– Typeset by Foiltex – 1 21St-Century Directions in De Broglie-Bohm Theory and Beyond
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Schrödinger Equation)
Lecture 37 (Schrödinger Equation) Physics 2310-01 Spring 2020 Douglas Fields Reduced Mass • OK, so the Bohr model of the atom gives energy levels: • But, this has one problem – it was developed assuming the acceleration of the electron was given as an object revolving around a fixed point. • In fact, the proton is also free to move. • The acceleration of the electron must then take this into account. • Since we know from Newton’s third law that: • If we want to relate the real acceleration of the electron to the force on the electron, we have to take into account the motion of the proton too. Reduced Mass • So, the relative acceleration of the electron to the proton is just: • Then, the force relation becomes: • And the energy levels become: Reduced Mass • The reduced mass is close to the electron mass, but the 0.0054% difference is measurable in hydrogen and important in the energy levels of muonium (a hydrogen atom with a muon instead of an electron) since the muon mass is 200 times heavier than the electron. • Or, in general: Hydrogen-like atoms • For single electron atoms with more than one proton in the nucleus, we can use the Bohr energy levels with a minor change: e4 → Z2e4. • For instance, for He+ , Uncertainty Revisited • Let’s go back to the wave function for a travelling plane wave: • Notice that we derived an uncertainty relationship between k and x that ended being an uncertainty relation between p and x (since p=ћk): Uncertainty Revisited • Well it turns out that the same relation holds for ω and t, and therefore for E and t: • We see this playing an important role in the lifetime of excited states. -
Quantum Biology: an Update and Perspective
quantum reports Review Quantum Biology: An Update and Perspective Youngchan Kim 1,2,3 , Federico Bertagna 1,4, Edeline M. D’Souza 1,2, Derren J. Heyes 5 , Linus O. Johannissen 5 , Eveliny T. Nery 1,2 , Antonio Pantelias 1,2 , Alejandro Sanchez-Pedreño Jimenez 1,2 , Louie Slocombe 1,6 , Michael G. Spencer 1,3 , Jim Al-Khalili 1,6 , Gregory S. Engel 7 , Sam Hay 5 , Suzanne M. Hingley-Wilson 2, Kamalan Jeevaratnam 4, Alex R. Jones 8 , Daniel R. Kattnig 9 , Rebecca Lewis 4 , Marco Sacchi 10 , Nigel S. Scrutton 5 , S. Ravi P. Silva 3 and Johnjoe McFadden 1,2,* 1 Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK; [email protected] (Y.K.); [email protected] (F.B.); e.d’[email protected] (E.M.D.); [email protected] (E.T.N.); [email protected] (A.P.); [email protected] (A.S.-P.J.); [email protected] (L.S.); [email protected] (M.G.S.); [email protected] (J.A.-K.) 2 Department of Microbial and Cellular Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] 3 Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK; [email protected] 4 School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] (K.J.); [email protected] (R.L.) 5 Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, -
Arxiv:1911.07386V2 [Quant-Ph] 25 Nov 2019
Ideas Abandoned en Route to QBism Blake C. Stacey1 1Physics Department, University of Massachusetts Boston (Dated: November 26, 2019) The interpretation of quantum mechanics known as QBism developed out of efforts to understand the probabilities arising in quantum physics as Bayesian in character. But this development was neither easy nor without casualties. Many ideas voiced, and even committed to print, during earlier stages of Quantum Bayesianism turn out to be quite fallacious when seen from the vantage point of QBism. If the profession of science history needed a motto, a good candidate would be, “I think you’ll find it’s a bit more complicated than that.” This essay explores a particular application of that catechism, in the generally inconclusive and dubiously reputable area known as quantum foundations. QBism is a research program that can briefly be defined as an interpretation of quantum mechanics in which the ideas of agent and ex- perience are fundamental. A “quantum measurement” is an act that an agent performs on the external world. A “quantum state” is an agent’s encoding of her own personal expectations for what she might experience as a consequence of her actions. Moreover, each measurement outcome is a personal event, an expe- rience specific to the agent who incites it. Subjective judgments thus comprise much of the quantum machinery, but the formalism of the theory establishes the standard to which agents should strive to hold their expectations, and that standard for the relations among beliefs is as objective as any other physical theory [1]. The first use of the term QBism itself in the literature was by Fuchs and Schack in June 2009 [2]. -
Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function
Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function Shuming Wen ( [email protected] ) Faculty of Land and Resources Engineering, Kunming University of Science and Technology. Research Article Keywords: probability origin, wave-function collapse, uncertainty principle, quantum tunnelling, double-slit and single-slit experiments Posted Date: November 16th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-95171/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function Shuming Wen Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093 Abstract The theoretical calculation of quantum mechanics has been accurately verified by experiments, but Copenhagen interpretation with probability is still controversial. To find the source of the probability, we revised the definition of the energy quantum and reconstructed the wave function of the physical particle. Here, we found that the energy quantum ê is 6.62606896 ×10-34J instead of hν as proposed by Planck. Additionally, the value of the quality quantum ô is 7.372496 × 10-51 kg. This discontinuity of energy leads to a periodic non-uniform spatial distribution of the particles that transmit energy. A quantum objective system (QOS) consists of many physical particles whose wave function is the superposition of the wave functions of all physical particles. The probability of quantum mechanics originates from the distribution rate of the particles in the QOS per unit volume at time t and near position r. Based on the revision of the energy quantum assumption and the origin of the probability, we proposed new certainty and uncertainty relationships, explained the physical mechanism of wave-function collapse and the quantum tunnelling effect, derived the quantum theoretical expression of double-slit and single-slit experiments. -
Arxiv:0908.1787V1 [Quant-Ph] 13 Aug 2009 Ematical Underpinning
August 13, 2009 18:17 Contemporary Physics QuantumPicturalismFinal Contemporary Physics Vol. 00, No. 00, February 2009, 1{32 RESEARCH ARTICLE Quantum picturalism Bob Coecke∗ Oxford University Computing Laboratory, Wolfson Building, Parks Road, OX1 3QD Oxford, UK (Received 01 02 2009; final version received XX YY ZZZZ) Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the `no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of `quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is `low-level'. In this review we present steps towards a diagrammatic `high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports `automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. -
Dynamical Relaxation to Quantum Equilibrium
Dynamical relaxation to quantum equilibrium Or, an account of Mike's attempt to write an entirely new computer code that doesn't do quantum Monte Carlo for the first time in years. ESDG, 10th February 2010 Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html [email protected] { Typeset by FoilTEX { 1 What I talked about a month ago (`Exchange, antisymmetry and Pauli repulsion', ESDG Jan 13th 2010) I showed that (1) the assumption that fermions are point particles with a continuous objective existence, and (2) the equations of non-relativistic QM, allow us to deduce: • ..that a mathematically well-defined ‘fifth force', non-local in character, appears to act on the particles and causes their trajectories to differ from the classical ones. • ..that this force appears to have its origin in an objectively-existing `wave field’ mathematically represented by the usual QM wave function. • ..that indistinguishability arguments are invalid under these assumptions; rather antisymmetrization implies the introduction of forces between particles. • ..the nature of spin. • ..that the action of the force prevents two fermions from coming into close proximity when `their spins are the same', and that in general, this mechanism prevents fermions from occupying the same quantum state. This is a readily understandable causal explanation for the Exclusion principle and for its otherwise inexplicable consequences such as `degeneracy pressure' in a white dwarf star. Furthermore, if assume antisymmetry of wave field not fundamental but develops naturally over the course of time, then can see character of reason for fermionic wave functions having symmetry behaviour they do. -
Uniting the Wave and the Particle in Quantum Mechanics
