Inhibition of Cyclooxygenase-1 by Nonsteroidal Anti-Inflammatory Drugs Demethylates Mer2 Enhancer and Promotes Mbnl1 Transcription in Myogenic Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 5,955,504 Wechter Et Al
USOO5955504A United States Patent (19) 11 Patent Number: 5,955,504 Wechter et al. (45) Date of Patent: Sep. 21, 1999 54 COLORECTAL CHEMOPROTECTIVE Marnett, “Aspirin and the Potential Role of Prostaglandins COMPOSITION AND METHOD OF in Colon Cancer, Cancer Research, 1992; 52:5575–89. PREVENTING COLORECTAL CANCER Welberg et al., “Proliferation Rate of Colonic Mucosa in Normal Subjects and Patients with Colonic Neoplasms: A 75 Inventors: William J. Wechter; John D. Refined Immunohistochemical Method.” J. Clin Pathol, McCracken, both of Redlands, Calif. 1990; 43:453-456. Thun et al., “Aspirin Use and Reduced Risk of Fatal Colon 73 Assignee: Loma Linda University Medical Cancer." N Engl J Med 1991; 325:1593-6. Center, Loma Linda, Calif. Peleg, et al., “Aspirin and Nonsteroidal Anti-inflammatory Drug Use and the Risk of Subsequent Colorectal Cancer.” 21 Appl. No.: 08/402,797 Arch Intern Med. 1994, 154:394–399. 22 Filed: Mar 13, 1995 Gridley, et al., “Incidence of Cancer among Patients With Rheumatoid Arthritis J. Natl Cancer Inst 1993 85:307-311. 51) Int. Cl. .......................... A61K 31/19; A61K 31/40; Labayle, et al., “Sulindac Causes Regression Of Rectal A61K 31/42 Polyps. In Familial Adenomatous Polyposis” Gastroenterol 52 U.S. Cl. .......................... 514/568; 514/569; 514/428; ogy 1991 101:635-639. 514/416; 514/375 Rigau, et al., “Effects Of Long-Term Sulindac Therapy On 58 Field of Search ..................................... 514/568, 570, Colonic Polyposis” Annals of Internal Medicine 1991 514/569, 428, 416, 375 11.5:952-954. Giardiello.et al., “Treatment Of Colonic and Rectal 56) References Cited Adenomas With Sulindac In Familial Adenomatous Poly U.S. -
Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep
animals Article Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep Shashwati Mathurkar 1,*, Preet Singh 2 ID , Kavitha Kongara 2 and Paul Chambers 2 1 1B, He Awa Crescent, Waikanae 5036, New Zealand 2 School of Veterinary Sciences, College of Sciences, Massey University, Palmerston North 4474, New Zealand; [email protected] (P.S.); [email protected] (K.K.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +64-221-678-035 Received: 13 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Simple Summary: Scarcity of non-steroidal anti-inflammatory drugs (NSAID) to minimise the pain in sheep instigated the current study. The aim of this study was to know the pharmacokinetic parameters of salicylic acid in New Zealand sheep after administration of multiple intravenous and oral doses of sodium salicylate (sodium salt of salicylic acid). Results of the study suggest that the half-life of the drug was shorter and clearance was faster after intravenous administration as compared to that of the oral administration. The minimum effective concentration required to produce analgesia in humans (16.8 µL) was achieved in sheep for about 0.17 h in the current study after intravenous administration of 100 and 200 mg/kg body weight of sodium salicylate. However, oral administration of these doses failed to achieve the minimum effective concentration as mentioned above. This study is of significance as it adds valuable information on pharmacokinetics and its variation due to breed, species, age, gender and environmental conditions. -
Flunixin, Extension to Horses
The European Agency for the Evaluation of Medicinal Products Veterinary Medicines and Information Technology EMEA/MRL/744/00- FINAL June 2000 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS FLUNIXIN (Extension to horses) SUMMARY REPORT (2) 1. Flunixin is a non-steroidal anti-inflammatory drug (NSAID), and a non-narcotic analgesic with antipyretic activities. In veterinary medicine, it is used with meglumine as solubilizer as flunixin meglumine. Flunixin meglumine is used in the alleviation of inflammation and pain associated with musculo-skeletal disorders and colic in horses; the control of acute inflammation associated with infectious diseases in