx.doi.org/10.1016/j.cja.2016.10.010 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Chinese Journal of Aeronautics 28 (2015) xx-xx Contents lists available at ScienceDirect Chinese Journal of Aeronautics journal homepage: www.elsevier.com/locate/cja d Dynamic characteristics analysis and flight control design for oblique wing aircraft Wang Lixin, Xu Zijian, Yue Ting* School of Aeronautics Science and Engineering, Beihang University, Beijing 100083, China Received 15 December 2015; revised 15 June 2016; accepted 17 August 2016 Abstract The movement characteristics and control response of oblique wing aircraft (OWA) are highly coupled between the longitudinal and lateral-directional axes and present obvious nonlinearity. Only with the implementation of flight control systems can flying qualities be satisfied. This article investigates the dynamic modeling of an OWA and analyzes its dynamic characteristics. Furthermore, a flight control law based on model-reference dynamic in- version is designed and verified. Calculations and simulations show that OWA can be trimmed by rolling a bank angle and deflecting the triaxial control surfaces in a coordinated way. The oblique wing greatly affects longitudi- nal motion. The short-period mode is highly coupled between longitudinal and lateral motion, and the bank angle also occurs in phugoid mode. However, the effects of an oblique wing on lateral mode shape are relatively small. For inherent control characteristics, symmetric deflection of the horizontal tail will generate not only longitudinal motion but also a large rolling rate. Rolling moment and pitching moment caused by aileron deflection will rein- force motion coupling, but rudder deflection has relatively little effect on longitudinal motion. Closed-loop simula- tions demonstrate that the flight control law can achieve decoupling control for OWA and guarantee a satisfactory dynamic performance. Keywords: Oblique wing aircraft; Dynamic characteristics; Decoupling; Control allocation; Model-reference dynamic inver- sion ciency than traditional fixed-wing designs.3 1. Introduction1 Compared to variable-sweep wing aircraft, the neutral point of OWA shifts in a small range with Oblique wing aircraft (OWA) can vary wing sweep configuration change, reducing trim drag and load for optimal configuration at various flight speeds and on the fuselage and empennage. The wave drag of extension of their flight envelope.1-2 Compared to OWA is also smaller in transonic and supersonic conventional fixed-wing aircraft, an OWA maintains flight. The lift dependent wave drag and the volume excellent low-speed, takeoff and landing performance dependent wave drag of OWA are 1/4 and 1/16 less at no sweep while being capable of large lift to drag than those of variable sweep aircraft, respectively.4 ratio via high skew angle in supersonic flight. Cruise Furthermore, oblique wing designs are simple and and maneuvering performance can also be enhanced reliable in structure, thus reducing the complexity of when the wings are at a moderate oblique angle. As a fuselage structure and related aerodynamic drag.5 result, OWA have the ability to adapt to mul- However, the asymmetry of OWA introduces special ti-mission flight and possess higher operational effi- flight dynamics problems and challenges for flight 6-8 control. The asymmetric configuration will pro- *Corresponding author. Tel.: +86 10 82338821 duce side force, rolling moment and yawing moment E-mail address: [email protected] in level flight, which do not exist in conventional ·2 · Chinese Journal of Aeronautics aircraft, leading to severe coupling and nonlinearity The asymmetry of an OWA significantly affects its of the aircraft. Moreover, aileron deflection induces aerodynamic characteristics. The pressure distribu- not only rolling moment but also pitching moment, tion along the chord direction changes due to the and rolling effectiveness is insufficient at high skew spanwise flow of air. The aerodynamic load of the angle. Only with flight control systems can the lon- right forward-swept wing is concentrated on the gitudinal and lateral motions of OWA be decoupled wing root; thus the leading-edge suction of the right to meet operational requirements of pilots and wing tip and the lift coefficient decrease. The left achieve good flight quality. backswept wing is the opposite: aerodynamic load is Currently, the flight controllers for OWA