The Age of the Cretaceous Santana Formation Fossil Konservat

Total Page:16

File Type:pdf, Size:1020Kb

The Age of the Cretaceous Santana Formation Fossil Konservat Cretaceous Research 28 (2007) 895e920 www.elsevier.com/locate/CretRes The age of the Cretaceous Santana Formation fossil Konservat Lagersta¨tte of north-east Brazil: a historical review and an appraisal of the biochronostratigraphic utility of its palaeobiota David M. Martill Palaeobiology Research Group, School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, UK Received 10 April 2006; accepted in revised form 11 January 2007 Available online 10 July 2007 Abstract This paper is concerned with the famous fossil-bearing carbonate concretions of the Romualdo Member of the Santana Formation Konservat Lagersta¨tten of north-east Brazil. This palaeontologically important horizon was first dated as Cretaceous by the French palaeoichthyologist Louis Agassiz on the basis of fish fossils obtained by Bavarian explorers Spix and Martius between 1817 and 1820 and Scottish botanist and explorer George Gardner between 1836 and 1841. Gardner equated the concretion level with the English Albian ‘Upper Greensands’ on the basis of an imagined similarity of stratigraphic sequence with that of the Isle of Wight, southern England. Since then high precision dating of this remarkable deposit has proved elusive and the concretion-bearing part of the Santana Formation has been variously dated as early Late Cretaceous or late Early Cretaceous. Attempts at greater precision over the last 30 years have cited its age variously as Aptian, Albian or possibly Cenomanian, but few reliable data have been presented to support these dates. Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Brazil; Araripe Basin; Santana Formation; Cretaceous; Konservat Lagersta¨tten; Geochronology 1. Introduction and understanding of Gondwanan Cretaceous palaeobiotas (Martill, 1988, 1993; Wenz and Brito, 1990; Maisey, 1991, The Santana Formation of north-east Brazil contains one of 1993; and many references herein). Only the age of the the most important Mesozoic fossil Konservat Lagersta¨tten on Romualdo Member of the Santana Formation, a dominantly Gondwana (Maisey, 1991; Martill, 1993, 1997, 2001; Kellner, silty shale sequence that includes the highly fossiliferous 2002; Fara et al., 2005). The formation crops out on the flanks carbonate concretion-bearing unit, is considered here. of the Chapada do Araripe in southern Ceara´, western Pernam- Although the Santana Formation concretions have been fa- buco and a small part of eastern Piaui in the north-eastern mous for their enclosed fossils, especially fishes (Fig. 2), for Brazilian Caatinga (Fig. 1). It forms part of a heterogenous over 150 years, in more recent times they have become known assemblage of spectacularly fossiliferous rocks of Cretaceous for a diversity of dinosaur and pterosaur remains in an excellent age (Gardner, 1841; Brito, 1984; Maisey, 1991; Martill, 1993). state of preservation (Martill, 1998; Martill and Unwin, 1989; In fact, two formations within the basin are well-known as Kellner, 1996a,b; Frey et al., 2003a,b) comparable with, and Konservat Lagerstatten; the Nova Olinda Member of the Crato sometimes exceeding, that of the Jurassic Solnhofen Limestone Formation lies a few tens of metres below the Santana Forma- of Bavaria (Barthel et al., 1990), especially in their three- tion, and both have contributed considerably to our knowledge dimensionality. The so-called ‘‘Lagersta¨tten effect’’ on palaeobiodiversity E-mail address: [email protected] patterns makes it vital that such deposits are precisely dated. 0195-6671/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.cretres.2007.01.002 896 D.M. Martill / Cretaceous Research 28 (2007) 895e920 AB C Fig. 1. A, location of the Chapada do Araripe in South America. B, the Chapada do Araripe lies on the borders of the Brazilian states of Ceara´, Piauı´ and Pernambuco. C, outline map of the Chapada do Araripe with the Santana Group (of Neumann and Cabrera, 1999) shaded grey. The dashed line indicates the route taken by George Gardner between 1839 and 1841. Unfortunately, the Santana Formation, represented largely Formation sensu lato as Wealden; a term that should not be by non-marine or quasi-marine strata, lacks biostratigraphi- used in a chronostratigraphic context, but is often taken to be cally useful fossils for high precision biostratigraphy and has BerriasianeBarremian by European stratigraphers. The fossil- not been radiometrically dated owing to a lack of suitable iferous concretion-bearing part of the Santana Formation (the igneous rocks. Notwithstanding this, there have been a number Fossil Lagersta¨tte) has variously been cited as Aptian (Brito, of attempts to date the deposit more precisely, most of which 