Wettability As Related to Capillary Action in Porous Media

Total Page:16

File Type:pdf, Size:1020Kb

Wettability As Related to Capillary Action in Porous Media Wettability as Related to Capillary Action in Porous l\1edia SOCONY MOBIL OIL CO. JAMES C. MELROSE DALLAS, TEX. ABSTRACT interpreted with the aid of a model employing the concept of a cylindrical capillary tube. This The contact angle is one of the boundary approach has enjoyed a certain degree of success Downloaded from http://onepetro.org/spejournal/article-pdf/5/03/259/2153830/spe-1085-pa.pdf by guest on 24 September 2021 conditions for the differential equation specifying in correlating experimental results. 13 The general­ the configuration of fluid-fluid interfaces. Hence, ization of this model, however, to situations which applying knowledge concerning the wettability of a involve varying wettability, has not been established solid surface to problems of fluid distribution in and, in fact, is likely to be unsuccessful. porous solids, it is important to consider the In this paper another approach to this problem complexity of the geometrical shapes of the indi­ will be discussed. A considerable literature relating vidual, interconnected pores. to this approach exists in the field of soil science, As an approach to this problem, the ideal soil where it is referred to as the ideal soil model. model introduced by soil physicists is discussed Certain features of this model have also been in detail. This model predicts that the pore structure discussed by Purcell14 in relation to variable of typical porous solids will lead to hysteresis wettability. The application of this model, however, effects in capillary pressure, even if a zero value to studying the role of wettability in capillary of the contact angle is maintained. The model is phenomena has not previously been attempted in generalized to situations in which the contact angle detail. In the present paper, additional features of takes on values between zero and 40 degrees. For the model are introduced. These features are the imbibition branch of the capillary - pressure critical in determining the quantitative behavior of function, the model predicts a considerable departure the model. from the usually assumed cos e relationship. In fact, according to the model, it is possible that a GENERAL FEATURES OF displaced wetting phase will not be able to reimbibe, CAPILLARY HYDROSTATICS even when the contact angle does not exhibit BASIC PRINCIPLES hysteresis. When the interstices of a typical porous solid INTRODUCTION are occupied by two or more immiscible fluid phases, the fluids are microscopically commingled. The subject of capillarity in porous media has Hence, fluid-fluid interfaces are found within a long been of interest in many branches of engineer­ certain fraction of the pore openings. The funda­ ing and applied science. The earlier investigators mental equation of capillarity specifies the 1 s were those concerned with the physics of soils. - configuration of these fluid-fluid interfaces. This More recently, petroleum engineers and others is known as the Laplace equation, when derived dealing with the problems of petroleum production from mechanics, and as the Gibbs-Kelvin equation from reservoir rock have given much attention to when deri ved thermodynamically .15 6 10 the subject. - Also, important additions to the Given two fluid phases, a and {3, in hydrostatic literature of capillarity have been contributed from equilibrium, the Laplace equation states that the the field of chemical engineering. 11,12 These attest respective fluid pressures in regions close to the to the wide range of industrial applications in interface are related by which capillary phenomena playa role. The present paper is concerned with the role pO _ pf3 = (J"of3(_I_ + _1_) ..... (1) which wettability plays in capillary action in r I r 2 porous media. As is well known, capillary-rise (or Here aa{3 is the surface or interfacial tension and capillary pressure) phenomena have frequently been r1 and r2 are the principal radii of curvature of the Original manuscript received in Society of Petroleum Engi­ surface or interface. The pressure difference, pu_ neers office Nov. 27, 1964. Revised manuscript of SPE 1085 p {3, is the capillary pressure, Pc' As Buff 15 has received June 22, 1965. Paper presented at SPE-AIChE Joint Symposium on Wetting and Capillarity in Fluid Displacement shown, Eq. 1 states the condition for hydrostatic Processes held in Kansas City, May 17-20, 1959. equilibrium within the two-phase confluent region, lReferences given at end of paper. which is referred to as the interface. It thus can SEPTEMBER, 1965 259 be regarded as a two - dimensional principle of related phenomena in porous media have been based hydrostatics. on experiments in which examples of non-zero con­ In the event that the surface of the solid phase tact angle have been largely excluded. y, within which a and (3 are enclosed, has a On the other hand, evidence has accumulated sufficiently