are concentrated on the wing tip, and the leading-edge mostly designed by linear control methods based on suction and lift coefficient increase, which can be linear equations.9-15 For example, Alag et al.13 and seen in Fig. 2(a). Since leading-edge suction makes a Pahle14 used linear quadratic optimal control theory greater contribution to lift, the left wing has a lift based on model-following technology to design con- increment. As seen in Fig. 2(b), the lift increment of 15 trol laws. Clark and Letron proposed a command left wing ∆LL is greater than the lift increment of and stability augmentation system where right wing ∆L , which produces nose-down pitch- eigenstructure assignment techniques are combined R ing moment ∆M and rolling moment ∆L that with an optimization procedure to determine the make the right wing move downward. feedback matrix for approximating the desired The asymmetric wings of an OWA generate side eigenstructure. Evaluation of these controllers on force that symmetric wings do not have. In Fig. 2 (c), nonlinear equations of motion seems to be less de- the velocity of airflow V can be divided into veloc- sirable with certain time delays and great oscilla- 0 16 tions. With regard to the research on applying ity normal to the leading edge Vn and velocity par- modern control technologies, such as intelligent con- allel to the leading edge Vt . Regardless of viscosity, trol theory, to OWA with high cross-coupling and V has no effect on the pressure distribution of the nonlinearity, Pang16 designed an attitude controller t D V with a sliding mode control method for near-space wing surface. The drag n corresponding to n vehicles with an oblique wing. However, the over- can be divided into Dx and Dy in the wind coor- shoot of this closed-loop system was relatively high, dinate system. In symmetric swept back wings, the and no reports are available about OWA in the con- two side-components DyL and DyR offset each ventional flight envelope. This paper investigates the nonlinear dynamic other. But, for the oblique wing, the lack of symmetry model of OWA, and dynamic response is numerically introduces a side component that increases as the simulated and analyzed. According to the highly skew angle becomes larger. The side force is large cross-coupled and nonlinear properties of OWA, enough that it cannot be ignored when contrasted model-reference dynamic inversion is used for flight with the magnitude of drag. control law design. Differential horizontal tail and The leading edge suction of the left backswept ailerons are allocated for roll control. This approach wing is larger than that of the right forward-swept can successfully maintain multivariate decoupling wing at subsonic speed, and the lift vector of the left control for OWA. wing inclines forward (see Fig. 2(b)), which results in smaller drag of the left wing. At supersonic speed, 2. Layout and aerodynamic characteristics the wave drag of the right wing is larger. Conse- quently, the drag of the left wing is larger than that The OWA investigated in this paper is presented in of the right wing at subsonic and supersonic speed, Fig. 1. The oblique wing is designed to pivot from 0° i.e. DDnL< nR . Fig. 2(c) shows that the asymmetric to 60° with the right wing forward. drag produces a yawing moment ∆N > 0 N m that tends to reduce the skew angle. Fig. 1 Oblique wing aircraft. Chinese Journal of Aeronautics · 3 · Fig. 3 Decrease of aileron moment arm caused by oblique wing. 3. Modeling and dynamic characteristics analys es 3.1. Flight dynamic modeling The aerodynamic forces and moments of OWA be- come highly nonlinear and cross-coupled as the skew angle becomes larger. In addition, the inertia is also cross-coupled between an aircraft’s 1ongitudinal and 1ateral-directional axes. So the flight motion of OWA should be modeled by six-degree-of-freedom nonlin- ear equations and cannot be divided into longitudinal and lateral equations. Compared with conventional fixed-wing aircraft, OWA’s asymmetry leads to great changes in moments of inertia and cross products of inertia; the cross products of inertia I xy and I yz are no longer zero. Therefore, the moment equations cannot be simplified like with conventional fixed-wing aircraft, and they are expressed in Eq. (1).5 2 2 L= Ix p&& − I yz()() q − r − I zx r + pq Fig. 2 Influence of oblique wing on aerodynamic force −Ixy()() q& − rp − I y − I z qr and moment.