1984; Wellnhofer, 1985, 1991), Aptian/Albian (Arai et al., have favoured a late Early Cretaceous age (Braun, 1966; Mabe- 2000), Albian (Campos and Wenz, 1982; Berthou, 1990), pos- soone and Tinoco, 1973; Lima, 1978, 1979a,b, 1980; Berthou, sibly Cenomanian (Martill and Wilby, 1993) and Turonian 1990). Many of the dates applied have referred to the Santana (Beurlen, 1962); a range in the order of 30 million years. The Formation as a whole, or without defining the scope of the for- following is a review of the history of dating of the Santana mation, and with little attempt made to indicate from where Formation, the methods used, with statements on their accu- diagnostic fossils came from within the section. Furthermore, racy, and an evaluation of the various palaeontological groups at the time many of these studies were undertaken the name encountered in the formation with comments on their utility Santana Formation was applied to a wide range of strata within for dating. Finally, remarks on the possible utility of stable the Araripe Basin (Fig. 3). In addition, confusion was intro- isotope geochemistry, palaeomagnetism and sequence/event duced by the use of inappropriate terms as chronostratigraphic stratigraphy as potential, but as yet untried methods for dating labels. Krommelbein and Weber (1971) regarded the Santana the Santana Formation are provided. D.M. Martill / Cretaceous Research 28 (2007) 895e920 897 a heterolithic sequence that lies above a series of evaporites (the Ipubi Formation) and beneath a series of prominent red beds (the Arajara and Exu formations) that form an extensive tableland that extends in places beyond the confines of the fault bounded basin. This paper follows Martill and Wilby (1993) and expressly excludes the Ipubi and Crato formations (previously considered as members of the Santana Formation) from the Santana Formation. Thus the definition of the San- tana Formation used here corresponds approximately with the Romualdo Member of Beurlen (1963) (Fig. 3). Martill and Wilby (1993) retained the term Romualdo Member for a series of concretion-bearing fissile shales ca. 4e20 m thick (Fig. 4) that lie approximately within the middle of the Santana Formation sequence at most localities around the Chapada do Araripe. Two major unconformities can be readily identified in the Araripe Basin infill. The oldest of these lies between the metamorphic basement and a series of probably Ordoviciane ?Devonian coarse clastic fluvial sediments of the Vale do Cariri Group (Brito, 1990). Ayounger unconformity between the Vale do Cariri Group and the metamorphic basement and the Meso- Fig. 2. Typical Romualdo Member concretions from the Santana Formation. A, zoic infill which comprises the Brejo Santo and Santana a ‘split’ concretion with a specimen of Notelops sp. in which extensive soft groups (Fig. 5) marks the initial stages of rift filling. This un- tissue (white) is preserved. B, a concretion prior to preparation outlines well conformity is complex, and comprises both onlap and overlap the enclosed fish, in this case a specimen of the pycnodont Neoproscinetes sp. relationships with the underlying strata and includes a buried topography of significant relief where it separates the Meso- zoic sequence from the pre-Mesozoic basement (Martill, 2. Brief geological overview 1993). Minor disconformities and non-sequences occur throughout The Santana Formation owes its name to Small (1913) who the Mesozoic sequence, reflecting eustatic as well as tectonic identified a series of variable strata between two prominent events within the basin (da Silva, 1986a,b; Berthou, 1994; sandstone sequences in the Val do Cariri, Ceara´; he called Ponte and Ponte Filho, 1996). Significantly, one of these dis- this sequence the Calca´reo de Sant’Anna, a name that presum- conformities appears within the Araripe Group, and its recog- ably alludes to the laminated limestone-bearing Crato Forma- nition led da Silva (1986a,b) to divide the Araripe Group tion of recent nomenclature. Small’s informal unit was sequence into two distinct formations. She removed the Crato subdivided by later workers and the Santana Formation is and Ipubi members from the Santana Formation, uniting them now just one of several formations recognised within an Ara- in a single Araripina Formation (see below for details). More ripe Group, a stratigraphic division erected by Gomez et al. recent workers have agreed with da Silva’s removal of these (1981) and reviewed by Ponte and Appi (1990) and Assine lithostratigraphic units from the Santana Formation, but have (1992). The Araripe Group forms part of the infill of a Mesozoic not accepted their unification as a single formation and as extensional rift basin developed between two major east-west such the term Araripina Formation is hardly ever used.