cattle and as an aid in the treatment of mastitis metritis agalactia syndrome (MMA) in sows. A dose of 2.2 mg/kg bw by the intravenous route once a day for up to 3 days is indicated for bovines, whilst 2.2 mg/kg bw intramuscularly (up to 2 injections, 12 hours apart) is recommended for sows affected by MMA syndrome. Flunixin meglumine is also used in veterinary medicine in combination with oxytetracycline for the treatment of bovine pneumonia at a dose of 2 mg/kg bw (once a day for 3 to 5 days by the intravenous or the intramuscular routes). The Committee for Veterinary Medicinal Products (CVMP) previously retained an ADI of 6 µg/kg bw (i.e. 360 µg/person) for flunixin, by applying a safety factor of 100 to the NOEL of 0.6 mg/kg bw/day which was established in a 90-day repeated dose gavage study in the dog. Flunixin is currently included in Annex I of Council Regulation (EEC) No 2377/90 in accordance with the following table: Pharmacologically Marker Animal MRLs Target tissue Other active substance(s) residue species provisions Flunixin Flunixin Bovine 20 µg/kg Muscle 30 µg/kg Fat 300 µg/kg Liver 100 µg/kg Kidney 5-Hydroxy Bovine 40 µg/kg Milk flunixin Flunixin Porcine 50 µg/kg Muscle 10 µg/kg Skin + fat 200 µg/kg Liver 30 µg/kg Kidney An application has now been received for the extention of the MRLs for flunixin to edible tissues of horses. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0221245 A1 Kunin (43) Pub
US 2010O221245A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0221245 A1 Kunin (43) Pub. Date: Sep. 2, 2010 (54) TOPICAL SKIN CARE COMPOSITION Publication Classification (51) Int. Cl. (76) Inventor: Audrey Kunin, Mission Hills, KS A 6LX 39/395 (2006.01) (US) A6II 3L/235 (2006.01) A638/16 (2006.01) Correspondence Address: (52) U.S. Cl. ......................... 424/133.1: 514/533: 514/12 HUSCH BLACKWELL SANDERS LLP (57) ABSTRACT 4801 Main Street, Suite 1000 - KANSAS CITY, MO 64112 (US) The present invention is directed to a topical skin care com position. The composition has the unique ability to treat acne without drying out the user's skin. In particular, the compo (21) Appl. No.: 12/395,251 sition includes a base, an antibacterial agent, at least one anti-inflammatory agent, and at least one antioxidant. The (22) Filed: Feb. 27, 2009 antibacterial agent may be benzoyl peroxide. US 2010/0221 245 A1 Sep. 2, 2010 TOPCAL SKIN CARE COMPOSITION stay of acne treatment since the 1950s. Skin irritation is the most common side effect of benzoyl peroxide and other anti BACKGROUND OF THE INVENTION biotic usage. Some treatments can be severe and can leave the 0001. The present invention generally relates to composi user's skin excessively dry. Excessive use of some acne prod tions and methods for producing topical skin care. Acne Vul ucts may cause redness, dryness of the face, and can actually garis, or acne, is a common skin disease that is prevalent in lead to more acne. Therefore, it would be beneficial to provide teenagers and young adults. -
TILCOTIL® Tenoxicam Film Coated Tablets 20 Mg
NEW ZEALAND CONSUMER MEDICINE INFORMATION TILCOTIL® Tenoxicam Film Coated Tablets 20 mg degenerative joint disease bleeding in your stomach, What is in this leaflet (arthrosis) or have had this in the past menstrual cramps (period a tendency to Please read this leaflet carefully pain) spontaneously bleed or before you start taking Tilcotil. following surgery bleed after minor accidents gout (a disease with painful, (haemorrhagic diathesis) This leaflet answers some common swollen joints) severe heart, liver or kidney questions about Tilcotil. failure Tilcotil contains the active ingredient are more than six months It does not contain all the available tenoxicam. It belongs to a group of pregnant (third trimester of information. It does not take the medicines called Non-Steroidal pregnancy). place of talking to your doctor or Anti-Inflammatory Drugs (NSAIDs). pharmacist. Do not take this medicine after Your doctor may have prescribed the expiry date printed on the All medicines have risks and this medicine for another reason. pack or if the packaging is torn or benefits. Your doctor has weighed shows signs of tampering. the risks of you taking Tilcotil Ask your doctor if you have any If it has expired or is damaged, against the benefits they expect it questions about why this return it to your pharmacist for will have for you. medicine has been prescribed for disposal. you. If you have any concerns about Safety and effectiveness of taking this medicine, ask your This medicine is available only with Tilcotil have not been established doctor or pharmacist. a doctor’s prescription. for children and adolescents. -