Uniting the wave and the particle in quantum mechanics Peter Holland1 (final version published in Quantum Stud.: Math. Found., 5th October 2019) Abstract We present a unified field theory of wave and particle in quantum mechanics. This emerges from an investigation of three weaknesses in the de Broglie-Bohm theory: its reliance on the quantum probability formula to justify the particle guidance equation; its insouciance regarding the absence of reciprocal action of the particle on the guiding wavefunction; and its lack of a unified model to represent its inseparable components. Following the author’s previous work, these problems are examined within an analytical framework by requiring that the wave-particle composite exhibits no observable differences with a quantum system. This scheme is implemented by appealing to symmetries (global gauge and spacetime translations) and imposing equality of the corresponding conserved Noether densities (matter, energy and momentum) with their Schrödinger counterparts. In conjunction with the condition of time reversal covariance this implies the de Broglie-Bohm law for the particle where the quantum potential mediates the wave-particle interaction (we also show how the time reversal assumption may be replaced by a statistical condition). The method clarifies the nature of the composite’s mass, and its energy and momentum conservation laws. Our principal result is the unification of the Schrödinger equation and the de Broglie-Bohm law in a single inhomogeneous equation whose solution amalgamates the wavefunction and a singular soliton model of the particle in a unified spacetime field. The wavefunction suffers no reaction from the particle since it is the homogeneous part of the unified field to whose source the particle contributes via the quantum potential. -
Infinite Potential Show Title: Generic Show Episode #101 Date: 3/17/20 Transcribed by Daily Transcription Tre
INFINITE POTENTIAL SHOW TITLE: GENERIC SHOW EPISODE #101 DATE: 3/17/20 TRANSCRIBED BY DAILY TRANSCRIPTION_TRE 00:00:28 DAVID BOHM People talked about the world, and I said, "Where does it end?" and, uh, uh... MALE And what answer did they give? DAVID BOHM Well, they-I never, uh, I don't remember. It wasn't terribly convincing I suppose. [LAUGH] DR. DAVID C. It was, uh, a night, and we were SCHRUM walking under the stars, black sky, and he looked up to the stars, and he said, "Ordinarily, when we look to the sky and look to the stars, we think of stars as objects far out and vast spaces between them." He said, "There's another way we can look at it. We can look at the vacuum at the emptiness instead as a planum, as infinitely full rather than infinitely empty. And that the material objects themselves are like little bubbles, little vacancies in this vast sea." 00:01:25 DR. DAVID C. So David Bohm, in a sense, was SCHRUM using that view to have me look at the stars and to have a sense of the night sky all of a sudden in a different way, as one whole living organism and these little bits that we call matter as sort to just little holes in it. DR. DAVID C. He often mentioned just one other SCHRUM aspect of this, that this planum, in a cubic centimeter of the planum, there's more, uh, energy matter than in the entire visible Page 2 of 62 universe. -
Pilot-Wave Theory, Bohmian Metaphysics, and the Foundations of Quantum Mechanics Lecture 8 Bohmian Metaphysics: the Implicate Order and Other Arcana
Pilot-wave theory, Bohmian metaphysics, and the foundations of quantum mechanics Lecture 8 Bohmian metaphysics: the implicate order and other arcana Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html [email protected] – Typeset by FoilTEX – 1 Acknowledgements The material in this lecture is largely derived from books and articles by David Bohm, Basil Hiley, Paavo Pylkk¨annen, F. David Peat, Marcello Guarini, Jack Sarfatti, Lee Nichol, Andrew Whitaker, and Constantine Pagonis. The text of an interview between Simeon Alev and Peat is extensively quoted. Other sources used and many other interesting papers are listed on the course web page: www.tcm.phy.cam.ac.uk/∼mdt26/pilot waves.html MDT – Typeset by FoilTEX – 2 More philosophical preliminaries Positivism: Observed phenomena are all that require discussion or scientific analysis; consideration of other questions, such as what the underlying mechanism may be, or what ‘real entities’ produce the phenomena, is dismissed as meaningless. Truth begins in sense experience, but does not end there. Positivism fails to prove that there are not abstract ideas, laws, and principles, beyond particular observable facts and relationships and necessary principles, or that we cannot know them. Nor does it prove that material and corporeal things constitute the whole order of existing beings, and that our knowledge is limited to them. Positivism ignores all humanly significant and interesting problems, citing its refusal to engage in reflection; it gives to a particular methodology an absolutist status and can do this only because it has partly forgotten, partly repressed its knowledge of the roots of this methodology in human concerns. -
1 the Principle of Wave–Particle Duality: an Overview