Recommended publications
  • Evolving the Oblique Wing
    NASA AERONAUTICS BOOK SERIES A I 3 A 1 A 0 2 H D IS R T A O W RY T A Bruce I. Larrimer MANUSCRIP . Bruce I. Larrimer Library of Congress Cataloging-in-Publication Data Larrimer, Bruce I. Thinking obliquely : Robert T. Jones, the Oblique Wing, NASA's AD-1 Demonstrator, and its legacy / Bruce I. Larrimer. pages cm Includes bibliographical references. 1. Oblique wing airplanes--Research--United States--History--20th century. 2. Research aircraft--United States--History--20th century. 3. United States. National Aeronautics and Space Administration-- History--20th century. 4. Jones, Robert T. (Robert Thomas), 1910- 1999. I. Title. TL673.O23L37 2013 629.134'32--dc23 2013004084 Copyright © 2013 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks. Introduction v Chapter 1: American Genius: R.T. Jones’s Path to the Oblique Wing .......... ....1 Chapter 2: Evolving the Oblique Wing ............................................................ 41 Chapter 3: Design and Fabrication of the AD-1 Research Aircraft ................75 Chapter 4: Flight Testing and Evaluation of the AD-1 ................................... 101 Chapter 5: Beyond the AD-1: The F-8 Oblique Wing Research Aircraft ....... 143 Chapter 6: Subsequent Oblique-Wing Plans and Proposals ....................... 183 Appendices Appendix 1: Physical Characteristics of the Ames-Dryden AD-1 OWRA 215 Appendix 2: Detailed Description of the Ames-Dryden AD-1 OWRA 217 Appendix 3: Flight Log Summary for the Ames-Dryden AD-1 OWRA 221 Acknowledgments 230 Selected Bibliography 231 About the Author 247 Index 249 iii This time-lapse photograph shows three of the various sweep positions that the AD-1's unique oblique wing could assume.
    [Show full text]
  • Mp-Avt-146-29
    UNCLASSIFIED/UNLIMITED Meeting Unmanned Air Vehicle Platform Challenges Using Oblique Wing Aircraft Dr. R.K. Nangia BSc, PhD, CEng, AFAIAA, FRAeS Consulting Engineers Nangia Aero Research Associates WestPoint, 78-Queens Road, BRISTOL, BS8 1QX UK [email protected] ABSTRACT There is an ever increasing emphasis on unmanned vehicles for all kinds of roles. Recent experience suggests that their capability and payoff could be complementary to manned vehicles in combat situations. However, the levels of platform and inter-disciplinary technologies need to be developed to take full advantage of their performance potential as part of an integrated defence system. This applies to all classes of Unmanned vehicles. Further, a balance has to be struck between manoeuvrability, stealth and enhancing range (persistence) whilst possibly combining reconnaissance and strike roles. A level of autonomy is implied (push button capability). Innovation and system integration is therefore called for. Future aircraft, particularly unmanned aircraft, will have substantially "widened" flight envelopes (higher "g", AoA and ß over wider Mach, altitude and CL ranges). An in depth analysis of aircraft weight breakdown (structure, fuel and payload) and the trends with time, size and technology levels, together with consideration and adaptation of the Breguet Range Equation has enabled derivation of Efficiency parameters leading to an appreciation of technologies needed for innovation and for further development. The paper focuses on the Oblique Flying Wing (OFW) concept to meet the goals of enhancing Range, Persistence whilst combining roles of Reconnaissance, Sensing and Strike. Several developing technologies, e.g. control, guidance and structure have prompted a “re-visit” to OFW.
