Molybdoproteomes and Evolution of Molybdenum Utilization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amino Acid Disorders
471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue. -
Supplementary Materials
Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented. -
Molybdenum Cofactor and Sulfite Oxidase Deficiency Jochen Reiss* Institute of Human Genetics, University Medicine Göttingen, Germany
ics: O om pe ol n b A a c t c e e M s s Reiss, Metabolomics (Los Angel) 2016, 6:3 Metabolomics: Open Access DOI: 10.4172/2153-0769.1000184 ISSN: 2153-0769 Research Article Open Access Molybdenum Cofactor and Sulfite Oxidase Deficiency Jochen Reiss* Institute of Human Genetics, University Medicine Göttingen, Germany Abstract A universal molybdenum-containing cofactor is necessary for the activity of all eukaryotic molybdoenzymes. In humans four such enzymes are known: Sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase and a mitochondrial amidoxime reducing component. Of these, sulfite oxidase is the most important and clinically relevant one. Mutations in the genes MOCS1, MOCS2 or GPHN - all encoding cofactor biosynthesis proteins - lead to molybdenum cofactor deficiency type A, B or C, respectively. All three types plus mutations in the SUOX gene responsible for isolated sulfite oxidase deficiency lead to progressive neurological disease which untreated in most cases leads to death in early childhood. Currently, only for type A of the cofactor deficiency an experimental treatment is available. Introduction combination with SUOX deficiency. Elevated xanthine and lowered uric acid concentrations in the urine are used to differentiate this Isolated sulfite oxidase deficiency (MIM#606887) is an autosomal combined form from the isolated SUOX deficiency. Rarely and only in recessive inherited disease caused by mutations in the sulfite oxidase cases of isolated XOR deficiency xanthine stones have been described (SUOX) gene [1]. Sulfite oxidase is localized in the mitochondrial as a cause of renal failure. Otherwise, isolated XOR deficiency often intermembrane space, where it catalyzes the oxidation of sulfite to goes unnoticed. -
Shared Sulfur Mobilization Routes for Trna Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes
biomolecules Review Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes Silke Leimkühler *, Martin Bühning and Lena Beilschmidt Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; [email protected] (M.B.); [email protected] (L.B.) * Correspondence: [email protected]; Tel.: +49-331-977-5603 Academic Editor: Valérie de Crécy-Lagard Received: 8 December 2016; Accepted: 9 January 2017; Published: 14 January 2017 Abstract: Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm5s2U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron–sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes. Keywords: tRNA; molybdenum cofactor; persulfide; thiocarboxylate; thionucleosides; sulfurtransferase; L-cysteine desulfurase 1. -
Protein-Protein Interactions of Human Mitochondrial Amidoxime-Reducing Component in Mammalian Cells John Thomas
Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Fall 1-1-2016 Protein-Protein Interactions of Human Mitochondrial Amidoxime-Reducing Component in Mammalian Cells John Thomas Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Thomas, J. (2016). Protein-Protein Interactions of Human Mitochondrial Amidoxime-Reducing Component in Mammalian Cells (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/61 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. PROTEIN-PROTEIN INTERACTIONS OF HUMAN MITOCHONDRIAL AMIDOXIME- REDUCING COMPONENT IN MAMMALIAN CELLS A Dissertation Submitted to the Bayer School of Natural and Environmental Sciences Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By John A. Thomas December 2016 Copyright by John A. Thomas October 2016 PROTEIN-PROTEIN INTERACTIONS OF HUMAN MITOCHONDRIAL AMIDOXIME-REDUCING COMPONENT IN MAMMALIAN CELLS By John A. Thomas Approved October 24, 2016 ____________________________________ ____________________________________ Partha Basu, PhD Michael Cascio, PhD Professor of Chemistry and Biochemistry Associate Professor of Chemistry and (Committee Chair) Biochemistry (Committee Member) ____________________________________ -