Drug–Drug Salt Forms of Ciprofloxacin with Diflunisal and Indoprofen
CrystEngComm View Article Online COMMUNICATION View Journal | View Issue Drug–drug salt forms of ciprofloxacin with diflunisal and indoprofen† Cite this: CrystEngComm,2014,16, 7393 Partha Pratim Bag, Soumyajit Ghosh, Hamza Khan, Ramesh Devarapalli * Received 27th March 2014, and C. Malla Reddy Accepted 12th June 2014 DOI: 10.1039/c4ce00631c www.rsc.org/crystengcomm Two salt forms of a fluoroquinolone antibacterial drug, Crystal engineering approach has been effectively ciprofloxacin (CIP), with non-steroidal anti-inflammatory drugs, utilized in recent times in the synthesis of new forms particu- diflunisal (CIP/DIF) and indoprofen (CIP/INDP/H2O), were synthe- larly by exploiting supramolecular synthons. Hence the sized and characterized by PXRD, FTIR, DSC, TGA and HSM. Crystal identification of synthons that can be transferred across Creative Commons Attribution-NonCommercial 3.0 Unported Licence. structure determination allowed us to study the drug–drug different systems is important. For example, synthon trans- interactions and the piperazine-based synthon (protonated ferability in cytosine and lamivudine salts was recently dem- piperazinecarboxylate) in the two forms, which is potentially useful onstrated by Desiraju and co-workers by IR spectroscopy for the crystal engineering of new salt forms of many piperazine- studies.20a Aakeröy and co-workers successfully estab- based drugs. lished the role of synthon transferability (intermolecular amide⋯amide synthons) in the assembly and organization of Multicomponent pharmaceutical forms consisting of an bidentate acetylacetonate (acac) and acetate “paddlewheel” active pharmaceutical ingredient (API) and an inactive 20b complexes of a variety of metal(II)ions. Recently Das et al. co-former,whichisideallyagenerally recognized as safe – have reported the gelation behaviour in various diprimary This article is licensed under a 1 3 (GRAS) substance, have been well explored in recent times. -
Comparative Study of the Efficacy of Flunixin, Ketoprofen and Phenylbutazone in Delman Horses with Mild Colic
Sys Rev Pharm 2020; 11(5): 464 468 A multifaceted review journal in the field of pharmacy E-ISSN 0976-2779 P-ISSN 0975-8453 Comparative Study of the Efficacy of Flunixin, Ketoprofen and Phenylbutazone in Delman Horses with Mild Colic Agus Purnomo1, Arya Pradana Wicaksono2, Dodit Hendrawan2, Muhammad Thohawi Elziyad Purnama3* 1Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, DI Yogyakarta, 55281, Indonesia 2Postgraduate Studies, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia 3Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia *Corresponding author E-mail: [email protected] Article History: Submitted: 26.02.2020 Revised: 16.04.2020 Accepted: 21.05.2020 ABSTRACT This study aimed to evaluate the efficacy of flunixin, ketoprofen and multiple range test. The results showed a significant alleviation in all phenylbutazone on serum biochemistry, plasma catecholamines and observed variables on Day 13, although the use of various NSAIDs serum cortisol in Delman horses with mild colic. During the study showed no significant difference. period, 32 horses were evaluated due to mild colic. Flunixin, Keywords: serum biochemical, catecholamine, cortisol, colic, NSAIDs ketoprofen, and phenylbutazone were administered intravenously at Correspondence: the recommended dose rates of 1.0; 2.2 and 4.4 mg/kg, respectively. Muhammad Thohawi Elziyad Purnama Administration of the NSAIDs commenced on Day 1 and continued Department of Veterinary Anatomy, Faculty of Veterinary Medicine, every 12 h for 12 days. Blood samples collected between days 2, 5, 9 Universitas Airlangga, Surabaya, 60115, Indonesia and 13 to evaluate AST, ALP, GGT, creatinine, urea, epinephrine, E-mail: [email protected] norepinephrine, and cortisol level. -