symmetrical configuration, the interface which tends to show that in the case of the two a{3 becomes a surface of revolution. The radii of liquid phases encountered in oil reservoirs, i.e., curvature can then be written in well- known petroleum and formation water, the contact angle differential forms, and Eq. 1 becomes a differential measured through the water phase is often far from equation. However, this is also true in principle zero. 17 ,18 It seems highly probable that this even if the boundary surface lacks the required this situation can arise simply from the adsorption symmetry. The solution to Eq. 1 will always of polar constituents, which are present in describe the configuration of the interface, which petroleum in considerable quan tities, on the high­ is the central problem of capillarity. energy surface of the reservoir rock. As Zisman The boundary conditions for Eq. 1 are of two and co-workers have shown, when such adsorption types, both of which must be known if solutions to occurs on a high -energy surface, it becomes Eq. 1 are to be found. The first type, as suggested comparable to typical low - energy surfaces in above, specifies the spatial configuration of the hydrophobicity. 19,20 Furthermore, the adsorption solid surface, while the second is expressed in processes involved can clearly be expected to give Downloaded from http://onepetro.org/spejournal/article-pdf/5/03/259/2153830/spe-1085-pa.pdf by guest on 24 September 2021 terms of the contact angle ea{3y, which the interface rise to considerable hysteresis in the water-oil a{3 subtends at the surface of the solid phase. contact angle. Experimental evidence for such Whereas aa{3 is a property of the two-phase surface hysteresis has in fact been presented by Benner, of contact, ea{3y is a thermodynamic property which Dodd, and Bartell. 21 It should be mentioned, depends on the three interfacial tensions, aa{3, a ay however, that to date very little experimental work and a{3y, in the immediate neighborhood of the has been carried out under conditions other than of the three-phase line of contact. room temperature and atmospheric pressure. This dependence is given by the classical Young equation, which actually corresponds to a one­ HYDROSTATIC HYSTERESIS dimensional principle of hydrostatics. 15 Since, The contact-angle hysteresis just referred to is however, no means exist for observing the quantities separate and distinct from the hysteresis in aaYand a{3y independently, Young's equation cannot capillary rise which is occasioned by the intercon­ be used to compute values of the contact angle. nected "ink - bottle" type of pore morphology The wettability of a solid surface, with respect to characteristic of porous media. More specifically, any two given fluid phases, can therefore be the latter effect is due to the fact that, within each specified only by values of the contact angle e individual pore space, a definite range of stable obtained from direct measurements. An interpreta­ fluid - fluid interface configurations exists. The tion, in terms of Young's equation, of contact-angle configurations having the greatest and least data taken from the literature has been presented possible values of the mean interface curvature elsewhere .16 correspond to the maximum and minimum values of The approach, by means of which wettability the capillary pressure sustained by the interface effects in porous media are to be studied in this and, hence, to the capillary rise. paper, can now be briefly stated. First, the intrinsic The conditions which establish the limits of wettability of the fluid-fluid-solid system (a{3y) is stability for interface configurations in porous defined by a specified value of the contact angle, media will be discussed in more detail below, in ea{3y. Second, the relationship of e to the capillary connection with the analysis of the ideal soil pressure is determined entirely within the context model. Because the relationship between interface of solutions to Eq. 1, taking the boundary conditions curvature and capillary pressure, Eq. 1, actually to be specified by (1) the contact angle and (2) the gives the condition for hydrostatic equilibrium in geometrical configurations of the surfaces of the the two-fluid phase system, the resulting hysteresis solid phase. The latter will in turn be specified by in capillary rise will be referred to as hydrostatic a detailed examination of the ideal soil model. For hysteresis. such a model, this approach appears to be the only The importance of this type of hysteresis has conceivable one which can claim tube well-founded, been particularly emphasized by soil physi­ in the sense that any such approach must rely cists, 1,2,4,5 who have unfortunately dealt entirely exclusively on the known physical principles which with cases of zero contact angle. Hydrostatic govern static capillary phenomena. hysteresis has been, however, in many instances completely ignored by those interested in contact­ CONTACT ANGLES AND ADSORPTION angle hysteresis.