And Ubiquitin-Like Proteins Provide a Direct Link Between Protein Conjugation and Sulfur Transfer in Archaea
E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea Hugo V. Mirandaa, Nikita Nembharda, Dan Sub, Nathaniel Hepowita, David J. Krausea, Jonathan R. Pritza, Cortlin Phillipsa, Dieter Söllb,c, and Julie A. Maupin-Furlowa,1 aDepartment of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700; and bDepartment of Molecular Biophysics and Biochemistry, and cDepartment of Chemistry, Yale University, New Haven, CT 06511 Edited* by Lonnie O’Neal Ingram, University of Florida, Gainesville, FL, and approved February 10, 2011 (received for review December 8, 2010) Based on our recent work with Haloferax volcanii, ubiquitin-like of tRNA synthetases are required for RNA-protein interactions, (iii) (Ubl) proteins (SAMP1 and SAMP2) are known to be covalently at- ThiS/MoaD proteins serve as sulfur carriers in thiamine and tung- tached to proteins in archaea. Here, we investigated the enzymes sten/molybdenum cofactor (W/MoCo) biosynthesis, and (iv)Atg8 required for the formation of these Ubl-protein conjugates (SAM- and LC3 are conjugated to phospholipids (5–8). Pylation) and whether this system is linked to sulfur transfer. Mar- β-Grasp fold-proteins that function as sulfur carriers and pro- kerless in-frame deletions were generated in H. volcanii target tein modifiers share a common chemistry. Both types of proteins i genes. The mutants were examined for: ( ) the formation of Ubl are adenylated at their C terminus by an ATP-dependent E1/ ii protein conjugates, ( ) growth under various conditions, including MoeB/ThiF-type enzyme (8, 9). This adenylation activates the those requiring the synthesis of the sulfur-containing molybdenum β-grasp fold-protein for either the acceptance of sulfur as a C- cofactor (MoCo), and (iii) the thiolation of tRNA. -
Characterisation, Classification and Conformational Variability Of
Characterisation, Classification and Conformational Variability of Organic Enzyme Cofactors Julia D. Fischer European Bioinformatics Institute Clare Hall College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 11 April 2011 This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the word limit of 60,000 words. Acknowledgements I would like to thank all the members of the Thornton research group for their constant interest in my work, their continuous willingness to answer my academic questions, and for their company during my time at the EBI. This includes Saumya Kumar, Sergio Martinez Cuesta, Matthias Ziehm, Dr. Daniela Wieser, Dr. Xun Li, Dr. Irene Pa- patheodorou, Dr. Pedro Ballester, Dr. Abdullah Kahraman, Dr. Rafael Najmanovich, Dr. Tjaart de Beer, Dr. Syed Asad Rahman, Dr. Nicholas Furnham, Dr. Roman Laskowski and Dr. Gemma Holli- day. Special thanks to Asad for allowing me to use early development versions of his SMSD software and for help and advice with the KEGG API installation, to Roman for knowing where to find all kinds of data, to Dani for help with R scripts, to Nick for letting me use his E.C. tree program, to Tjaart for python advice and especially to Gemma for her constant advice and feedback on my work in all aspects, in particular the chemistry side. Most importantly, I would like to thank Prof. Janet Thornton for giving me the chance to work on this project, for all the time she spent in meetings with me and reading my work, for sharing her seemingly limitless knowledge and enthusiasm about the fascinating world of enzymes, and for being such an experienced and motivational advisor. -
Supplementary Table S1 List of Proteins Identified with LC-MS/MS in the Exudates of Ustilaginoidea Virens Mol
