Crop Wild Relatives from the Arabian Peninsula N. Kameswara
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design a Database of Italian Vascular Alimurgic Flora (Alimurgita): Preliminary Results
plants Article Design a Database of Italian Vascular Alimurgic Flora (AlimurgITA): Preliminary Results Bruno Paura 1,*, Piera Di Marzio 2 , Giovanni Salerno 3, Elisabetta Brugiapaglia 1 and Annarita Bufano 1 1 Department of Agricultural, Environmental and Food Sciences University of Molise, 86100 Campobasso, Italy; [email protected] (E.B.); [email protected] (A.B.) 2 Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy; [email protected] 3 Graduate Department of Environmental Biology, University “La Sapienza”, 00100 Roma, Italy; [email protected] * Correspondence: [email protected] Abstract: Despite the large number of data published in Italy on WEPs, there is no database providing a complete knowledge framework. Hence the need to design a database of the Italian alimurgic flora: AlimurgITA. Only strictly alimurgic taxa were chosen, excluding casual alien and cultivated ones. The collected data come from an archive of 358 texts (books and scientific articles) from 1918 to date, chosen with appropriate criteria. For each taxon, the part of the plant used, the method of use, the chorotype, the biological form and the regional distribution in Italy were considered. The 1103 taxa of edible flora already entered in the database equal 13.09% of Italian flora. The most widespread family is that of the Asteraceae (20.22%); the most widely used taxa are Cichorium intybus and Borago officinalis. The not homogeneous regional distribution of WEPs (maximum in the south and minimum in the north) has been interpreted. Texts published reached its peak during the 2001–2010 decade. A database for Italian WEPs is important to have a synthesis and to represent the richness and Citation: Paura, B.; Di Marzio, P.; complexity of this knowledge, also in light of its potential for cultural enhancement, as well as its Salerno, G.; Brugiapaglia, E.; Bufano, applications for the agri-food system. -
EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal
SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online) EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal CHEMICAL EVIDENCE SUPPORTING THE ICLUSION OF AMARANTHACEAE AND CHENOPODIACEAE INTO ONE FAMILY AMARANTHACEAE JUSS. (s.l.) Fatima Mubark1 1PhD Research Scholar, Medicinal and Aromatic Plants research Institute, National Council for Research, Khartom, Sudan Ikram Madani Ahmed2 2Associate Professor, Department of Botany, Faculty of Science, University of Khartoum, Sudan Corresponding author: Ikram Madani, Article DOI: https://doi.org/10.36713/epra6001 ABSTRACT In this study, separation of chemical compounds using Thin layer chromatography technique revealed close relationship between the studied members of the newly constructed family Amaranthaceae Juss. (s.l.). 68% of the calculated affinities between the studied species are above 50% which is an indication for close relationships. 90% is the chemical affinities reported between Chenopodium murale and three species of the genus Amaranthus despite of their great morphological diversity. Among the selected members of the chenopodiaceae, Chenopodium murale and Suaeda monoica are the most closely related species to all of the studied Amaranthaceae . 60%-88% and 54%-88% chemical affinities were reported for the two species with the Amaranthaceae members respectively. GC-Mass analysis of methanolic extracts of the studied species identified 20 compounds common between different species. 9,12- Octadecadienoic acid (Z,Z)-,2-hydroxy-1 and 7-Hexadecenal,(Z)- are the major components common between Amaranthus graecizans, Digera muricata Aerva javanica Gomphrena celosioides of the historical family Amaranthaceae and Suaeda monoica Salsola vermiculata Chenopodium murale Cornulaca monocantha of the historical family Chenopodiaceae, Most of the identified compounds are of pharmaceutical importance such as antioxidants, anti-inflammatory , and Anti-cancerous. -
Extensive Cross-Reactivity Between Salsola Kali and Salsola Imbricata Al-Ahmad M1, Rodriguez-Bouza T2, Fakim N2, Pineda F3