Recommended publications
  • Numerical Modeling of Capillary-Driven Flow in Open Microchannels: an Implication of Optimized Wicking Fabric Design
    Scholars' Mine Masters Theses Student Theses and Dissertations Summer 2018 Numerical modeling of capillary-driven flow in open microchannels: An implication of optimized wicking fabric design Mehrad Gholizadeh Ansari Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Environmental Engineering Commons, Mathematics Commons, and the Mechanical Engineering Commons Department: Recommended Citation Ansari, Mehrad Gholizadeh, "Numerical modeling of capillary-driven flow in open microchannels: An implication of optimized wicking fabric design" (2018). Masters Theses. 7792. https://scholarsmine.mst.edu/masters_theses/7792 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. NUMERICAL MODELING OF CAPILLARY-DRIVEN FLOW IN OPEN MICROCHANNELS: AN IMPLICATION OF OPTIMIZED WICKING FABRIC DESIGN by MEHRAD GHOLIZADEH ANSARI A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN ENVIRONMENTAL ENGINEERING 2018 Approved by Dr. Wen Deng, Advisor Dr. Joseph Smith Dr. Jianmin Wang Dr. Xiong Zhang 2018 Mehrad Gholizadeh Ansari All Rights Reserved iii PUBLICATION THESIS OPTION This thesis has been formatted using the publication option: Paper I, pages 16-52, are intended for submission to the Journal of Computational Physics. iv ABSTRACT The use of microfluidics to transfer fluids without applying any exterior energy source is a promising technology in different fields of science and engineering due to their compactness, simplicity and cost-effective design.
    [Show full text]
  • Measurement of Dynamic Capillary Pressure and Viscosity Via the Multi-Sample Micro-Slit Rheometer Doyoung Moon, Kalman B
    ARTICLE IN PRESS Chemical Engineering Science ( ) -- Contents lists available at ScienceDirect Chemical Engineering Science journal homepage: www.elsevier.com/locate/ces Measurement of dynamic capillary pressure and viscosity via the multi-sample micro-slit rheometer Doyoung Moon, Kalman B. Migler ∗ Polymers Division, 100 Bureau Drive, NIST, Gaithersburg, Maryland 20899, USA ARTICLE INFO ABSTRACT Article history: We develop two direct methods to simultaneously measure the dynamic capillary pressure and the vis- Received 14 October 2008 cosity of fluids by application of differential forces during flow into micro-channels. In the first method, Received in revised form 30 January 2009 a series of external pressures is applied in conjunction with the dynamic capillary pressure and a “Bagley Accepted 18 February 2009 analysis” is applied to the flow front velocity, and in the second, we utilize differential gravitational forces. By explicitly measuring the dynamic capillary pressure, the measurement window of the recently Keywords: developed multi-sample micro-slit rheometer is extended to the regime where capillary forces are signif- Imbibition Dynamic capillary pressure icant. These measurement methods will be useful in understanding filling flows encountered in diverse Contact angle areas such as microfluidics, oil recovery and biological transport. Microfluidics Published by Elsevier Ltd. Viscosity Rheometer 1. Introduction (for the case of a rectangular capillary) where is the surface tension, is the contact angle, and h and w are
    [Show full text]
  • Investigation of Fluid Wicking Behavior in Micro- Channels and Porous Media by Direct Numerical Simulation
    Investigation of Fluid Wicking Behavior in Micro- Channels and Porous Media by Direct Numerical Simulation Ph.D. Dissertation By An Fu Master of Science, Mechanical Engineering, University of Cincinnati, 2016 April. 12th, 2019 Committee Chair: Dr. Milind Jog 1 A B S T R A C T Capillary transport phenomenon in porous media can be found in numerous natural processes and industrial applications such as inkjet printing, filtration, and enhanced oil recovery. In many of these applications, fluid penetration can be categorized into two orientations, viz., unidirectional (linear) and radial. In this thesis, the wicking process for both orientations has been investigated. Direct numerical simulation with Volume-of-Fluid (VOF) method has been implemented at pore scale (micro-scale simulation) to solve the transient governing equations, and global properties such as meniscus displacement and capillary pressure have been calculated to investigate macroscopic spontaneous imbibition (wicking) process. Linear fluid penetration kinetics within the viscous stage is first considered to investigate if the pore size and distribution are contributing factors which shift the overall kinetics, and how interface mobility is influenced by geometry layout. Various cases are simulated with increasing geometric complexity; from simple pore space connection with uniform pore size to complicated connection with random pore sizes. Average meniscus location, capillary pressure and other global variables are examined. The results indicate that within the viscous regime, the Lucas-Washburn behavior is valid in homogeneous porous media, even with random pore size and connection. However, in non-homogeneous structure, the wicking kinetic does depend on the distribution of pore spaces, and Lucas-Washburn equation fails to describe the linear macroscopic capillarity.