Recommended publications
  • A New Angiosperm from the Crato Formation (Araripe Basin, Brazil) and Comments on the Early Cretaceous Monocotyledons
    Anais da Academia Brasileira de Ciências (2014) 86(4): 1657-1672 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420140339 www.scielo.br/aabc A new angiosperm from the Crato Formation (Araripe Basin, Brazil) and comments on the Early Cretaceous Monocotyledons FLAVIANA J. DE LIMA1, ANTÔNIO A.F. SARAIVA2, MARIA A.P. DA SILVA3, RENAN A.M. BANTIM1 and JULIANA M. SAYÃO4 1Programa de Pós-Graduação em Geociências, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n, Cidade Universitária, 50740-530 Recife, PE, Brasil 2Laboratório de Paleontologia, Universidade Regional do Cariri, Rua Carolino Sucupira, s/n, 63100-000 Crato, CE, Brasil 3Laboratório de Botânica Aplicada, Universidade Regional do Cariri, Rua Carolino Sucupira, s/n, 63100-000 Crato, CE, Brasil 4Laboratório de Biodiversidade do Nordeste, Universidade Federal de Pernambuco, Rua do Alto Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brasil Manuscript received on July 1, 2014; accepted for publication on September 9, 2014 ABSTRACT The Crato Formation paleoflora is one of the few equatorial floras of the Early Cretaceous. It is diverse, with many angiosperms, especially representatives of the clades magnoliids, monocotyledons and eudicots, which confirms the assumption that angiosperm diversity during the last part of the Early Cretaceous was reasonably high. The morphology of a new fossil monocot is studied and compared to all other Smilacaceae genus, especially in the venation. Cratosmilax jacksoni gen. et sp. nov. can be related to the Smilacaceae family, becoming the oldest record of the family so far.
    [Show full text]
  • Annotated Checklist of Fossil Fishes from the Smoky Hill Chalk of the Niobrara Chalk (Upper Cretaceous) in Kansas
    Lucas, S. G. and Sullivan, R.M., eds., 2006, Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35. 193 ANNOTATED CHECKLIST OF FOSSIL FISHES FROM THE SMOKY HILL CHALK OF THE NIOBRARA CHALK (UPPER CRETACEOUS) IN KANSAS KENSHU SHIMADA1 AND CHRISTOPHER FIELITZ2 1Environmental Science Program and Department of Biological Sciences, DePaul University,2325 North Clifton Avenue, Chicago, Illinois 60614; and Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601;2Department of Biology, Emory & Henry College, P.O. Box 947, Emory, Virginia 24327 Abstract—The Smoky Hill Chalk Member of the Niobrara Chalk is an Upper Cretaceous marine deposit found in Kansas and adjacent states in North America. The rock, which was formed under the Western Interior Sea, has a long history of yielding spectacular fossil marine vertebrates, including fishes. Here, we present an annotated taxo- nomic list of fossil fishes (= non-tetrapod vertebrates) described from the Smoky Hill Chalk based on published records. Our study shows that there are a total of 643 referable paleoichthyological specimens from the Smoky Hill Chalk documented in literature of which 133 belong to chondrichthyans and 510 to osteichthyans. These 643 specimens support the occurrence of a minimum of 70 species, comprising at least 16 chondrichthyans and 54 osteichthyans. Of these 70 species, 44 are represented by type specimens from the Smoky Hill Chalk. However, it must be noted that the fossil record of Niobrara fishes shows evidence of preservation, collecting, and research biases, and that the paleofauna is a time-averaged assemblage over five million years of chalk deposition.