ORIGINAL ARTICLE Extensive Cross-reactivity Between Salsola kali and Salsola imbricata Al-Ahmad M1, Rodriguez-Bouza T2, Fakim N2, Pineda F3 1Microbiology Department, Faculty of Medicine, Kuwait University, Kuwait 2Al-Rashed Allergy Center, Ministry of Health, Kuwait 3Diater Laboratories, Madrid, Spain J Investig Allergol Clin Immunol 2018; Vol. 28(1): 29-36 doi: 10.18176/jiaci.0204 Abstract Background: There are no studies on cross-reactivity between Salsola kali and Salsola imbricata pollens. The main goals of the present study were to compare the degree of the cross-reactivity between S kali and S imbricata and to compare the various allergenic components shared by S kali and S imbricata. Methods: Serum samples were obtained from rhinitis patients with or without asthma living in Kuwait and presenting with a positive skin test result to S kali. SDS-PAGE/IgE Western blot and ELISA inhibition assay were performed. Results: The study population comprised 37 patients. The most frequent IgE proteins against S imbricata weighed around 12, 15, 18, 37, and 50+55 kDa. 2D electrophoresis revealed a correlation between S kali and S imbricata at 40, 60, and 75 kDa, with similar isoelectric points. ELISA inhibition revealed an Ag50 value of 1.7 μg/mL for S kali and 500.5 μg/mL for S imbricata when the solid phase was S kali and an Ag50 value of 1.4 μg/mL for S kali and 3.0 μg/mL for S imbricata when the solid phase was S imbricata. Conclusions: ELISA inhibition revealed strong cross-reactivity between S kali and S imbricata. -
Ethnobotanical Study of Medicinal Plants of Namal Valley, Salt Range, Pakistan - 4725
Shah et al.: Ethnobotanical study of medicinal plants of Namal Valley, Salt Range, Pakistan - 4725 - ETHNOBOTANICAL STUDY OF MEDICINAL PLANTS OF NAMAL VALLEY, SALT RANGE, PAKISTAN SHAH, A.1* – POUDEL, R. C.2 – ISHTIAQ, M.3 – SARVAT, R.1 – SHAHZAD, H.1 – ABBAS, A.1 – SHOAIB, S.1 – NUZHAT, R.1 – NOOR, U. D.1 – MAHMOODA, H.1 – SUMMAYA, A.1 – IFRA, A.1 – IHSAN, U.1 1Department of Botany, University of Sargodha, Sargodha-40100, Pakistan 2Nepal Academy of Science and Technology, Pātan-44700, Nepal 3Department of Botany, (Bhimber Campus), Mirpur University of Science & Technology Mirpur-10250 (AJK), Pakistan Corresponding author٭ e-mail: [email protected] ; phone: +92-48-923-0811-15 ext. 609 (Received 5th Jan 2019; accepted 26th Feb 2019) Abstract. This paper presents the first quantitative ethnobotanical knowledge and practices of using native plants for different ailments from Namal Valley of Pakistan. Data was gathered by interviewing 350 informants through semi-structured questionnaires. A total of 217 taxa belonging to 166 genera and 70 families were documented. Fabaceae and Asteraceae families were found to be the most cited families (with 19 and 18 species receptively). Herbs represent the most cited life form (71%) and flower was the most widely used part (34.8%) with decoction as main mode of the utilization (41.5%). On the basis of use values, the most commonly used ethnobotanical taxa in the Valley were reported to be Euphorbia heterophylla (0.7) and Merremia dissecta (0.6). The highest RFC value was noted for Aloe vera (0.14) while highest ICF value was estimated for dental problems category (0.7). -
Towards an Updated Checklist of the Libyan Flora
Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K. -
Characterization of the Wild Trees and Shrubs in the Egyptian Flora
10 Egypt. J. Bot. Vol. 60, No. 1, pp. 147-168 (2020) Egyptian Journal of Botany http://ejbo.journals.ekb.eg/ Characterization of the Wild Trees and Shrubs in the Egyptian Flora Heba Bedair#, Kamal Shaltout, Dalia Ahmed, Ahmed Sharaf El-Din, Ragab El- Fahhar Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt. HE present study aims to study the floristic characteristics of the native trees and shrubs T(with height ≥50cm) in the Egyptian flora. The floristic characteristics include taxonomic diversity, life and sex forms, flowering activity, dispersal types,economic potential, threats and national and global floristic distributions. Nine field visits were conducted to many locations all over Egypt for collecting trees and shrubs. From each location, plant and seed specimens were collected from different habitats. In present study 228 taxa belonged to 126 genera and 45 families were recorded, including 2 endemics (Rosa arabica and Origanum syriacum subsp. sinaicum) and 5 near-endemics. They inhabit 14 habitats (8 natural and 6 anthropogenic). Phanerophytes (120 plants) are the most represented life form, followed by chamaephytes (100 plants). Bisexuals are the most represented. Sarcochores (74 taxa) are the most represented dispersal type, followed by ballochores (40 taxa). April (151 taxa) and March (149 taxa) have the maximum flowering plants. Small geographic range - narrow habitat - non abundant plants are the most represented rarity form (180 plants). Deserts are the most rich regions with trees and shrubs (127 taxa), while Sudano-Zambezian (107 taxa) and Saharo-Arabian (98 taxa) was the most. Medicinal plants (154 taxa) are the most represented good, while salinity tolerance (105 taxa) was the most represented service and over-collecting and over-cutting was the most represented threat. -
Sinapis Arvensis L