    [Show full text]
  • Capillary Phenomena in Porous Media: Pore and Grain Scale Studies
    CAPILLARY PHENOMENA IN POROUS MEDIA: PORE AND GRAIN SCALE STUDIES A Dissertation Presented to The Academic Faculty by Zhonghao Sun In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Civil and Environmental Engineering Georgia Institute of Technology August 2018 COPYRIGHT © 2018 BY ZHONGHAO SUN CAPILLARY PHENOMENA IN POROUS MEDIA: PORE AND GRAIN SCALE STUDIES Approved by: Dr. J. Carlos Santamarina, Advisor Dr. Sheng Dai School Civil and Environmental School of Civil and Environmental Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. J. David Frost Dr. Guillermo Goldsztein School of Civil and Environmental School of Mathematics Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Susan E. Burns School of Civil and Environmental Engineering Georgia Institute of Technology Date Approved: May 4, 2018 ACKNOWLEDGEMENTS Many people have offered support and suggestions over the last five years; I own thanks to you all. I want to thank my Ph.D. advisor, Carlos Santamarina, for providing me such a great opportunity and wonderful time in my life. I am deeply grateful for his persevering guidance and support. Experiences of working with him taught me valuable lessons, both professional and personal. I thank my thesis committee members, Dr. Susan E. Burns, Dr. J. David Frost, Dr. Sheng Dai, and Dr. Guillermo Goldsztein, for valuable comments and suggestions. Special thanks to Dr. J. David Frost for generous support. I am grateful to Qi Liu and Junbong Jang for the time we worked together. The collaboration helped me deepen my insight of capillary phenomena and broaden my thinking of doing research.
    [Show full text]
  • Foam Transport in Porous Media – a Review
    PNNL-18918 Prepared for the U.S. Department of Energy Under Contract DE-AC05-76RL01830 Foam Transport in Porous Media – A Review ZF Zhang VL Freedman L Zhong November 2009 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm PNNL-18918 Foam Transport in Porous Media – A Review ZF Zhang VL Freedman L Zhong November 2009 Prepared for the U.S.
    [Show full text]
  • Impacts on Oil Recovery from Capillary Pressure and Capillary Heterogeneities
    IMPACTS ON OIL RECOVERY FROM CAPILLARY PRESSURE AND CAPILLARY HETEROGENEITIES by Thomas Bognø A dissertation submitted to the Department of Physics and Technology at the University of Bergen in partial fulfilment of the requirements for the degree doctor scientiarum. Pau, France, March, 2008. ISBN 978-82-308-0588-6 Bergen, Norway 2008 Printed by Allkopi Tel: +47 55 54 49 40 ii SUMMARY This thesis summarises the findings made in NFR-funded project “Capillary Pressure and Capillary Heterogeneities”. The focus has been to determine the impact on oil recovery from wettability and fractures in carbonate rocks. Secondly a new method for measuring capillary pressure has been developed. The results of this work are reported in this thesis. The work presented in this thesis has improved the understanding of the interaction between wettability and fractures on the production mechanisms in carbonate reservoirs, in different directions. Figure 1 gives an overview of the project “Capillary Pressures and Capillary Heterogeneities”, its fundamental building blocks and the interaction between them to better understand how main conclusions in this study may be drawn; Building block 1: A reproducible method for altering wettability has been developed, and continuously improved throughout the study. Feed-back from the large scale block experiments have actively been used to improve the wettability alteration technique, in particular when it comes to radial and lateral wettability heterogeneity. This is further described in Paper 1 and 2. Building block 2: The study of fracture crossing mechanisms at different wettabilities has improved the understanding of the production mechanisms in fractured chalk. The observations in the large scale block experiments have been used to understand the results of the fracture crossing experiments and vice versa.