    [Show full text]
  • From the Crato Formation (Lower Cretaceous)
    ORYCTOS.Vol. 3 : 3 - 8. Décembre2000 FIRSTRECORD OT CALAMOPLEU RUS (ACTINOPTERYGII:HALECOMORPHI: AMIIDAE) FROMTHE CRATO FORMATION (LOWER CRETACEOUS) OF NORTH-EAST BRAZTL David M. MARTILL' and Paulo M. BRITO'z 'School of Earth, Environmentaland PhysicalSciences, University of Portsmouth,Portsmouth, POl 3QL UK. 2Departmentode Biologia Animal e Vegetal,Universidade do Estadode Rio de Janeiro, rua SâoFrancisco Xavier 524. Rio de Janeiro.Brazll. Abstract : A partial skeleton representsthe first occurrenceof the amiid (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus from the Nova Olinda Member of the Crato Formation (Aptian) of north east Brazil. The new spe- cimen is further evidencethat the Crato Formation ichthyofauna is similar to that of the slightly younger Romualdo Member of the Santana Formation of the same sedimentary basin. The extended temporal range, ?Aptian to ?Cenomanian,for this genus rules out its usefulnessas a biostratigraphic indicator for the Araripe Basin. Key words: Amiidae, Calamopleurus,Early Cretaceous,Brazil Première mention de Calamopleurus (Actinopterygii: Halecomorphi: Amiidae) dans la Formation Crato (Crétacé inférieur), nord est du Brésil Résumé : la première mention dans le Membre Nova Olinda de la Formation Crato (Aptien ; nord-est du Brésil) de I'amiidé (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus est basée sur la découverted'un squelettepar- tiel. Le nouveau spécimen est un élément supplémentaireindiquant que I'ichtyofaune de la Formation Crato est similaire à celle du Membre Romualdo de la Formation Santana, située dans le même bassin sédimentaire. L'extension temporelle de ce genre (?Aptien à ?Cénomanien)ne permet pas de le considérer comme un indicateur biostratigraphiquepour le bassin de l'Araripe. Mots clés : Amiidae, Calamopleurus, Crétacé inférieu4 Brésil INTRODUCTION Araripina and at Mina Pedra Branca, near Nova Olinda where cf.
    [Show full text]
  • 7.2.1. Introduction
    Veldmeijer Cretaceous, toothed pterosaurs from Brazil. A reappraisal 1. Introduction Campos & Kellner (1985b) related that references to flying reptiles from Brazil (not from the Araripe Basin) were made as early as the 19th century, but the first find from Chapada do Araripe was described as late as the 1970s (Price, 1971, post–cranial remains of Araripesaurus castilhoi). Wellnhofer (1977) published the description of a phalanx of a wing finger of a pterosaur from the Santana Formation and named it Araripedactylus dehmi. Since then, much has been published on the pterosaurs from Brazil, and there has been an increasing interest in the material from this area, resulting in an increase in scientific interest in pterosaurs in general. The plateau of the Araripe Basin, in northeast Brazil on the boundaries of Piaui, Ceará and Pernambuco (figure 1.1) was already famous for its well preserved fossils, escpacially fish (e.g. Maisey, 1991), long before the area became the most important source of Cretaceous pterosaur fossils. At present, it is the most important area for Cretaceous pterosaurs globally, although an increasing number of finds are reported from China (e.g. Lü & Ji, 2005; Wang & Lü, 2001 and Wang & Zhou, 2003). Some of the Brazilian material is severely compacted (Crato Formatin; Frey & Martill, 1994; Frey et al., 2003a, b; Sayão & Kellner, 2000) and preserved on a laminated limestone comparable to that of Solnhofen. (The type locality of most, if not all, pterosaur fossils from the Araripe Basin is uncertain, because no systematic, scientically based excavations or even surveys have been done in this area.
    [Show full text]
  • 35-51 New Data on Pleuropholis Decastroi (Teleostei, Pleuropholidae)
    Geo-Eco-Trop., 2019, 43, 1 : 35-51 New data on Pleuropholis decastroi (Teleostei, Pleuropholidae), a “pholidophoriform” fish from the Lower Cretaceous of the Eurafrican Mesogea Nouvelles données sur Pleuropholis decastroi (Teleostei, Pleuropholidae), un poisson “pholidophoriforme” du Crétacé inférieur de la Mésogée eurafricaine Louis TAVERNE 1 & Luigi CAPASSO 2 Résumé: Le crâne et le corps de Pleuropholis decastroi, un poisson fossile de l’Albien (Crétacé inférieur) du sud de l’Italie, sont redécrits en détails. P. decastroi diffère des autres espèces du genre par ses deux nasaux en contact médian et qui séparent complètement le dermethmoïde ( = rostral) des frontaux. Avec son maxillaire extrêmement élargi qui couvre la mâchoire inférieure et son supramaxillaire fortement réduit, P. decastroi semble plus nettement apparenté avec Pleuropholis cisnerosorum, du Jurassique supérieur du Mexique, qu’avec les autres espèces du genre. Par ses mâchoires raccourcies et ses nombreux os orbitaires, Pleuropholis apparaît également comme le genre le plus spécialisé de la famille. La position systématique des Pleuropholidae au sein du groupe des « pholidophoriformes » est discutée. Mots-clés: Pleuropholis decastroi, Albien, Italie du sud, Pleuropholis, Pleuropholidae, “Pholidophoriformes”, ostéologie, position systématique. Abstract: The skull and the body of Pleuropholis decastroi, a fossil fish from the marine Albian (Lower Cretaceous) of southern Italy, are re-described in details. P. decastroi differs from the other species of the genus by their two nasals that are in contact along the mid-line, completely separating the dermethmoid (= rostral) from the frontals. With its extremely broadened maxilla that covers the lower jaw and its strongly reduced supramaxilla, P. decastroi seems more closely related to Pleuropholis cisnerosorum, from the Upper Jurassic of Mexico, than to the other species of the genus.
