Rearrangements and Reactive Intermediates [email protected] 1 Rearrangements and Reactive Intermediates Hilary Term 2018

Total Page:16

File Type:pdf, Size:1020Kb

Rearrangements and Reactive Intermediates Jonathan.Burton@Chem.Ox.Ac.Uk 1 Rearrangements and Reactive Intermediates Hilary Term 2018 Rearrangements and Reactive Intermediates [email protected] 1 Rearrangements and Reactive Intermediates Hilary Term 2018 1A Organic Chemistry Handout 1 Me Me 1 7 2 7 2 3 H 3 1 Me HO 6 5 4 Me 4 6 5 Me 8 8 isoborneol camphene http://burton.chem.ox.ac.uk/teaching.html ◼ Polar Rearrangements, Oxford Chemistry Primer no. 5; L. M. Harwood ◼ Organic Chemistry J. Clayden, N. Greeves, S. Warren – Chapters 36-41 ◼ Reactive Intermediates, Oxford Chemistry Primer no. 8; C. J. Moody, G. H. Whitham ◼ Mechanism and Theory in Organic Chemistry, T. H. Lowry, K. S. Richardson ◼ Advanced Organic Chemistry, F. A. Carey, R. A. Sundberg ◼ Modern Physical Organic Chemistry; E. Anslyn, D. Docherty Rearrangements and Reactive Intermediates 2 Synopsis ◼ Carbocations and carbanions NMR spectroscopy and X-ray structures of carbocations; aggregation and pyramidal inversion of carbanions. Reactivity, including SE1, redox, hydride elimination and rearrangements: Wagner–Meerwein, pinacol, semi-pinacol. ◼ Rearrangement of anions and carbocations Orbital theory; Is 3c-2e structure TS or HEI? Stepwise versus concerted rearrangements; non-classical carbocations (carbonium ions), transannular hydride shifts. Carbanions: Favorskii, Ramberg-Bäcklund, Stevens and Wittig rearrangements. ◼ Carbenes Structural features that influence stability. Methods of making them; carbenes versus carbenoids. General classification of the types of reaction that these species undergo. Rearrangements: Wolff, cyclopropanation, C-H insertion. ◼ Rearrangements to electron-deficient nitrogen and oxygen Structure of nitrenes; structural features that influence stability. Methods of making them. Types of reaction: aziridination, C–H insertion. Nitrene versus non-nitrene mechanisms. Rearrangements to electron-deficient nitrogen (Beckmann, Neber, Hoffmann, Curtius, Schmidt, Lossen). Baeyer–Villiger rearrangement. ◼ Introduction to radicals Structure; stability. General types of reaction involving radicals: homolysis, recombination, redox, addition, β-scission, substitution, disproportionation. ◼ Problem class relating to lectures 1–4. ◼ Case studies Elucidating mechanisms of rearrangements. Evidence for currently accepted mechanisms for the Baeyer– Villiger, Beckmann and Favorskii rearrangements. ◼ Problem class relating to lectures 5 and 7. Rearrangements and Reactive Intermediates 3 Types of High Energy Intermediates ◼ Electron Rich Anions reactive towards Carbanion (8 electrons) a) electrophiles ◼ Electron Deficient Cations reactive towards b) acids Two classes of carbocations a) nucleophiles c) oxidising agents b) bases R R • Carbenium ion (6 electrons) c) reducing agents R R • R R R R R R R R ◼ Electron Rich Anions Radical Anion Carbonium ion (8 electrons) H H H H H H e.g. CH5 • Radical cation H H H H H H H H H H H H • ◼ Neutral species • + Radical (7 electrons) H H H H reactive towards H H R a) electrophiles or nucleophiles • b) other high energy agents ◼ Neutral species R R c) oxidising or reducing agents Carbenes (6 electrons) R • R ◼ Neutral species ◼ Neutral species R R • R • • ketenes arynes R R R R R R singlet triplet • O