    [Show full text]
  • Microfluidics Toward a Lab-On-A-Chip
    13 Dec 2003 18:58 AR AR203-FL36-15.tex AR203-FL36-15.sgm LaTeX2e(2002/01/18) P1: IBD 10.1146/annurev.fluid.36.050802.122124 Annu. Rev. Fluid Mech. 2004. 36:381–411 doi: 10.1146/annurev.fluid.36.050802.122124 Copyright c 2004 by Annual Reviews. All rights reserved ENGINEERING FLOWS IN SMALL DEVICES: Microfluidics Toward a Lab-on-a-Chip H.A. Stone,1 A.D. Stroock,2 and A. Ajdari3 1Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138; email: [email protected] 2School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853; email: [email protected] 3Physico-Chimie Theorique,´ UMR CNRS-ESPCI 7083, ESPCI, 10 rue Vauquelin, 75005 Paris, France; email: [email protected] Key Words low-Reynolds-number hydrodynamics, electro-osmosis, nanofluidics, microdevices, mixing ■ Abstract Microfluidic devices for manipulating fluids are widespread and finding uses in many scientific and industrial contexts. Their design often requires unusual geometries and the interplay of multiple physical effects such as pressure gradients, electrokinetics, and capillarity. These circumstances lead to interesting variants of well-studied fluid dynamical problems and some new fluid responses. We provide an overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows. We highlight topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces. 1. INTRODUCTION Microfluidics refers to devices and methods for controlling and manipulating fluid flows with length scales less than a millimeter. Studies of such fluid-related phe- nomena have long been part of the fluid mechanical component of colloid science (e.g., Russel et al.
    [Show full text]
  • Lab on a Chip PAPER
    View Article Online / Journal Homepage / Table of Contents for this issue Lab on a Chip Dynamic Article Links Cite this: Lab Chip, 2012, 12, 2858–2864 www.rsc.org/loc PAPER Pinned films and capillary hysteresis in microfluidic channels Yihong Liu,a David D. Noltea and Laura J. Pyrak-Nolteabc Received 11th March 2012, Accepted 20th April 2012 DOI: 10.1039/c2lc40247e Pinned water films in a microfluidic channel act as elastic membranes under tension that increase capillary pressures while preserving the mechanical work dissipated around capillary pressure- saturation, Pc–Sw, hysteresis cycles. High-resolution two-photon laser micromachining of SU-8 photoresist was used to fabricate wedge-shaped microfluidic channels that included sharp edge features to pin wetting films during drainage. The films were measured using confocal fluorescence microscopy. The tension in the film acts as an elastic tether that shifts the Pc–Sw hysteresis cycle higher in pressure relative to the hysteresis cycle in the same sample when films are not pinned. The film tension is strongly nonlinear as the restoring force decreases with increasing displacement. The contribution of elastic forces to hysteresis has important consequences for pressure and saturation control in microfluidics. 1. Introduction where ul is the position of the interface that is not pinned, um is the position of the pinned interface and k is the effective spring The hysteresis of saturations and pressures is ubiquitous in all constant of the contact line. As the distance between the bulk 1–7 complex pore geometries that support multiple fluid phases. A fluid-fluid interface moves farther from the site of pinning, the complete understanding of capillary hysteresis in micro-fluidic elastic force increases, similar to the increase in force that occurs devices and other porous media containing immiscible fluids by stretching a spring, which defines Hookean behaviour.
    [Show full text]
  • Capillary Biochip for Point of Use Biomedical Application
    Capillary Biochip for point of use biomedical application Joana de Carvalho Rodrigues Mesquita Chim Thesis to obtain the Master of Science Degree in Biomedical Engineering Supervisors: Prof. João Pedro Estrela Rodrigues Conde and Dr. João Garcia da Fonseca Examination Committee Chairperson: Prof. Raúl Daniel Lavado Carneiro Martins Members of the Committee: Dr. Nuno Alexandre Esteves Reis Prof. Frederico Castelo Alves Ferreira October 2015 Abstract Microfluidic devices have become an attractive technology in terms of point of care use, due to reduction of sample and reagents consumption, time and also costs of analysis. These devices allow to simplify laboratory protocols and perform them in a single chip of small dimensions. However, some of the devices developed require combining the chip with external equipment that can be complex for handling and difficult the PoC application. In order to solve these issues, capillary chips come into play. Capillary-driven microfluidics introduce a wide range of benefits, including being user friendly and portability, owed to the fact that fluid flow is only controlled by the surface wetting properties of the device. Taking advantage of these benefits this work proposes a capillary chip for a specific biomedical application, namely an immunoassay or the detection of the mycotoxin OTA. PDMS and glass were the materials chosen for the fabrication of the capillary chips. In addition an intensive study of the work conditions is presented. Namely the effect that different capillary pumps can have in fluid motion. Since surface properties are determinant in capillarity, the influence of the UV/Ozone treatment was also tested. In terms of application, the chip was shown to be capable of providing the required conditions for performing the OTA immunoassay.