A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Sinapis arvensis L. Wild mustard Family: Brassicaceae Range: Throughout the western United States. Habitat: Disturbed places, roadsides, fields, pastures, agronomic crops, orchards, vineyards, ditch banks, dry washes. Origin: Native to Europe. Impacts: Wild mustard can form dense patches that outcompete desirable plants. It is most common in croplands, roadsides and waste areas, as well as urban environments, but can also be a problem in some natural areas. Wild mustard seeds contain alkaloids that can be toxic to livestock if ingested in large quantities. California Invasive Plant Council (Cal-IPC) Inventory: Limited Invasiveness Wild mustard is a familiar roadside weed, erect to 3.5 ft tall with yellow four-petaled flowers. It is a winter annual in many parts of western United States, but a summer annual in cooler climates. The mature plant has basal leaves 2 to 8 inches long, with rounded lobes and the terminal lobe larger than lateral lobes, on long stalks. Upper stem leaves are smaller than the lower leaves and lack petioles. -
Czech University of Life Sciences Prague Faculty of Tropical Agrisciences
CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE FACULTY OF TROPICAL AGRISCIENCES Optimization and Application of in vitro Techniques in Selected Members of the Family Brassicaceae DISSERTATION THESIS Author: Mgr. Alois Hilgert-Delgado Department of Crop Sciences and Agroforestry Co-supervisor: Ing. Miroslav Klíma, Ph.D. Supervisor: Doc. Ing. Eloy Fernández-Cusimamani, Ph.D. In Prague, August, 2016 ACKNOWLEDGEMENT I would like to extent my heart-felt thanks to my supervisor, doc. Dr. Ing. Eloy Fernández Cusimamani, and to my co-supervisor, Dr. Ing. Miroslav Klíma, for their guidance, advice and support throughout my doctorate studies. They have provided me with constant support, encouragement and goodwill, helping and teaching me. Special thanks belong to Dr. Ing. Iva Viehmanová for her help during my studies and laboratory work. I would like to acknowledge her as a great researcher and teacher. Her guidance, advice and collaboration definetely improved the main publication of my work. She, as co-author, dealed with the FCM analyses, and taught me about it and implemented bulked samples in the resynthesis verification.Similarly, I am very grateful to my colleagues from the Faculty of Tropical AgriSciences for their warm comradeship. I would like to thank the Czech University of Life Sciences, for supporting my studies and giving me a new platform to approach science. Also I would like to very thank my close colleagues, Petra Bartošová and Václava Stresková for helpful assistance in laboratory in the Crop Research Institute, Prague and express my sincere gratitude to this place for letting me learn, work and growth while being welcomed during all this time. -
Allium Kyrenium (Amaryllidaceae), a New Species from Northern Cyprus
Phytotaxa 213 (3): 282–290 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.213.3.8 Allium kyrenium (Amaryllidaceae), a new species from Northern Cyprus GIANPIETRO GIUSSO DEL GALDO1, CRISTIAN BRULLO1, SALVATORE BRULLO1* & CRISTINA SALMERI2 1Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Via A. Longo 19, I - 95125 Catania, Italy; e-mail: [email protected] 2Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 38, I - 90123 Palermo, Italy *author for correspondence Abstract Allium kyrenium, a new species of Allium sect. Codonoprasum, is described and illustrated from northern Cyprus. It is a very circumscribed geophyte growing on the calcareous cliffs of the Kyrenia range. This diploid species, with a somatic chromosome number 2n = 16, shows close morphological relationships with A. stamineum, a species complex distributed in the eastern Mediterranean area. Its morphology, karyology, leaf anatomy, ecology, conservation status and taxonomical relationships with the allied species belonging to the A. stamineum group are examined. Key words: Allium sect. Codonoprasum, eastern Mediterranean, karyology, leaf anatomy, taxonomy Introduction In the framework of cytotaxonomic investigations on the genus Allium Linnaeus (1753: 294) in the Mediterranean area (Salmeri 1998, Brullo et. al. 2001a, 2001b, 2003a, 2003b, 2003c, 2004, 2007, 2008, 2009, 2010, 2013, 2014; Bogdanović et al. 2009, 2011a, 2011b), a very peculiar population occurring in Cyprus is examined. It shows close relationships with the Allium stamineum Boissier (1859: 119) group, having a wide eastern Mediterranean distribution area (Brullo et al. -
Erucic Acid Levels in Sinapis Arvensis L. from Different Parts of the World