    [Show full text]
  • Table S1.Xlsx
    Bone type Bone type Taxonomy Order/series Family Valid binomial Outdated binomial Notes Reference(s) (skeletal bone) (scales) Actinopterygii Incertae sedis Incertae sedis Incertae sedis †Birgeria stensioei cellular this study †Birgeria groenlandica cellular Ørvig, 1978 †Eurynotus crenatus cellular Goodrich, 1907; Schultze, 2016 †Mimipiscis toombsi †Mimia toombsi cellular Richter & Smith, 1995 †Moythomasia sp. cellular cellular Sire et al., 2009; Schultze, 2016 †Cheirolepidiformes †Cheirolepididae †Cheirolepis canadensis cellular cellular Goodrich, 1907; Sire et al., 2009; Zylberberg et al., 2016; Meunier et al. 2018a; this study Cladistia Polypteriformes Polypteridae †Bawitius sp. cellular Meunier et al., 2016 †Dajetella sudamericana cellular cellular Gayet & Meunier, 1992 Erpetoichthys calabaricus Calamoichthys sp. cellular Moss, 1961a; this study †Pollia suarezi cellular cellular Meunier & Gayet, 1996 Polypterus bichir cellular cellular Kölliker, 1859; Stéphan, 1900; Goodrich, 1907; Ørvig, 1978 Polypterus delhezi cellular this study Polypterus ornatipinnis cellular Totland et al., 2011 Polypterus senegalus cellular Sire et al., 2009 Polypterus sp. cellular Moss, 1961a †Scanilepis sp. cellular Sire et al., 2009 †Scanilepis dubia cellular cellular Ørvig, 1978 †Saurichthyiformes †Saurichthyidae †Saurichthys sp. cellular Scheyer et al., 2014 Chondrostei †Chondrosteiformes †Chondrosteidae †Chondrosteus acipenseroides cellular this study Acipenseriformes Acipenseridae Acipenser baerii cellular Leprévost et al., 2017 Acipenser gueldenstaedtii
    [Show full text]
  • The Scales of Mesozoic Actinopterygians
    Mesozoic Fishes – Systematics and Paleoecology, G. Arratia & G. Viohl (eds.): pp. 83-93, 6 figs. © 1996 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 3-923871–90-2 The scales of Mesozoic actinopterygians Hans-Peter SCHULTZE Abstract Cycloid scales (elasmoid scales with circuli) are a unique character of teleosts above the level of Pholidophorus and Pholidophoroides. Cycloid scales have two layers. A bony layer, usually acellular, is superimposed on a basal plate composed of partially mineralized layers of plywoodlike laminated collagen fibres. The tissue of the basal layer is refered to here as elasmodin. Basal teleosts (sensu PATTERSON 1973) possess rhombic scales with a bony base overlain by ganoin (lepidosteoid ganoid scale). Amioid scales (elasmoid scales with longitudinally to radially arranged ridges or rods on the overlapped field) are found within halecomorphs. This scale type evolved more than once within primitive actinopterygians and other osteichthyan fishes. It may have even developed twice within halecomorphs, in Caturidae and Amiidae, from rhombic scales of lepidosteoid type. Some basal genera of halecomorphs show remains of a dentine layer between ganoin and bone that is characteristic of actinopterygians below the halecostome level. The Semionotidae placed at the base of the Halecostomi, exhibit scale histology transitional between the palaeoniscoid and lepidosteoid scale type. Introduction Actinopterygians, from primitive Coccolepididae to advanced teleosts, are represented in the Solnhofen lithographic limestone. These are fishes with rhombic and round scales. Ganoid scales of the lepidosteoid type are found in the following fishes: semionotid Lepidotes and Heterostrophus, macrosemiids Histionotus, Macrosemius, Notagogus and Propterus, ophiopsid Ophiopsis, caturids Furo and Brachyichthys, aspido- rhynchid Belonostomus, pleuropholid Pleuropholis, and pholidophorid Pholidophorus.