R Rearrangements and Reactive Intermediates 4 Stuctures of Carbocations ◼ Crystal structure of an adamantyl carbocation 110° 1.44 Å 118° 99° 1.53 Å ° δC 38 ppm 1.62 Å 111 δ 29 ppm Me Me C 1.52 Å F5SbFSbF5 adamantane Me ◼ C-C σ to empty p Me Me Me Me Me Me Me Me Me δ 294 ppm F C C-C sp3-sp3 1.54 Å δC 71 ppm 3 2 C-C sp -sp 1.50 Å 2SbF5 δC 90 ppm 2 2 C-C sp -sp 1.46 Å Me Me SO2 Me Me δC 30 ppm C=C 1.34 Å Me Me δC 49 ppm ◼ Bond lengths and bond angles provide evidence of hyperconjugation (T. Laube, Angew. Chem. Int. Ed. 1986, 25, 349). Rearrangements and Reactive Intermediates 5 ◼ Crystal structure of a t-butyl carbocation H H H C-C sp3-sp3 1.54 Å 1.44 Å C-C sp3-sp2 1.50 Å H H C-C sp2-sp2 1.46 Å C=C 1.34 Å H H H H 120° F5SbFSbF5 δC = 335 ppm O F CH3 2SbF5 2SbF5 δC = 94 ppm H3C F H C CH3 3 SO2 H3C CH3 SO2 H3C CH3 δ = 28 ppm CH3 δC = 171 ppm C δ = 47 ppm C δH = 4.35 ppm (adamantyl acid fluoride) δC = 320 ppm F H δ = 13.5 ppm SbF5 H H3C CH3 SO2 H3C CH3 δH = 5 ppm δC = 51.5 ppm ◼ Bond lengths provide evidence of hyperconjugation (T. Laube, J. Am. Chem. Soc. 1993, 115, 7240). Rearrangements and Reactive Intermediates 6 ◼ Hyperconjugation donation of C-H σ-bond (or C-C σ- bond) electrons into empty p orbital empty p-orbital H filled σ C-H orbital CH3 H CH H 3 energy of the bonding electrons reduced system stabilised ◼ greater number of C-H (or C-C) σ-bonds the greater the extent of hyperconjugation and the greater stabilisation tertiary secondary primary ◼ carbenium ion stability therefore goes in the order: R R R R R > > R ◼ conjugation with alkenes, arenes and lone pairs, also stabilises carbenium ions ◼ most carbocations are fleeting reaction intermediates – the triphenylmethyl (trityl) cation persists - crystal structure of trityl cation demonstrates all the phenyl groups are twisted out of plane ◼ Ph3C BF4 is a commercially available crystalline solid HSO4 Ph H2SO4 Ph OH Ph CH2Cl2 δC = 212 ppm B(CN)4 Rearrangements and Reactive Intermediates 7 Structures of Carbanions ◼ generally aggregated in the solid state and in solution ◼ methyllithium is a tetramer (MeLi)4 with CH3 groups sitting above each face of a Li4 tetrahedron — overall a distorted cube ◼ tert-butyllitium is also tetrameric in the solid state (X-ray crystal structures below) Li C C Li C Li Li C t-butyllithium methyllithium idealised arrangement of (t-BuLi)4 (MeLi)4 lithium and carbon atoms (H-atoms removed for clarity) ◼ in coordinating solvents e.g. THF, Et2O most organolithiums become less aggregated and hence more reactive Rearrangements and Reactive Intermediates 8 ◼ stability of carbanions is related to the pKa of their conjugate acids H H H H H H increasing pKa of conjugate acid, 16 24 41 43 44 increasing reactivity, decreasing stability H H H H H H aromatic sp-hybridised conjugated sp2-hybridised sp2-hybridised CH3 CH3CH2 (CH3)2CH (CH3)3C H increasing pKa of conjugate acid, 46 48 50 51 53 increasing reactivity, decreasing stability H H H H Me H Me Me H H Me Me Me sp3-hybridised sp3-hybridised sp3-hybridised sp2-hybridised sp3-hybridised electron donating electron donating electron donating alkyl group alkyl groups alkyl groups Rearrangements and Reactive Intermediates 9 3 ◼ pyramidal inversion is generally fast for sp hybridised carbanions (they are isoelectronic with NH3) and hence chiral carbanions generally undergo rapid racemisation. ‡ fast R'' R'' R R R'' R R' R' R' ◼ vinyl anions and cyclopropyl