Supplementary Table S1 List of proteins identified with LC-MS/MS in the exudates of Ustilaginoidea virens Mol. weight NO a Protein IDs b Protein names c Score d Cov f MS/MS Peptide sequence g [kDa] e Succinate dehydrogenase [ubiquinone] 1 KDB17818.1 6.282 30.486 4.1 TGPMILDALVR iron-sulfur subunit, mitochondrial 2 KDB18023.1 3-ketoacyl-CoA thiolase, peroxisomal 6.2998 43.626 2.1 ALDLAGISR 3 KDB12646.1 ATP phosphoribosyltransferase 25.709 34.047 17.6 AIDTVVQSTAVLVQSR EIALVMDELSR SSTNTDMVDLIASR VGASDILVLDIHNTR 4 KDB11684.1 Bifunctional purine biosynthetic protein ADE1 22.54 86.534 4.5 GLAHITGGGLIENVPR SLLPVLGEIK TVGESLLTPTR 5 KDB16707.1 Proteasomal ubiquitin receptor ADRM1 12.204 42.367 4.3 GSGSGGAGPDATGGDVR 6 KDB15928.1 Cytochrome b2, mitochondrial 34.9 58.379 9.4 EFDPVHPSDTLR GVQTVEDVLR MLTGADVAQHSDAK SGIEVLAETMPVLR 7 KDB12275.1 Aspartate 1-decarboxylase 11.724 112.62 3.6 GLILTLSEIPEASK TAAIAGLGSGNIIGIPVDNAAR 8 KDB15972.1 Glucosidase 2 subunit beta 7.3902 64.984 3.2 IDPLSPQQLLPASGLAPGR AAGLALGALDDRPLDGR AIPIEVLPLAAPDVLAR AVDDHLLPSYR GGGACLLQEK 9 KDB15004.1 Ribose-5-phosphate isomerase 70.089 32.491 32.6 GPAFHAR KLIAVADSR LIAVADSR MTFFPTGSQSK YVGIGSGSTVVHVVDAIASK 10 KDB18474.1 D-arabinitol dehydrogenase 1 19.425 25.025 19.2 ENPEAQFDQLKK ILEDAIHYVR NLNWVDATLLEPASCACHGLEK 11 KDB18473.1 D-arabinitol dehydrogenase 1 11.481 10.294 36.6 FPLIPGHETVGVIAAVGK VAADNSELCNECFYCR 12 KDB15780.1 Cyanovirin-N homolog 85.42 11.188 31.7 QVINLDER TASNVQLQGSQLTAELATLSGEPR GAATAAHEAYK IELELEK KEEGDSTEKPAEETK LGGELTVDER NATDVAQTDLTPTHPIR 13 KDB14501.1 14-3-3 -
Pyridoxine Pyridoxal Pyridoxamine
Vitamin B6 Pyridoxine Pyridoxal Pyridoxamine Pyridoxine 1 Introduction Dr. Gyorgy identified in 1934 a family of chemically-related compounds including pyridoxamine (PM) & pyridoxal (PL) and pyridoxine (PN). The form most commonly form is pyridoxine HCl. Phosphorylation of 5’position of B6 (PM, PL, & PN), which make PMP, PLP, & PNP. In animal, predominant of PMP & PLP; in plant foods, a glucoside form in which glucose (5’-O- [-glucopyranosyl] pyridoxine) may play as storage form of vitamin. Pyridoxine 2 1 Pyridoxine 3 bacterial alanine racemase Pyridoxine 4 2 Pyridoxine 5 Introduction Vitamin B6 is one of the most versatile enzyme (>100 enzymes) cofactors. Pyridoxal is the predominant biologically active form (PLP). (More inborn error???) Pyridoxal phosphate (PLP) is a cofactor 1. in the metabolism of amino acids and neurotransmitters; 2. in the breakdown of glycogen; 3. bind to steroid hormone receptors and may have a role in regulating steroid hormone action; 4. in the immune system Pyridoxine 6 3 Chemistry Name: pyridoxine, pyridoxal & pyridoxamine, vitamin B6 Structure: 2-methyl-3-hydroxy5-hydroxy methyl pyridines. Chemistry & physical property property: Vitamin B6s are readily soluble in water, stable in acid, unstable in alkali, is fairly easily destroyed with UV light, e.g. sunlight. Stability --- pyridoxine > pyridoxal or pyridoxamine Pyridoxine 7 Bioavailability Complxed form B6 poorly digested B6 can be condensed with peptide lysyl or cysteinyl residues during food processing (e.g. cooking) thus, reduced the utilization of B6. Plants contain complexed forms bioavailability of B6 in animal products tends to be greater than in the plant materials. Pyridoxine 8 4 Metabolism --- Absorption Vitamin B6 is readily absorbed in the small intestine. -
MOCS2 Gene Molybdenum Cofactor Synthesis 2
MOCS2 gene molybdenum cofactor synthesis 2 Normal Function The MOCS2 gene provides instructions for making two different proteins, MOCS2A and MOCS2B, which combine to form an enzyme called molybdopterin synthase. Molybdopterin synthase performs the second of a series of reactions in the formation ( biosynthesis) of a molecule called molybdenum cofactor. Molybdenum cofactor, which contains the element molybdenum, is essential to the function of several enzymes called sulfite oxidase, aldehyde oxidase, xanthine dehydrogenase, and mitochondrial amidoxime reducing component (mARC). These enzymes help break down (metabolize) different substances in the body, some of which are toxic if not metabolized. Health Conditions Related to Genetic Changes Molybdenum cofactor deficiency MOCS2 gene mutations cause a