    [Show full text]
  • Vertebrate Remains Are Relatively Well Known in Late Jurassic Deposits of Western Cuba. the Fossil Specimens That Have Been Coll
    Paleontología Mexicana, 3 (65): 24-39 (versión impresa), 4: 24-39 (versión electrónica) Catalogue of late jurassiC VerteBrate (pisCes, reptilian) speCiMens froM western CuBa Manuel Iturralde-Vinent ¹, *, Yasmani Ceballos Izquierdo ² A BSTRACT Vertebrate remains are relatively well known in Late Jurassic deposits of western Cuba. The fossil specimens that have been collected so far are dispersed in museum collections around the world and some have been lost throughout the years. A reas- sessment of the fossil material stored in some of these museums’ collections has generated new data about the fossil-bearing lo- calities and greatly increased the number of formally identified specimens. The identified bone elements and taxa suggest a high vertebrate diversity dominated by actinopterygians and reptiles, including: long-necked plesiosaurs, pliosaurs, metriorhynchid crocodilians, pleurodiran turtles, ichthyosaurs, pterosaurs, and sauropod dinosaurs. This assemblage is commonly associated with unidentified remains of terrestrial plants and rare microor- ganisms, as well as numerous marine invertebrates such as am- monites, belemnites, pelecypods, brachiopods, and ostracods. This fossil assemblage is particularly valuable because it includes the most complete marine reptile record of a chronostratigraphic interval, which is poor in vertebrate remains elsewhere. In this contribution, the current status of the available vertebrate fossil specimens from the Late Jurassic of western Cuba is provided, along with a brief description of the fossil materials. Key words: Late Jurassic, Oxfordian, dinosaur, marine reptiles, fish, western Cuba. I NTRODUCTION Since the early 20th century, different groups of collectors have discovered 1 Retired curator, Museo a relatively rich and diverse vertebrate assemblage in the Late Jurassic stra- Nacional de Historia Natural, ta of western Cuba, which has been only partially investigated (Brown and Havana, Cuba.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • An Unusual Occurrence of Amber in Laminated Limestones: the Crato Formation Lagerstätte (Early Cretaceous) of Brazil
    [Palaeontology, Vol. 48, Part 6, 2005, pp. 1399–1408] AN UNUSUAL OCCURRENCE OF AMBER IN LAMINATED LIMESTONES: THE CRATO FORMATION LAGERSTA¨ TTE (EARLY CRETACEOUS) OF BRAZIL by DAVID M. MARTILL*, ROBERT F. LOVERIDGE*, JOSE´ ARTUR FERREIRA GOMES DE ANDRADE and ANDRE HERZOG CARDOSOà *Palaeobiology Research Group, School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL UK; e-mail: [email protected] Centro de Pesquisas Paleontolo´gicas da Chapada do Araripe – DNPM, Crato, Ceara´, Brazil àUniversidade Regional do Cariri – URCA, Crato, Ceara´, Brazil Typescript received 24 May 2004; accepted in revised form 12 November 2004 Abstract: Sub-ellipsoidal to irregular clasts of amber occur to Brachyphyllum sp., cf. Wollemia sp. and cf. Agathis sp. within millimetrically laminated limestones of the Nova Irregular, septate tubular structures may represent micro- Olinda Member, Crato Formation (Early Cretaceous, ?Aptian) inclusions and are considered to be fungal hyphae. of the Araripe Basin in Ceara´, north-east Brazil. The amber is associated with resin-filled cones, foliage and palyno- Key words: Amber, Araucariaceae, Agathis, Brachyphyllum, morphs attributed to the Araucariaceae and may be referred Wollemia, Cretaceous, Crato Formation, Brazil. The Crato Formation Konservat Lagersta¨tte of the Ara- (de Lima 1979). The flora has not been studied in detail, ripe Basin in north-east Brazil represents one of the most but it includes complete plants (roots, stems, leaves and diverse fossil assemblages for the Early Cretaceous. Only fruiting bodies) of a variety of pteridophytes, gymno- the lowest part of the formation, the Nova Olinda Mem- sperms, cycads, gnetaleans and angiosperms (Crane and ber, yields the famous well-preserved fauna and flora, Maisey 1991).