anions are the exceptions and are generally considered configurationally stable ◼ lithium halogen exchange with alkenyl iodides and bromides is a stereospecific process tBu Li Br Ph Ph R Br Li Ph R Br tBuLi R Br Li R Ph Ph Ph 2 Br Li CO2H ◼ sp hybridisation at transition state for Me BuLi Me CO2 Me pyramidal inversion ◼ ideal 120 ° angles only ca. 60° for cyclopropane Ph Ph Ph Ph Ph Ph ◼ transition state highly strained (S) ‡ retention therefore slow rate of inversion R Rearrangements and Reactive Intermediates 10 Reactions of Carbocations and Carbanions ◼ Generic reaction map of carbocations and carbanions hydride loss reaction with nucleophile reduction E carbocation deprotonation Nu rearrangement X R R H H R R R + 2e - H Nu - H electrophilic ionisation SET substitution + e X - X + e - X X R R R R R • SN1 or E1 - e - e SE1 single electron - H transfer (SET) E - H R E R R R reaction with R electrophile electrophile carbanion deprotonation hydride loss reaction addition Rearrangements and Reactive Intermediates 11 ⊕ ◼ most common reaction of carbanions is reaction with electrophiles (e.g. RLi or RMgBr plus E ) which is amply covered elsewhere ◼ some other reactions are shown below SE1 – Subsitution Electrophilic Unimolecular - formally related to a carbanion as SN1 is to a carbocation ◼ generic mechanism X - X E E R R R SE1 ◼ examples O O O O OH Br Br H Br Ph Ph Ph Ph R R R - N2 ROH N H R N R R O O HO O O P OH, H O Ph P P P H Ph 2 HO Ph + Ph Ph Ph O Ph + heat Ph Rearrangements and Reactive Intermediates 12 ◼ β-hydride elimination from carbanions common for transition metals ◼ reverse reaction is hydrometallation – well known from hydroboration chemistry H H H PdX + HPdX BR2 BR2 ◼ not a common reaction for Grignard reagents or organolithiums; however, β-hydride elimination is a decomposition pathway for organolithiums and tert-butyllithium can act as a source of hydride Li Me Me H + LiH Me Me ◼ redox reactions – Single Electron Transfer - SET MgBr Cl H + Cl + H • H H dimerisation SET of Ph• Cl Cl • Cl SET + • Cl • Rearrangements and Reactive Intermediates 13 ◼ rearrangement of carbocations ◼ the neopentyl system Me Me Me Me Me Me AgNO3, water Me HO + not Me Me I Me Me Me OH Ag H2O then - H - H Me 1,2- shift Me Me ◼ the 1,2 shift is a Wagner- Me Meerwein rearrangement Me Me ◼ as an aside, remember that neopentyl systems, although primary, are unreactive under SN2 conditions as the nucleophile is severely hindered from attacking the necessary carbon atom Me Me ‡ Me Me Me Me Me Me (-) (-) Me Nu Nu H LG Nu LG R'' LG H R' H H ◼ staggered conformation requires nucleophile to approach passed one of the methyl groups Rearrangements and Reactive Intermediates 14 ◼ Wagner-Meerwein rearrangements exemplified Me 1 Me 7 7 2 7 2 1 - H 2 3 H 3 Me 3 1 Me HO 6 5 ◼ overall red bond is broken and 4 4 6 Me Me 5 4 6 5 Me 8 blue bond is formed isoborneol camphene 8 Me 8 H ◼ in general alkyl shifts occur to rotate yield a more stable carbocation Me 1 Me Me Me Me 1 Me Me 1 1 Me 2 2 Me 7 2 7 8 7 2 5 3 3 5 3 6 6 6 best orbital overlap is also H2O 6 ◼ 5 4 5 4 4 rotate 7 Me Me 8 Me 3 important in determining which 8 4 8 group migrates ◼ secondary ◼ tertiary carbocation carbocation Me poor orbital overlap 1 Me Me 1 Me Me 1 Me migration Me Me for migration 2 2 2 7 7 3 3 3 would lead to 1 6 6 7 5 4 5 4 6 4-membered 5 Me Me Me 5 2 8 8 4 ring 8 best orbital overlap H Me 8 for migration (ca.