    [Show full text]
  • Experimental Investigation of Oblique Wing Aerodynamics at Low Speed
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2007 Experimental Investigation of Oblique Wing Aerodynamics at Low Speed Matthew J. Dillsaver Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerodynamics and Fluid Mechanics Commons Recommended Citation Dillsaver, Matthew J., "Experimental Investigation of Oblique Wing Aerodynamics at Low Speed" (2007). Theses and Dissertations. 2963. https://scholar.afit.edu/etd/2963 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. EXPERIMENTAL INVESTIGATION OF OBLIQUE WING AERODYNAMICS AT LOW SPEED THESIS Matthew J. Dillsaver, Captain, USAF AFIT/GAE/ENY/07-M10 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GAE/ENY/07-M10 EXPERIMENTAL INVESTIGATION OF OBLIQUE WING AERODYNAMICS AT LOW SPEED THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Matthew J. Dillsaver, BSME Captain, USAF March 2007 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
    [Show full text]
  • File:Thinking Obliquely.Pdf
    NASA AERONAUTICS BOOK SERIES A I 3 A 1 A 0 2 H D IS R T A O W RY T A Bruce I. Larrimer MANUSCRIP . Bruce I. Larrimer Library of Congress Cataloging-in-Publication Data Larrimer, Bruce I. Thinking obliquely : Robert T. Jones, the Oblique Wing, NASA's AD-1 Demonstrator, and its legacy / Bruce I. Larrimer. pages cm Includes bibliographical references. 1. Oblique wing airplanes--Research--United States--History--20th century. 2. Research aircraft--United States--History--20th century. 3. United States. National Aeronautics and Space Administration-- History--20th century. 4. Jones, Robert T. (Robert Thomas), 1910- 1999. I. Title. TL673.O23L37 2013 629.134'32--dc23 2013004084 Copyright © 2013 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks. Introduction v Chapter 1: American Genius: R.T. Jones’s Path to the Oblique Wing .......... ....1 Chapter 2: Evolving the Oblique Wing ............................................................ 41 Chapter 3: Design and Fabrication of the AD-1 Research Aircraft ................75 Chapter 4: Flight Testing and Evaluation of the AD-1 ................................... 101 Chapter 5: Beyond the AD-1: The F-8 Oblique Wing Research Aircraft ....... 143 Chapter 6: Subsequent Oblique-Wing Plans and Proposals ....................... 183 Appendices Appendix 1: Physical Characteristics of the Ames-Dryden AD-1 OWRA 215 Appendix 2: Detailed Description of the Ames-Dryden AD-1 OWRA 217 Appendix 3: Flight Log Summary for the Ames-Dryden AD-1 OWRA 221 Acknowledgments 230 Selected Bibliography 231 About the Author 247 Index 249 iii This time-lapse photograph shows three of the various sweep positions that the AD-1's unique oblique wing could assume.
    [Show full text]
  • Robert Jones
    NATIONAL ACADEMY OF SCIENCES ROBERT THOMAS JONES 1910– 1999 A Biographical Memoir by WALTER G. VINCENTI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 86 PUBLISHED 2005 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. ROBERT THOMAS JONES May 28, 1910–August 11, 1999 BY WALTER G. VINCENTI HE PLANFORM OF THE wing of every high-speed transport Tone sees flying overhead embodies R. T. Jones’s idea of sweepback for transonic and supersonic flight. This idea, of which Jones was one of two independent discoverers, was described by the late William Sears, a distinguished aerody- namicist who was a member of the National Academy of Sciences, as “certainly one of the most important discover- ies in the history of aerodynamics.” It and other achieve- ments qualify him as among the premier theoretical aero- dynamicists of the twentieth century. And this by a remarkable man whose only college degree was an honorary doctorate. Robert Thomas Jones––“R.T.” to those of us fortunate enough to be his friend––was born on May 28, 1910, in the farming-country town of Macon, Missouri, and died on Au- gust 11, 1999, at age 89, at his home in Los Altos Hills, California. His immigrant grandfather, Robert N. Jones, af- ter being in the gold rush to California, settled near Ma- con, where he farmed in the summer and mined coal in the winter. His father, Edward S. Jones, educated himself in the law and practiced law in Macon; while running for pub- lic office, he traveled the dirt roads of Macon county in a buggy behind a single horse.
    [Show full text]
  • Tools.Of.The.Trade+Poster.Pdf
    Aircraft as Research Tools Aeronautical research usually begins with computers, wind The first experimental planes designed exclusively for re- tunnels, and flight simulators, but eventually the theories search were the XS-1 and the D-558-1. They were made in must fly. This is when flight research begins, and aircraft are 1946 to enable scientists and pilots to study flight near the the primary tools of the trade. speed of sound. Custom-made airplanes were the only means to accomplish this research because supersonic wind tun- Flight research involves doing precision maneuvers in ei- nels at the time were not accurate enough, and no other ther a specially built experimental aircraft or an existing pro- airplanes had flown that fast. The supersonic era began when duction airplane that has been modified. For example, the the XS-1 broke the “sound barrier” in 1947. AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) In the 1950’s the famous “X-Planes” continued to take people was a standard fighter aircraft that was transformed into a to higher altitudes and greater speeds. They were the first one-of-a-kind aircraft as it was fitted with new propulsion aircraft to fly Mach 2 and Mach 3, and the studies done with systems, flight controls, and scientific equipment. All research them influenced the designs of all supersonic planes. aircraft are able to perform scientific experiments because of the onboard instruments that record data about its sys- In the early 1960’s, the X-15 rocket plane became the first tems, aerodynamics, and the outside environment.