    [Show full text]
  • Figura 33: Consenso Estrito Das Cinco Árvores Mais Parcimoniosas
    98 Figura 33: Consenso estrito das cinco árvores mais parcimoniosas. 99 Figura 34: C onsenso de maioria das cinco árvores mais parcimoniosas. 100 3 DISCUSSÃO 3.1 Nomenclatura 3.1.1 Série orbital A descrição da série orbital da presente dissertação foi baseada, principalmente, na nomenclatura utilizada por Daget (1964), Patterson (1973) e Grande & Bemis (1998). Daget (1964) definiu os ossos da série infraorbital como sendo os ossos que se dispõem ao longo do canal infraorbital (canal que segue da região nasal, passa abaixo das narinas e dos olhos e segue para trás pelo dermopterótico, chegando ao extraescapular e encontrando o canal da linha lateral), à frente do pterótico e anexados à margem da órbita. Expôs que podiam ser designados por número de ordem, da parte mais anterior para a mais posterior (e.g., infraorbital 1, infraorbital 2, infraorbital 3) ou por posição em relação a órbita (e.g., antorbital, suborbital e postorbital). O autor adotou a designação por ordem. Expôs ainda que é comum a denominação do último infraorbial como dermoesfenótico, osso no qual muitas vezes ocorre a anastomose do canal infraorbital com o canal supraorbital (canal que passa no nasal e no frontal). Para os ossos sem canal da série orbital, os quais Daget tratou como puramente membranosos, ele definiu como supraorbitais os ossos anexados ao longo da borda antero-lateral do frontal e como adenasal (= antorbital para outros autores) o osso entre o nasal e o primeiro infraorbital (Daget, 1964: fig. 38). Patterson (1973), da mesma forma que Daget (1964), denominou de infraorbitais os ossos anexados à margem inferior da órbita pelos quais passava o canal infraorbital e de supraorbitais os ossos anexados à margem superior da órbita e ao frontal.
    [Show full text]
  • (Early Cretaceous, Araripe Basin, Northeastern Brazil): Stratigraphic, Palaeoenvironmental and Palaeoecological Implications
    Palaeogeography, Palaeoclimatology, Palaeoecology 218 (2005) 145–160 www.elsevier.com/locate/palaeo Controlled excavations in the Romualdo Member of the Santana Formation (Early Cretaceous, Araripe Basin, northeastern Brazil): stratigraphic, palaeoenvironmental and palaeoecological implications Emmanuel Faraa,*, Antoˆnio A´ .F. Saraivab, Dio´genes de Almeida Camposc, Joa˜o K.R. Moreirab, Daniele de Carvalho Siebrab, Alexander W.A. Kellnerd aLaboratoire de Ge´obiologie, Biochronologie, et Pale´ontologie humaine (UMR 6046 du CNRS), Universite´ de Poitiers, 86022 Poitiers cedex, France bDepartamento de Cieˆncias Fı´sicas e Biologicas, Universidade Regional do Cariri - URCA, Crato, Ceara´, Brazil cDepartamento Nacional de Produc¸a˜o Mineral, Rio de Janeiro, RJ, Brazil dDepartamento de Geologia e Paleontologia, Museu Nacional/UFRJ, Rio de Janeiro, RJ, Brazil Received 23 August 2004; received in revised form 10 December 2004; accepted 17 December 2004 Abstract The Romualdo Member of the Santana Formation (Araripe Basin, northeastern Brazil) is famous for the abundance and the exceptional preservation of the fossils found in its early diagenetic carbonate concretions. However, a vast majority of these Early Cretaceous fossils lack precise geographical and stratigraphic data. The absence of such contextual proxies hinders our understanding of the apparent variations in faunal composition and abundance patterns across the Araripe Basin. We conducted controlled excavations in the Romualdo Member in order to provide a detailed account of its main stratigraphic, sedimentological and palaeontological features near Santana do Cariri, Ceara´ State. We provide the first fine-scale stratigraphic sequence ever established for the Romualdo Member and we distinguish at least seven concretion-bearing horizons. Notably, a 60-cm-thick group of layers (bMatraca˜oQ), located in the middle part of the member, is virtually barren of fossiliferous concretions.
    [Show full text]