Spondyloarthritis: NMA on Pain Outcome RR111467
NICE CGTSU Spondyloarthritis: NMA on Pain Outcome RR111467 Spondyloarthritis: NMA on pain outcome CGTSU, Bristol (Edna Keeney and Sofia Dias) The purpose of this analysis was to estimate the comparative effectiveness of the following pharmacological interventions for management of pain associated with axial spondyloarthritis: 1. Indomethacin (Reference) 2. Diclofenac 3. Sulindac 4. Fenoprofen 5. Ketoprofen 6. Flurbiprofen 7. Tenoxicam 8. Piroxicam 9. Celecoxib 200mg 10. Celecoxib 400mg 11. Aceclofenac 12. Naproxen 13. Enteric coated Naproxen 14. Etoricoxib 15. Tolfenamic acid 16. Meloxicam 15mg 17. Placebo 23 studies were included in the analyses. The network diagram is shown in Figure 1. Edna Keeney 1 13/10/2015 NICE CGTSU Spondyloarthritis: NMA on Pain Outcome RR111467 Figure 1. Network Diagram for pain outcome Pain Indomethacin Placebo Diclofenac Meloxicam 15mg Sulindac Tolfenamic acid Fenoprofen Etoricoxib Ketoprofen Enteric coated naproxen Flurbiprofen Naproxen Tenoxicam Piroxicam Aceclofenac Celecoxib 400mg Celecoxib 200mg METHODS In order to take all trial information into consideration, Mixed Treatment Comparison meta-analytic techniques, also termed Network meta-analysis (NMA), were employed. NMA is a generalization of standard pairwise meta-analysis for A versus B trials, to data structures that include, for example, A versus B, B versus C, and A versus C trials.1-3 A basic assumption of NMA methods is that direct and indirect evidence estimate the same parameter, that is, the relative effect between A and B measured directly -
Suprofen | Medchemexpress
Inhibitors Product Data Sheet Suprofen • Agonists Cat. No.: HY-B0270 CAS No.: 40828-46-4 Molecular Formula: C₁₄H₁₂O₃S • Molecular Weight: 260.31 Screening Libraries Target: PGE synthase Pathway: Immunology/Inflammation Storage: Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month SOLVENT & SOLUBILITY In Vitro DMSO : ≥ 100 mg/mL (384.16 mM) * "≥" means soluble, but saturation unknown. Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 3.8416 mL 19.2079 mL 38.4157 mL Stock Solutions 5 mM 0.7683 mL 3.8416 mL 7.6831 mL 10 mM 0.3842 mL 1.9208 mL 3.8416 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (9.60 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (9.60 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (9.60 mM); Clear solution BIOLOGICAL ACTIVITY Description Suprofen (TN-762) is a non-steroidal anti-inflammatory drug (NSAID). IC₅₀ & Target PGE synthase[1]. In Vitro Suprofen (TN-762) is an NSAID. Suprofen (TN-762) is an ibuprofen-type anti-inflammatory analgesic and antipyretic. It inhibits prostaglandin synthesis and has been proposed as an anti-arthritic. suprofen was clinically effective but the Page 1 of 2 www.MedChemExpress.com differential suppression of prostanoids favors 200mg which spares 6-keto PGF1a[1]. -
Analgesic and Anti-Inflammatory Compositions Comprising of Using Same
Europaisches Patentamt J) European Patent Office Publication number: 0 1 65 308 Office europeen des brevets B1 EUROPEAN PATENT SPECIFICATION Date of publication of patent specification: 22.03.89 Intel.4: A 61 K 31/19, A 61 K 31/53 Application number: 85900409.5 Date of filing: 12.12.84 International application number: PCT/US84/02035 International publication number: WO 85/02540 20.06.85 Gazette 85/14 XANTHINES AND METHODS ANALGESIC AND ANTI-INFLAMMATORY COMPOSITIONS COMPRISING OF USING SAME. (30) Priority: 12.12.83 US 560576 Proprietor: Richardson-Vicks, Inc. Ten Westport Road Wilton, CT 06897 (US) (43) Date of publication of application: 27.12.85 Bulletin 85/52 Inventor: SUNSHINE, Abraham 254 East 68 Street Apt. 12D Publication of the grant of the patent: New York, NY 10021 (US) 22.03.89 Bulletin 89/12 Inventor: LASKA, Eugene, M. 34 Dante Street Larchmont, NY 10538 (US) Designated Contracting States: Inventor: SIEGEL, Carole, E. BEFR 1304 Colonial Court Mamaroneck, NY 10543 (US) References cited: WO-A-84/00487 @ Representative: Pendlebury, Anthony et al WO-A-84/00488 