    [Show full text]
  • Morris' Wing.FM5
    On the ’Wing... #117 Steve Morris’ Computer Stabilized Flying Wing Project In our December 1996 column, we included the following quote from Hans-Jürgen Unverferth of Germany: “Why do we use radio controls? To build constructions characterized by very high ‘own-stability’? It’s a joke! We have to be creative; fantasy has to rule our thoughts! Think about the F-16, B-2, all the modern fighters. There is no ‘own-stability,’ there is a computer! This is the future of model sailplaning. And there is one geometry waiting for this time — the tailless glider!”1 In July of 1987, at Dillon Beach California, an actively controlled unstable flying wing aircraft was successfully flown. This month’s column is devoted to an in-depth description of the aircraft and systems which made that success possible. The actively controlled unstable flying wing aircraft project was completed by Steve Morris (mentioned in a previous “On the ’Wing...” column), Rick Miley, and Dave Larkin, collectively called The Palo Alto Shipping Co., under the direction of Prof. Ilan Kroo of Stanford University and Dr. R.T. Jones. At the time of project inception, Steve had already been involved in the design, construction, and flying of a number of tailless RC models. He had written a rather sophisticated computer program to aid in the design process, and had, in fact, designed, built and flown a preliminary model of the S.W.I.F.T. (Swept Wing with Inboard Flap Trim) rigid wing hang glider.2 One problematic aspect of tailless flight which intrigued Steve can be directly related to “planks” and planforms with moderate rear sweep.
    [Show full text]
  • 4 Aircraft Configurations
    4 - 1 4 Aircraft Configurations Aircraft can be categorized by several aspects. One way is to divide into: • homebuilt • single engine propeller driven airplane • twin engine propeller driven airplane • agricultural airplane • business jet • regional turboprop • jet transport • supersonic civil transport, SCT • seaplane In addition there are several categories of military aircraft. 4.1 Three-View Drawings of Conventional Aircraft Configurations Three-view drawings are the most important medium to communicate within aircraft design. In the following, some examples of three-view drawings of conventional aircraft configurations are shown as an animation for own design ideas. Fig 4.1 Single engine piston prop. Cessna 182S Skylane: Pax: 4, vCR : 140 kt, R : 820 NM, MTOW: 1.4 t. (Roskam II) 4 - 2 Fig 4.2 Single engine piston prop. Aerospatiale, Socata TB 10 Tobago: Pax: 4, vCR : 127 kt, R : 688 NM, MTOW: 1.1 t. (Roskam II) Fig 4.3 Twin engine piston prop. Piper Seminole - PA - 44 - 180: Pax: 4, vCR : 162 kt, R : 770 NM, MTOW: 1.7 t. (Roskam II) Fig 4.4 Twin engine regional. Pilatus BN-2A: piston engine. Pilatus BN-2T: turboprop engine. Pax: 9, vCR : 170 kt, R : 140 NM, MTOW: 3.1 t. (Roskam II) 4 - 3 Fig 4.5 Business jet. Learjet 45: Pax: 9, vCR : 464 kt, R : 1849 NM, MTOW: 4.0 t. (Lambert 1993) Fig 4.6 Turboprop regional. Fokker 50: Pax: 50, vCR : 278 kt, R : 1610 NM, MTOW: 20.8 t. (Green 1988) 4 - 4 Fig 4.7 Turboprop regional. Shorts 330: Pax: 30, vCR : 190 kt, R : 473 NM, MTOW: 10.3 t.