Recommended publications
  • DFT-Based Reaction Pathway Analysis of Hexadiene Cyclization Via Carbenium Ion Intermediates: Mechanistic Study of Light Alkane Aromatization Catalysis
    J. Phys. Chem. B 2004, 108, 971-980 971 DFT-Based Reaction Pathway Analysis of Hexadiene Cyclization via Carbenium Ion Intermediates: Mechanistic Study of Light Alkane Aromatization Catalysis Yogesh V. Joshi, Aditya Bhan, and Kendall T. Thomson* School of Chemical Engineering, Purdue UniVersity, West Lafayette, Indiana 47907 ReceiVed: July 28, 2003; In Final Form: NoVember 4, 2003 We conducted density functional theory calculations to identify the complete cyclization mechanism (ring formation and ring expansion) for protonated hexadiene in the gas-phase as a precursory means of studying aromatization of light alkanes in acidic zeolite catalysts. We identify the rate-determining step to consist of ring expansion from a methylcyclopenta carbenium precursor to a stable cyclohexa carbenium intermediate, exhibiting an activation barrier of 9.6 kcal/mol and proceeding through a bicyclic intermediate starting from a secondary cyclopentyl carbocation. This pathway for ring closure was preferred over tertiary precursor expansion and direct cyclization to a cyclohexyl carbocation. Expecting carbocation intermediates to be represented by alkoxide species near Brønsted acid sites, we calculated the relative stability of primary, secondary, and tertiary alkoxide analogues to cyclopentyl carbocation intermediates involved in ring expansion and notice a reversal of stability relative to gas-phase carbocation stabilities (i.e., primary > secondary > tertiary stability). However, on the basis of the notion that transition state stability depends heavily
    [Show full text]
  • Supporting Information
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021 Supporting Information Synthesis, Oligomerization and Catalytic Studies of a Redox- Active Ni4-Cubane: A detailed Mechanistic Investigation Saroj Kumar Kushvaha, a† Maria Francis, b† Jayasree Kumar, a Ekta Nag, b Prathap Ravichandran, a b a Sudipta Roy* and Kartik Chandra Mondal* aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. bDepartment of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507, India. † Both authors contributed equally. Table of Contents 1. General remarks 2. Syntheses of complexes 1-3 3. Detail characterization of complexes 1-3 4. Computational details 5. X-ray single crystal diffraction of complexes 1-3. 6. Details of catalytic activities of complex 3 6.1. General procedures for the syntheses of aromatic heterocycles (6) and various diazoesters (7) 6.2. Optimization of reaction condition for cyclopropanation of aromatic heterocycles (6) 6.3. General synthetic procedure and characterization data for cyclopropanated aromatic heterocycles (8) 6.4. Determination of relative stereochemistry of 8 7. 1H and 13C NMR spectra of compounds 8a-j 8. Mechanistic investigations and mass spectrometric analysis 9. References S1 1. General remarks All catalytic reactions were performed under Argon atmosphere. The progress of all the catalytic reactions were monitored by thin layer chromatography (TLC, Merck silica gel 60 F 254) upon visualization of the TLC plate under UV light (250 nm). Different charring reagents, such as phosphomolybdic acid/ethanol, ninhydrin/acetic acid solution and iodine were used to visualize various starting materials and products spots on TLC plates.