disorder called molybdenum cofactor deficiency. This disorder is characterized by seizures that begin early in life and brain dysfunction that worsens over time (encephalopathy); the condition is usually fatal by early childhood. At least a dozen mutations in the MOCS2 gene have been found to cause a form of the disorder designated type B or complementation group B. The MOCS2 gene mutations involved in molybdenum cofactor deficiency likely eliminate the function of MOCS2A, MOCS2B, or both, although in rare cases that are less severe, some protein function may remain. Without either piece of molybdopterin synthase, molybdenum cofactor biosynthesis is impaired. Loss of the cofactor impedes the function of the metabolic enzymes that rely on it. The resulting loss of enzyme activity leads to buildup of certain chemicals, including sulfite, S-sulfocysteine, xanthine, and hypoxanthine, and low levels of another chemical called uric acid. (Testing for these chemicals can help in the diagnosis of this condition.) Sulfite, which is normally broken down by sulfite oxidase, is toxic, especially to the brain. -
An Introduction to Nutrition and Metabolism, 3Rd Edition
INTRODUCTION TO NUTRITION AND METABOLISM INTRODUCTION TO NUTRITION AND METABOLISM third edition DAVID A BENDER Senior Lecturer in Biochemistry University College London First published 2002 by Taylor & Francis 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Taylor & Francis Inc 29 West 35th Street, New York, NY 10001 Taylor & Francis is an imprint of the Taylor & Francis Group This edition published in the Taylor & Francis e-Library, 2004. © 2002 David A Bender All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data Bender, David A. Introduction to nutrition and metabolism/David A. Bender.–3rd ed. p. cm. Includes bibliographical references and index. 1. Nutrition. 2. Metabolism. I. Title. QP141 .B38 2002 612.3′9–dc21 2001052290 ISBN 0-203-36154-7 Master e-book ISBN ISBN 0-203-37411-8 (Adobe eReader Format) ISBN 0–415–25798–0 (hbk) ISBN 0–415–25799–9 (pbk) Contents Preface viii Additional resources x chapter 1 Why eat? 1 1.1 The need for energy 2 1.2 Metabolic fuels 4 1.3 Hunger and appetite 6 chapter 2Enzymes and metabolic pathways 15 2.1 Chemical reactions: breaking and -
Chemoprotective Role of Molybdo-Flavoenzymes Against
Journal of the Association of Arab Universities for Basic and Applied Sciences (2016) xxx, xxx–xxx University of Bahrain Journal of the Association of Arab Universities for Basic and Applied Sciences www.elsevier.com/locate/jaaubas www.sciencedirect.com ORIGINAL ARTICLE Chemoprotective role of molybdo-flavoenzymes against xenobiotic compounds Khaled S. Al Salhen * Chemistry Department, Sciences College, Omar Al-Mukhtar University, El-beida, Libya Received 18 November 2015; revised 9 February 2016; accepted 23 February 2016 KEYWORDS Abstract Aldehyde oxidase (AO) and xanthine oxidoreductase (XOR) are molybdo-flavoenzymes Aldehyde oxidase; (MFEs) involved in the oxidation of hundreds of many xenobiotic compounds of which are drugs Xanthine oxidoreductase; and environmental pollutants. Mutations in the XOR and molybdenum cofactor sulfurase (MCS) Chemoprotection and Dro- genes result in a deficiency of XOR or dual AO/XOR deficiency respectively. At present despite AO sophila melanogaster and XOR being classed as detoxification enzymes the definitive experimental proof of this has not been assessed in any animal thus far. The aim of this project was to evaluate ry and ma-l strains of Drosophila melanogaster as experimental models for XOR and dual AO/XOR deficiencies respec- tively and to determine if MFEs have a role in the protection against chemicals. In order to test the role of the enzymes in chemoprotection, MFE substrates were administered to Drosophila in media and survivorship was monitored. It was demonstrated that several methylated xanthines were toxic to XOR-deficient strains. In addition a range of AO substrates including N-heterocyclic pol- lutants and drugs were significantly more toxic to ma-l AO-null strains.