3 1 The Principle of Wave–Particle Duality: An Overview 1.1 Introduction In the year 1900, physics entered a period of deep crisis as a number of peculiar phenomena, for which no classical explanation was possible, began to appear one after the other, starting with the famous problem of blackbody radiation. By 1923, when the “dust had settled,” it became apparent that these peculiarities had a common explanation. They revealed a novel fundamental principle of nature that wascompletelyatoddswiththeframeworkofclassicalphysics:thecelebrated principle of wave–particle duality, which can be phrased as follows. The principle of wave–particle duality: All physical entities have a dual character; they are waves and particles at the same time. Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular character, while everything we thought of as strictly a particle behaves also as a wave. The relations between these two classically irreconcilable points of view—particle versus wave—are , h, E = hf p = (1.1) or, equivalently, E h f = ,= . (1.2) h p In expressions (1.1) we start off with what we traditionally considered to be solely a wave—an electromagnetic (EM) wave, for example—and we associate its wave characteristics f and (frequency and wavelength) with the corpuscular charac- teristics E and p (energy and momentum) of the corresponding particle. Conversely, in expressions (1.2), we begin with what we once regarded as purely a particle—say, an electron—and we associate its corpuscular characteristics E and p with the wave characteristics f and of the corresponding wave. -
Non-Locality in the Stochastic Interpretation of the Quantum Theory Annales De L’I
ANNALES DE L’I. H. P., SECTION A D. BOHM Non-locality in the stochastic interpretation of the quantum theory Annales de l’I. H. P., section A, tome 49, no 3 (1988), p. 287-296 <http://www.numdam.org/item?id=AIHPA_1988__49_3_287_0> © Gauthier-Villars, 1988, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincare, Vol. 49, n° 3, 1988, 287 Physique theorique Non-Locality in the Stochastic Interpretation of the Quantum Theory D. BOHM Department of Physics, Birkbeck College (London University), Malet Street, London WC1E 7HX ABSTRACT. - This article reviews the stochastic interpretation of the quantum theory and shows in detail how it implies non-locality. RESUME . - Cet article presente une revue de 1’interpretation stochas- tique de la theorie quantique et montre en detail en quoi elle implique une non-localite. 1. INTRODUCTION It gives me great pleasure on the occasion of Jean-Pierre Vigier’s retire- ment to recall our long period of fruitful association and to say something about the stochastic interpretation of the quantum theory, in which we worked together in earlier days. Because of requirements of space, however, this article will be a condensation of my talk (*) which was in fact based on a much more extended article by Basil Hiley and me [1 ]. -
Path Integral Quantum Monte Carlo Study of Coupling and Proximity Effects in Superfluid Helium-4
Path Integral Quantum Monte Carlo Study of Coupling and Proximity Effects in Superfluid Helium-4 A Thesis Presented by Max T. Graves to The Faculty of the Graduate College of The University of Vermont In Partial Fullfillment of the Requirements for the Degree of Master of Science Specializing in Materials Science October, 2014 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Master of Science in Materials Science. Thesis Examination Committee: Advisor Adrian Del Maestro, Ph.D. Valeri Kotov, Ph.D. Frederic Sansoz, Ph.D. Chairperson Chris Danforth, Ph.D. Dean, Graduate College Cynthia J. Forehand, Ph.D. Date: August 29, 2014 Abstract When bulk helium-4 is cooled below T = 2.18 K, it undergoes a phase transition to a su- perfluid, characterized by a complex wave function with a macroscopic phase and exhibits inviscid, quantized flow. The macroscopic phase coherence can be probed in a container filled with helium-4, by reducing one or more of its dimensions until they are smaller than the coherence length, the spatial distance over which order propagates. As this dimensional reduction occurs, enhanced thermal and quantum fluctuations push the transition to the su- perfluid state to lower temperatures. However, this trend can be countered via the proximity effect, where a bulk 3-dimensional (3d) superfluid is coupled to a low (2d) dimensional su- perfluid via a weak link producing superfluid correlations in the film at temperatures above the Kosterlitz-Thouless temperature. Recent experiments probing the coupling between 3d and 2d superfluid helium-4 have uncovered an anomalously large proximity effect, leading to an enhanced superfluid density that cannot be explained using the correlation length alone.