    [Show full text]
  • Gold-Catalyzed Ethylene Cyclopropanation
    Gold-catalyzed ethylene cyclopropanation Silvia G. Rull, Andrea Olmos* and Pedro J. Pérez* Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2019, 15, 67–71. Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, doi:10.3762/bjoc.15.7 CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Received: 17 October 2018 Carmen 21007 Huelva, Spain Accepted: 11 December 2018 Published: 07 January 2019 Email: Andrea Olmos* - [email protected]; Pedro J. Pérez* - This article is part of the thematic issue "Cyclopropanes and [email protected] cyclopropenes: synthesis and applications". * Corresponding author Guest Editor: M. Tortosa Keywords: © 2019 Rull et al.; licensee Beilstein-Institut. carbene transfer; cyclopropane; cyclopropylcarboxylate; ethylene License and terms: see end of document. cyclopropanation; ethyl diazoacetate; gold catalysis Abstract Ethylene can be directly converted into ethyl 1-cyclopropylcarboxylate upon reaction with ethyl diazoacetate (N2CHCO2Et, EDA) F F in the presence of catalytic amounts of IPrAuCl/NaBAr 4 (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene; BAr 4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate). Introduction Nowadays the olefin cyclopropanation through metal-catalyzed carbene transfer starting from diazo compounds to give olefins constitutes a well-developed tool (Scheme 1a), with an exquisite control of chemo-, enantio- and/or diastereoselectiv- ity being achieved [1,2]. Previous developments have involved a large number of C=C-containing substrates but, to date, the methodology has not been yet employed with the simplest olefin, ethylene, for synthetic purposes [3]. Since diazo compounds bearing a carboxylate substituent are the most Scheme 1: (a) General metal-catalyzed olefin cyclopropanation reac- commonly employed carbene precursors toward olefin cyclo- tion with diazo compounds.
    [Show full text]
  • The Legacy of George Olah Chemical Engineering
    PP Periodica Polytechnica The Legacy of George Olah Chemical Engineering 61(4), pp. 301-307, 2017 https://doi.org/10.3311/PPch.11352 Creative Commons Attribution b Miklós Simonyi1* research article Received 27 June 2017; accepted after revision 11 August 2017 Abstract 1 Introduction The life of George Olah exemplifies the fate of Hungarian The New York Times wrote on March 14, 2017: „George scientific excellence in the 20th century. He was talented and A. Olah, a Hungarian-born scientist who won the Nobel Prize a hard worker, but he could not remain in his country and had in Chemistry in 1994 for his study of the chemical reactions of to seek a new life in the West. His life-long scientific interests carbon compounds, died on Wednesday at his home in Beverly developed in the Budapest Technical University helped him Hills, Calif. He was 89.” to overcome obstacles and he became a leading chemist of Once again, a man of outstanding excellence with world- worldwide fame. His qualities and flexibility in both scientific wide fame died abroad. Olah’s studies and career started in research and practical applications serve as a brilliant example Budapest, as vividly described in his autobiography [1]. He for generations to come. obtained a diploma in chemical engineering at the Budapest Technical University (BTU) in 1949 and joined the Organic Keywords Chemistry Institute founded by Professor Géza Zemplén in early achievements, accommodating to foreign norms, scientific 1913, as the first University Department for Organic Chemistry breakthrough, the super-acids, in the service of mankind in Hungary.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • George A. Olah 151
    MY SEARCH FOR CARBOCATIONS AND THEIR ROLE IN CHEMISTRY Nobel Lecture, December 8, 1994 by G EORGE A. O L A H Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661, USA “Every generation of scientific men (i.e. scientists) starts where the previous generation left off; and the most advanced discov- eries of one age constitute elementary axioms of the next. - - - Aldous Huxley INTRODUCTION Hydrocarbons are compounds of the elements carbon and hydrogen. They make up natural gas and oil and thus are essential for our modern life. Burning of hydrocarbons is used to generate energy in our power plants and heat our homes. Derived gasoline and diesel oil propel our cars, trucks, air- planes. Hydrocarbons are also the feed-stock for practically every man-made material from plastics to pharmaceuticals. What nature is giving us needs, however, to be processed and modified. We will eventually also need to make hydrocarbons ourselves, as our natural resources are depleted. Many of the used processes are acid catalyzed involving chemical reactions proceeding through positive ion intermediates. Consequently, the knowledge of these intermediates and their chemistry is of substantial significance both as fun- damental, as well as practical science. Carbocations are the positive ions of carbon compounds. It was in 1901 that Norris la and Kehrman lb independently discovered that colorless triphe- nylmethyl alcohol gave deep yellow solutions in concentrated sulfuric acid. Triphenylmethyl chloride similarly formed orange complexes with alumi- num and tin chlorides. von Baeyer (Nobel Prize, 1905) should be credited for having recognized in 1902 the salt like character of the compounds for- med (equation 1).