    [Show full text]
  • United States Patent AIRCRAFT 3.23. A
    USOO8408490B2 (12) United States Patent (10) Patent No.: US 8.408,490 B2 McDOnnel (45) Date of Patent: Apr. 2, 2013 (54) OBLIQUE BLENDED WING BODY 3,761,041 A 9, 1973 Putman AIRCRAFT 3.23.- J. A : 942: OneS...gr . 2:... O O 4,053,125 A * 10/1977 Ratony ............................ 244/46 (75) Inventor: William R McDonnell, St. Louis, MO 4,132,374. A * 1/1979 Abell .............................. 244/46 (US) 4,139,172 A * 2/1979 Miller et al. ................ 244/45R 4,146,199 A 3, 1979 Wenzel (73) Assignee: Advanced Product Development, LLC, 4,417,708 A * 1 1/1983 Negri.......................... 244/45R 4,836,470 A * 6/1989 Criswell ......................... 244/36 St. Louis, MO (US) D314.366 S 2, 1991 WaalandaalalCC etal al. ................ 244/36 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 383 days. OTHER PUBLICATIONS (21) Appl. No.: 12/675,165 David S. Harvey, "DARPA's UAV ideas take wing.” Unmanned Vehicles, Jul.-Aug. 2007, pp. 26-27. (22) PCT Filed: Aug. 29, 2008 (Continued) (86). PCT No.: PCT/US2008/074795 S371 (c)(1), Primary Examiner — Michael J. Carone (2), (4) Date: Feb. 25, 2010 Assistant Examiner — Steven Hawk (74) Attorney, Agent, or Firm — Polster, Lieder, Woodruff & (87) PCT Pub. No.: WO2009/029796 Lucchesi, L.C. PCT Pub. Date: Mar. 5, 2009 O O (57) ABSTRACT (65) Prior Publication Data US 2010/O243795 A1 Sep. 30, 2010 An oblique wing aircraft (1) designed for reduced Surface area to Volume ratio.
    [Show full text]
  • Robert T. Jones Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt987037f1 No online items Guide to the Robert T. Jones Papers Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California 2008 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Robert T. Jones SC0576 1 Papers Overview Call Number: SC0576 Creator: Jones, Robert T. (Robert Thomas), 1910- Title: Robert T. Jones papers Dates: 1912-1996 Physical Description: 23 Linear feet Physical Description: Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Information about Access Collection is open for research; materials must be requested at least 24 hours in advance of intended use. Ownership & Copyright Property rights reside with the repository. Literary rights reside with the creators of the documents or their heirs. To obtain permission to publish or reproduce, please contact the Public Services Librarian of the Dept. of Special Collections. Cite As [Identification of item], Robert T. Jones Papers (SC0576). Stanford University Archives, Stanford, Calif. Biography / Administrative History Robert T. Jones, one of the premier theoretical aerodynamicists of the twentieth century, was a research scientist with NASA, and its predecessor NACA, from 1934 until his retirement in 1982, when he joined the Stanford faculty as a consulting professor in aeronautics. He is best known for developing the theory of swept and delta wings.
    [Show full text]
  • The Shaped Sonic Boom Demonstrator and the Quest for Quiet Supersonic Flight / Lawrence R
    Lawrence R. Benson Lawrence R. Benson Library of Congress Cataloging-in-Publication Data Benson, Lawrence R. Quieting the boom : the shaped sonic boom demonstrator and the quest for quiet supersonic flight / Lawrence R. Benson. pages cm Includes bibliographical references and index. 1. Sonic boom--Research--United States--History. 2. Noise control-- Research--United States--History. 3. Supersonic planes--Research--United States--History. 4. High-speed aeronautics--Research--United States-- History. 5. Aerodynamics, Supersonic--Research--United States--History. I. Title. TL574.S55B36 2013 629.132’304--dc23 2013004829 Copyright © 2013 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks. ISBN 978-1-62683-004-2 90000> 9 781626 830042 Preface and Acknowledgments v Introduction: A Pelican Flies Cross Country ix Chapter 1: Making Shock Waves: The Proliferation and Testing of Sonic Booms ............................. 1 Exceeding Mach 1 A Swelling Drumbeat of Sonic Booms Preparing for an American Supersonic Transport Early Flight Testing Enter the Valkyrie and the Blackbird The National Sonic Boom Evaluation Last of the Flight Tests Chapter 2: The SST’s Sonic Boom Legacy ..................................................... 39 Wind Tunnel Experimentation Mobilizing
    [Show full text]