Page, White & Farrer 5 Plough Place New Fetter US-A-3439 094 Lane US-A-4479 956 London EC4A1HY(GB) Chemical Abstracts, vol. 96, no. 18, 3 May 1982, (58) References cited: Columbus, OH (US); Kaken Chemical Co.: 00 Clinical Pharmacol. Therapeutics, vol. 24, no. 1, "Combined analgesic and antipyretic A.K. et o 149 162u July 1978 (The C.V. Mosby Co.), Jain, formulations", p. 422, no. al.: and in « "Aspirin aspirin-caffeine postpartum pain relief, pp. 69-75 in Note: Within nine months from the publication of the mention of the grant of the European patent, any person may notice to the European Patent Office of opposition to the European patent granted. -
Indoprofen and Naproxen in the Treatment of Rheumatoid Arthritis
274 BRITISH MEDICAL JOURNAL 4 FEBRUARY 1978 Discussion haemorrhagic side effects has been based on trials in which anticoagulant dosage was determined by extrinsic clotting testsBr Med J: first published as 10.1136/bmj.1.6108.274 on 4 February 1978. Downloaded from The British comparative thromboplastin or its routine alone-that is, Quick prothrombin time test or Thrombotest. counterpart the Manchester comparative reagent is used in Our results also show the interesting and important finding that almost all hospitals in Britain. The BCT is also used throughout surgery is safe when intrinsic clotting is depressed, as judged by the world as a reference material. Hitherto the lower limits of a prolongation of PTT, provided that this is not excessive. the therapeutic range have been defined by clinical experience For moderate-risk patients, the necessary preoperative and correlation with other monitoring systems used in Britain stabilisation period for oral anticoagulants makes this type of and overseas. Our study allows an objective evaluation of the prophylaxis unnecessarily troublesome. For these patients the effectiveness of oral anticoagulant dosage monitored by the present study endorses the effectiveness of the fixed low-dose BCT to be made. The DVT incidence in untreated patients heparin regimen. If, however, a patient is already stabilised on (23%) agrees with other series. It is similar to that in the study of oral anticoagulants, it is apparently not worth changing to low- Ballard et a14 in gynaecological patients (290') and to that in the dose heparin for the operative period, as has recently been multicentre trial study8 of mixed surgical patients (24°0). -
Flunixin: a Vulture-Toxic Drug
Flunixin: a vulture-toxic drug Summary of evidence that flunixin is toxic to vultures; and that meloxicam, an alternative to flunixin, is not toxic to vultures as well as a safe and effective veterinary drug Version 1: November 2016 SAVE is an international consortium of conservation and research organisations whose mission is to respond to the vulture crisis in Asia by striving to halt vulture population declines and working to minimise their negative impacts on ecological and human health. For further details go to www.save-vultures.org Flunixin: a vulture-toxic drug SAVE 11.2016 Flunixin is toxic to Gyps vultures; however, meloxicam is not toxic to Gyps vultures and an effective alternative to flunixin for veterinary purposes Aim This paper, intended for decision-makers involved in drug licensing, presents evidence of the toxicity of flunixin, a non-steroidal anti-inflammatory drug (NSAID), to Gyps vultures; and the safety, to both vultures and domesticated animals, and effectiveness, in domesticated animals, of meloxicam, an alternative NSAID. Executive summary 1. The NSAID flunixin has been found in dead wild Gyps vultures. 2. Wild vultures are exposed to NSAIDs when feeding on carcasses of domesticated ungulates treated with these drugs shortly before death. 3. Published and unpublished data from wildlife forensic investigations in Spain shows visceral gout (i.e., a clinical sign of renal failure in birds) and flunixin residue, but not diclofenac residue, in carcasses of three Eurasian griffon vultures Gyps fulvus. 4. Captive vultures are also exposed to NSAIDs through veterinary care. 5. A survey of wildlife veterinarians found the use of flunixin caused visceral gout and death in 2 out of 4 cases involving a captive Gyps vulture.