    [Show full text]
  • Catalytic Cyclopropanation of Polybutadienes
    Erschienen in: Journal of Polymer Science, Part A: Polymer Chemistry ; 48 (2010), 20. - S. 4439-4444 https://dx.doi.org/10.1002/pola.24231 Catalytic Cyclopropanation of Polybutadienes JUAN URBANO,1 BRIGITTE KORTHALS,2 M. MAR DI´AZ-REQUEJO,1 PEDRO J. PE´ REZ,1 STEFAN MECKING2 1Laboratorio de Cata´ lisis Homoge´ nea, Departamento de Quı´mica y Ciencia de los Materiales, Unidad Asociada al CSIC, Centro de Investigacio´ n en Quı´mica Sostenible, Campus de El Carmen s/n, Universidad de Huelva, 21007 Huelva, Spain 2Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany ABSTRACT: Catalytic cyclopropanation of commercial 1,2- or 1,4- bonyl-cyclopropene)]. Catalytic hydrogenation of residual dou- cis-polybutadiene, respectively, with ethyl diazoacetate catalyzed ble bonds of partially cyclopropanated polybutadienes provided by [TpBr3Cu(NCMe)] (TpBr3 ¼ hydrotris(3,4,5-tribromo-1-pyrazo- access to the corresponding saturated polyolefins. Thermal lyl)borate) at room temperature afforded high molecular weight properties are reported. 5 À1 (Mn > 10 mol ) side-chain or main-chain, respectively, carbox- yethyl cyclopropyl-substituted polymers with variable and con- trolled degrees of functionalization. Complete functionalization KEYWORDS: carbene addition; catalysis; functionalization of poly- of 1,4-cis-polybutadiene afforded poly[ethylene-alt-(3-ethoxycar- mers; organometallic catalysis; polar groups; polybutadienes INTRODUCTION Catalytic insertion polymerization of ethyl- polypropylene.6 Examples of catalytic post-polymerization ene and propylene is employed for the production of more reactions on saturated polyolefins are rare. The oxyfunction- than 60 million tons of polyolefins annually.1 These poly- alization of polyethylenes and polypropylenes by metal- mers are hydrocarbons, without any heteroatom-containing based catalysts can afford hydroxyl groups.7 We have functional groups, such as for example ester moieties.