    [Show full text]
  • The Effect of Surface-Active Solutes on Water Flow and Contaminant Transport in Variably Saturated Porous Media with Capillary Fringe Effects
    Journal of Contaminant Hydrology 56 (2002) 247–270 www.elsevier.com/locate/jconhyd The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects E.J. Henry a, J.E. Smith b,* aDepartment of Hydrology and Water Resources, University of Arizona, Tucson, AZ, 85721 USA bSchool of Geography and Geology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada L8S 4L8 Received 20 December 2000; received in revised form 12 October 2001; accepted 23 October 2001 Abstract Organic contaminants that decrease the surface tension of water (surfactants) can have an effect on unsaturated flow through porous media due to the dependence of capillary pressure on surface tension. We used an intermediate-scale 2D flow cell (2.44 Â 1.53 Â 0.108 m) packed with a fine silica sand to investigate surfactant-induced flow perturbations. Surfactant solution (7% 1-butanol and dye tracer) was applied at a constant rate at a point source located on the soil surface above an unconfined synthetic aquifer with ambient groundwater flow and a capillary fringe of f 55 cm. A glass plate allowed for visual flow and transport observations. Thirty instrumentation stations consist of time domain reflectometry probes and tensiometers measured in-situ moisture content and pressure head, respectively. As surfactant solution was applied at the point source, a transient flow perturbation associated with the advance of the surfactant solution was observed. Above the top of the capillary fringe the advance of the surfactant solution caused a visible drainage front that radiated from the point source.
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Diba Behnoudfar for the degree of Master of Science in Chemical Engineering presented on April 27, 2020. Title: Exploring the Wettability States and Contact Angle Variation in Porous Media Multi-Phase Flow Systems. Abstract approved: ______________________________________________________ Dorthe Wildenschild The wetting of a surface by a liquid is a crucial part of many natural and industrial processes. Despite numerous existing studies, some elements of wetting-dewetting such as contact angle variation are still poorly understood. Knowledge of contact angle behavior during the flow is necessary for modeling fluid displacements in capillary-dominated flows. In the context of multi-phase flow in porous medium, the lack of direct contact angle measurements inside pores (in-situ), adds to the ambiguity. This work consists of performing in-situ contact angle measurements on X-ray micro-computed tomography images of multi-phase fluid systems during quasi-static flow and investigating the effects of pore geometry and interfacial forces on contact angle. An algorithm enabled automated analysis of contact angle throughout the three-dimensional images. Observations revealed two unique contact angle variation patterns for oil (dodecane)-water and air-water systems with larger hysteresis for the oil-water. Introduction of a third phase (air) and altering surface chemistry (wettability) of a portion of solid phase, influenced oil-water contact angle near unaltered surfaces, but the overall trend remained the same. Results
    [Show full text]
  • A Computational Model for the Capillary Flow Between Parallel
    Naghashnejad and Shabgard/ Preprint submitted to peer reviewed international journal A Computational Model for the Capillary Flow between Parallel Plates Mohammad Naghashnejad, Hamidreza Shabgard* School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA *Corresponding Author Phone: +1-405-3255753, E-mail: [email protected] Abstract A computational fluid dynamics (CFD) model is developed to simulate the dynamics of meniscus formation and capillary flow between vertical parallel plates. The arbitrary Lagrangian-Eulerian (ALE) approach was employed to predict and reconstruct the exact shape of the meniscus. The model was used to simulate the rise of water and the evolution of the meniscus in vertical channels with various spacing values of 0.5 mm, 0.7 mm, and 1 mm. The validity of the model was established by comparing the steady-state capillary height and the meniscus profile with analytical solutions. The developed model presents a novel approach for simulation of capillary flow accounting for the detailed hydrodynamic phenomena that cannot be captured by analytical models. Keywords: Capillary flow, Meniscus, Dynamic Mesh, Parallel Plates, CFD 1. Introduction Liquid flows driven by capillary action appear in a wide range of applications in natural and industrial systems, including water transport in plants, heat pipes and spacecraft Propellant Management Devices (PMDs) [1]. Capillary action is the spontaneous movement of liquid within the voids formed by solid surfaces due to the interaction of adhesion, cohesion, and surface tension forces. The adhesion between the liquid and solid walls along with the surface tension force (cohesion between the liquid molecules) at the liquid-gas interface create the driving force for penetration of the liquid column inside the capillary conduit.
    [Show full text]