ERUCIC ACID LEVELS IN SINAPIS ARVENSIS L. FROM DIFFERENT PARTS OF THE WORLD. James Daun1, Véronique Barthet1, and Rachael Scarth2 1Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St., Winnipeg, MB R3C 3G8 Canada, [email protected] 2Department of Plant Science,University of Manitoba,Winnipeg, MB R3T 2N2,Canada, [email protected] ABSTRACT S. arvensis L. is a common weed species in areas of rapeseed production. The seed, although somewhat smaller than B. napus, is difficult to separate and tolerances for admixture as high as 5% have been established. The seed contains about 27% oil and 30% protein and about 160 µM/g glucosinolates, mainly sinalbin. A survey of samples of S. arvensis seed showed the existence two different subtypes based on the content of erucic acid in the oil. A study of 34 single plant accessions from Israel showed a mean erucic acid level of 35.6% with a standard deviation of 3.5%. Samples from Yugoslavia, Germany, Italy, Denmark and Japan showed levels of erucic acid similar to those from Israel. Nine samples collected from different parts of Australia, including Tasmania, had a mean of 36.1% erucic acid and a standard deviation of 3.3%. Twenty-four samples collected from different parts of Western Canada over the period of 1972 to 2001 (including one sample from the northern USA) had a mean erucic acid level of 6.4% with a standard deviation of 2.8%. This suggests that S. arvensis growing in N. America has evolved differently from S. arvensis growing in other parts of the world. -
The Germination Ecology and Composition of the Indigenous Seeds of Cyprus Conglomeratus: a Sand Dune Binder Sheikha Saeed Amer Al Neyadi
United Arab Emirates University Scholarworks@UAEU Theses Electronic Theses and Dissertations 2009 The Germination Ecology and Composition of the Indigenous Seeds of Cyprus conglomeratus: A Sand Dune Binder Sheikha Saeed Amer Al Neyadi Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses Part of the Environmental Sciences Commons Recommended Citation Amer Al Neyadi, Sheikha Saeed, "The Germination Ecology and Composition of the Indigenous Seeds of Cyprus conglomeratus: A Sand Dune Binder" (2009). Theses. 651. https://scholarworks.uaeu.ac.ae/all_theses/651 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact [email protected]. United Arab Emirates University Deanship of Graduate Studies M.Sc. Program in Environmental Sciences The Germination Ecology and Composition of the Seeds of indigenous Cyperus conglomeratus: A sand dune binder By Sheikha Saeed Amer AI neyadi A thesis Submitted to United Arab Emirates University In Partial Fulfillment of the Requirements For the Degree ofM.Sc. in Environmental Sciences Supervisors The principal Co-supervisor supervisor: Co-supervisor Dr. AJi AJ-Marzouqi, Ali Ali EI-Keblawy Dr. Madduri V. Rao, Associate Profes or Associate Professor Associate Professor Department of Department of Department of Chemistry, Chemical and Biology College of Science, Petroleum College of Science UAE University Engineering, UAE UAE University University 2009 Th The i of Shaikha Saeed AI Neyadi for the Degree of Master of cience in En\'ir nmental i appro d . -
SG Vol 10 1990.Pdf
ISSN 0394-9125 S'I'UDIA GEOBOTANICA An international journal Voi. 10 1990 EDITOR$ G. Estabrook - Ann Arbor, Mi L. lljanic - Zagreb E. Mayer - Ljubljana L. Orl6ci - London, On. F. Pedrotti - Camerino S. Pignatti - Roma A. Pirola - Pavia J. Poelt - Graz L. Poldini - Trieste E. Wikus Pignatti - Trieste EDITOR IN CHIEF D. Lausi · Trieste SECRETARY P.L. Nimis - Trieste Dipartimento di Biologia Sezione di Geobotanica ed Ecologia vegetale Università di Trieste STUDIA GEOBOTANICA 10: 3-13, 1990 SPATIAL PA'ITERNS AND DIVERSITY IN A POST-PLOUGHING SUCCESSION IN HIGH PLATEAU GRASSLANDS (PAMPA DE SAN LUIS, CORDOBA, ARGENTINA)* S. DiAZ, A. ACOSTA & M. CABIDO Keywords: Diversity, Grasslands, Ploughing, Spatial organization, Succession Abstract: Spatial arrangement and diversity along a post-ploughing succession are analyzed in a plateau at 1800 - 1900 m altitude in Centra! Argentina. Four successional stages were simultaneously studied: I (1 year of abandonment after ploughing), II (3-5 years), III (25 years) and IV (40 years). Detrended Correspondence Analysis and diversity analysis, comprising species diversity, spatial diversity and mean spatial niche width, were applied. It is concluded that (i) Spatial organization of grassland changes with succession: during early stages vegetation distribution follows a topographical gradient from upper to lower positions on slopes, whereas mosaic patterns prevail in late successional stages. (ii) As succession advances, species diversity increases, making us reject the hypothesis that species diversity decreases with succession as a result of the dominance of the grass Deyeuxia hieronymi. This process is associated with a progressive reduction of mean spatial niche width. Introduction The aim of this investigation was to describe the variability in spatial distribution of grasslands along a post-ploughing succession in the mountains of Central Argentina.