    [Show full text]
  • Benzene Alkylation with 1-Dodecene Over Y Zeolite
    1056 Bull. Korean Chem. Soc. 2001, Vol. 22, No. 9 Notes Benzene Alkylation with 1-Dodecene over Y Zeolite Bo Wang,† Chul Wee Lee, Tian-Xi Cai,† and Sang-Eon Park* Catalysis Center for Molecular Engineering, KRICT, Taejon 305-600, Korea †School of Chemical Engineering, DUT, 116012, Dalian, P.R. China Received April 18, 2001 Keywords : Benzene alkylation, Solid acid, Zeolite. Linear alkylbenzene (LAB) is an important intermediate Results and Discusssion used in the detergency sector. The industrial process for LAB production is based on alkylation of benzene with The results of the alkylation of benzene with 1-dodecene olefins using aluminium trichloride or hydrofluoric acid as over various catalysts are presented in Table 1. The conver- catalyst. Due to the hazardous nature of these catalysts, sions of 1-dodecene over three kinds of Y zeolites and Mg2+ efforts have been made to replace it with environmentally and Na+ ion exchanged USH-Y at benzene to 1-dodecene safer catalysts such as heteropolyacids,1 H-ZSM-5, H-ZSM- molar ratio of 8.7 : 1 are 100%, 90.4%, 50.7%, 38.6% and 12,2 HY,3 clays4 and H-mordenite.5,6 0%, respectively, in the order of USH-Y > H-Y > DAY > In this study, benzene alkylation with 1-dodecene was Mg-USY > Na-USY. The selectivity for LAB also decreases studied over three kinds of faujasite type zeolites from with the decrease of conversion from 100% for USH-Y to different company with different SiO2/Al2O3 ratios. The 0% for Na-USY. Among five different positional phenyl- effects of reaction parameters such as temperature and molar dodecane isomers, as for the reaction product, isomer ratio of benzene to 1-dodecene were also investigated.
    [Show full text]
  • 4.2. Carbenium Ion Chemistry of Catalytic Cracking
    Faculteit Ingenieurswetenschappen Chemische Proceskunde en Technische Chemie Laboratorium voor Petrochemische Techniek Directeur: Prof. Dr. Ir. Guy B. Marin Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation Author: Carmen M. Alonso Romero Promoters: Prof. Dr. Ir. G. B. Marin Prof. Dr. Lic. M.-F. Reyniers Coach: Ir. R. Van Borm Thesis work submitted to obtain the degree of chemical engineer 2006 - 2007 FACULTEIT INGENIEURSWETENSCHAPPEN Chemische Proceskunde en Technische Chemie Laboratorium voor Petrochemische Techniek Directeur: Prof. Dr. Ir. Guy B. Marin Opleidingscommissie Scheikunde Verklaring in verband met de toegankelijkheid van de scriptie Ondergetekende, Carmen M. Alonso Romero afgestudeerd aan de UGent in het academiejaar 2006 - 2007en auteur van de scriptie met als titel: Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation verklaart hierbij: 1. dat hij/zij geopteerd heeft voor de hierna aangestipte mogelijkheid in verband met de consultatie van zijn/haar scriptie: de scriptie mag steeds ter beschikking gesteld worden van elke aanvrager de scriptie mag enkel ter beschikking gesteld worden met uitdrukkelijke, schriftelijke goedkeuring van de auteur de scriptie mag ter beschikking gesteld worden van een aanvrager na een wachttijd van jaar de scriptie mag nooit ter beschikking gesteld worden van een aanvrager 2. dat elke gebruiker te allen tijde gehouden is aan een correcte en volledige bronverwijzing Gent, 20 august 2007 (Carmen M. Alonso Romero) ___________________________________________________________________________________________ Krijgslaan 281 S5, B-9000 Gent (Belgium) tel. +32 (0)9 264 45 16 • fax +32 (0)9 264 49 99 • GSM +32 (0)475 83 91 11 • e-mail: [email protected] http://www.tw12.ugent.be Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation by Carmen M.
    [Show full text]
  • The Role of Butylbenzene Carbenium Ions in the Acid Catalyzed Cracking of Polystyrene
    Reac Kinet Mech Cat DOI 10.1007/s11144-016-1050-5 The role of butylbenzene carbenium ions in the acid catalyzed cracking of polystyrene. Transformation of n-butylbenzene, sec-butylbenzene, iso-butylbenzene, tert-butylbenzene, 4-phenyl-1-butene, n-propylbenzene and n-hexylbenzene over silicaalumina and alumina acid catalysts 1 1 Marek Marczewski • Magdalena Kominiak • 1 1 Magdalena Dul • Hanna Marczewska Received: 24 May 2016 / Accepted: 27 June 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The obtained results show that styrene dimers, which are the primary transition products of PS cracking undergo consecutive reactions over acid centers of high acid strength (SiO2–Al2O3(45 %); -10.8 \ HO B-7.9) as well as centers of low acid strength (c-Al2O3;HO [ -3.3) at sufficiently high reaction tempera- tures (723–773 K). It is proposed that phenylbutenyl carbenium ion obtained due to dealkylation reaction converts into coke by the successive elimination of H? and H- ions, which in turn take part in hydrogen transfer reactions resulting in the hydro- genation of styrene dimers to diphenylbutane. The dealkylation of this compound leads to active c-butylbenzene carbenium ion which is a key intermediate for the formation of indane and naphthalene derivatives. Keywords Polystyrene decomposition Á Butylbenzenes reactions Á Acid strength Á Silicaalumina Á Alumina Introduction The catalytic processing of polymer wastes is a solution for their uncontrolled accumulation in numerous landfills. The choice of suitable catalysts makes it possible for the conversion of wastes to monomers, valuable raw materials for chemical syntheses or fuel components.
    [Show full text]
  • Appendix I: Named Reactions Single-Bond Forming Reactions Co
    Appendix I: Named Reactions 235 / 335 432 / 533 synthesis / / synthesis Covered in Covered Featured in problem set problem Single-bond forming reactions Grignard reaction various Radical couplings hirstutene Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) various (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) Asymmetric aldol reactions: Evans / Carreira etc. saframycin A Organocatalytic asymmetric aldol saframycin A Pseudoephedrine glycinamide alkylation saframycin A Prins reaction Prins-pinacol reaction problem set # 2 Morita-Baylis-Hillman reaction McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction prostaglandin Horner-Wadsworth-Emmons reaction prostaglandin Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination prostaglandin Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions tetrodotoxin hirstutene / Selenoxide elimination tetrodotoxin Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction prostaglandin Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement hirstutene Oxidations – Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. N1999A2 Jones oxidation
    [Show full text]
  • Methyl Anion Affinities of the Canonical Organic Functional Groups
    pubs.acs.org/joc Article Methyl Anion Affinities of the Canonical Organic Functional Groups Aaron Mood, Mohammadamin Tavakoli, Eugene Gutman, Dora Kadish, Pierre Baldi, and David L. Van Vranken* Cite This: J. Org. Chem. 2020, 85, 4096−4102 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Calculated methyl anion affinities are known to correlate with experimentally determined Mayr E parameters for individual organic functional group classes but not between neutral and cationic organic electrophiles. We demonstrate that methyl anion affinities calculated with a solvation model (MAA*) give a linear correlation with Mayr E parameters for a broad range of functional groups. Methyl anion affinities (MAA*), plotted on the log scale of Mayr E, provide insights into the full range of electrophilicity of organic functional groups. On the Mayr E scale, the electrophilicity toward the methyl anion spans 180 orders of magnitude. ■ INTRODUCTION Organic chemistry is taught using a canonical set of functional groups. To a first order approximation, prediction of polar chemical reactivity rests on the deceptively simple act of quantifying the nucleophilicity and electrophilicity of every functional group that is present in the reactants. The ability to independently quantify nucleophilicity and electrophilicity largely eluded organic chemists until the pioneering work of Mayr and coworkers.1 In a heroic body of work, Mayr’s team has shown that solution-phase nucleophilicity and electro- philicity can be independently quantified using a log scale, allowing useful predictions of reaction rate constants using the equation log k20° = sN sE (E + N), where E and N are Downloaded via UNIV OF CALIFORNIA IRVINE on August 10, 2020 at 19:20:42 (UTC).
    [Show full text]