Comparative Study of the Efficacy of Flunixin, Ketoprofen and Phenylbutazone in Delman Horses with Mild Colic

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Study of the Efficacy of Flunixin, Ketoprofen and Phenylbutazone in Delman Horses with Mild Colic Sys Rev Pharm 2020; 11(5): 464 468 A multifaceted review journal in the field of pharmacy E-ISSN 0976-2779 P-ISSN 0975-8453 Comparative Study of the Efficacy of Flunixin, Ketoprofen and Phenylbutazone in Delman Horses with Mild Colic Agus Purnomo1, Arya Pradana Wicaksono2, Dodit Hendrawan2, Muhammad Thohawi Elziyad Purnama3* 1Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, DI Yogyakarta, 55281, Indonesia 2Postgraduate Studies, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia 3Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia *Corresponding author E-mail: [email protected] Article History: Submitted: 26.02.2020 Revised: 16.04.2020 Accepted: 21.05.2020 ABSTRACT This study aimed to evaluate the efficacy of flunixin, ketoprofen and multiple range test. The results showed a significant alleviation in all phenylbutazone on serum biochemistry, plasma catecholamines and observed variables on Day 13, although the use of various NSAIDs serum cortisol in Delman horses with mild colic. During the study showed no significant difference. period, 32 horses were evaluated due to mild colic. Flunixin, Keywords: serum biochemical, catecholamine, cortisol, colic, NSAIDs ketoprofen, and phenylbutazone were administered intravenously at Correspondence: the recommended dose rates of 1.0; 2.2 and 4.4 mg/kg, respectively. Muhammad Thohawi Elziyad Purnama Administration of the NSAIDs commenced on Day 1 and continued Department of Veterinary Anatomy, Faculty of Veterinary Medicine, every 12 h for 12 days. Blood samples collected between days 2, 5, 9 Universitas Airlangga, Surabaya, 60115, Indonesia and 13 to evaluate AST, ALP, GGT, creatinine, urea, epinephrine, E-mail: [email protected] norepinephrine, and cortisol level. The data analysis performed using DOI: 10.31838/srp.2020.5.64 Multivariate analysis of variance (Manova) followed by Duncan @Advanced Scientific Research. All rights reserved INTRODUCTION MATERIALS AND METHODS Adult horse deaths by 50% were caused by digestive diseases, Ethical approval such as colic, diarrhea, or enterotoxemia. The incidence of This study approved by Indonesian Horse Veterinarian colic is estimated at 13.6% per year in horses aged 6 months Association and according to the standard operating or more in 28 US states.1 Although 75% of colic cases recover procedure for colic treatment. in less than 24 hours, 67% of horses with colic were examined by veterinarians, of which 85% receive intensive treatment. Animals The probability of a horses' death rate is very high when All Delman horses with mild colic examined at each referred to an animal clinic.2 enclosured between June 29 to August 21, 2019, were eligible Colic is a general term used for symptoms of abdominal pain for inclusion in this study. To be included in the study, a that can be caused by a variety of different conditions. Colic blood sample for the measurement of selected variables had is a symptom that must be anticipated by horse owners to have been collected from the affected horse within 30 because it can cause horse death. In some cases, colic can minutes. For eligible horses (age, sex, breed, heart rate at cause death within hours.3 Other studies have reported the initial evaluation, and suspected mild colic) enrolled to colic associated with food material, parasites infections, evaluate the blood sample. dental diseases, access to water, but the cause of the majority 4 of colic cases is unknown. Administration of the NSAIDs Flunixin, ketoprofen, and phenylbutazone belong to a group Administration of the NSAIDs commenced at 07.00 hours on of nonsteroidal anti-inflammatory drugs (NSAIDs) Day 1, and continued every 12 h for 12 days. Flunixin compounds. Other compounds such as salicylates (aspirin), meglumine (Flumine, Jaapharm Canada Inc); ketoprofen propionic acid (ibuprofen, phenoprofen, ketoprofen and (Ketofen, Zoetis) and phenylbutazone (Phenylbute, Phoenix naproxen), pyrazolone (phenylbutazone), anthranilic acid Pharm) were administered intravenously via an indwelling (meclofenamic acid), and aminonicotinic acid (flunixin) are 6.5 mm catheter (Equivet Stallion, North Yorkshire, UK) in also included as NSAIDs derivatives. The use of NSAIDs is as the jugular vein, at the recommended dose rates of 1.0; 2.2 an anti-pyretic, anti-inflammatory, and analgesic and 4.4 mg/kg, respectively. 5 compound. The efficacy of NSAIDs is still the first choice for reducing Serum evaluation 6 colic symptoms. This study aimed to evaluate the efficacy of Each blood sample for serum measurement was allowed to flunixin, ketoprofen and phenylbutazone on serum clot before centrifugation (1500 X g for 10 minutes), and an biochemistry, plasma catecholamines and serum cortisol in aliquot of the serum was stored at -80oC until analyzed using Delman horses with mild colic. the clinical chemistry analyzer Hitachi 902® (Roche Diagnostics, USA) for serum biochemical level7 and validated using radioimmunoassay for serum cortisol.8 Each blood sample for measurement of plasma epinephrine and norepinephrine concentrations was centrifuged immediately after collection, and plasma aliquots were stored at -80oC until analyzed using highly-performance liquid 464 Systematic Review Pharmacy Vol 11, Issue 5, 2020 Muhammad Thohawi Elziyad Purnama et al / Comparative Study of the Efficacy of Flunixin, Ketoprofen and Phenylbutazone in Delman Horses with Mild Colic chromatography (HPLC).9 All blood samples collected GGT (Figure 1-3). Oxyphenbutazone inhibits between days 2, 5, 9 and 13 to determine the trend after phenylbutazone metabolism. The liver's capacity to NSAIDs administration. metabolize phenylbutazone is not optimal at relatively low doses of the drug, producing dose-dependent kinetics.16 Statistical analysis Phenylbutazone is widely used in horses for various All data on the following variables i.e. aspartate musculoskeletal disorders. Phenylbutazone also has an aminotransferase (AST), alkaline phosphatase (ALP), endotoxin antagonistic effect on intestinal motility. gamma‐glutamyltransferase (GGT), creatinine, urea, Phenylbutazone inhibits prostaglandin synthesis at low epinephrine, norepinephrine, and cortisol level compared plasma concentrations in horses (5- 6 This between days 2, 5, 9 and 13 after administered NSAIDs, difference may be due to species differences in the structure respectively. The data analysis performed using Multivariate of Cox.17 An initial dose of 4.4 mg/kg every 12 hours on the analysis of variance (Manova) followed by Duncan multiple first day of therapy is followed by a decrease in dose and an range test (p<0.05) (IBM, USA). increase in the dosing interval for subsequent therapy.18 Due to the accumulated withdrawal time of long-standing RESULTS AND DISCUSSIONS phenylbutazone and oxyphenbutazone, chronic therapy During the study period, 32 horses were evaluated due to must be at the lowest possible dose and the longest dose 19 mild colic. NSAIDs administered in horses with colic i.e. interval that may still control pain. flunixin (n=11), ketoprofen (n=11), and phenylbutazone Decreased creatinine (Figure 4) and urea (Figure 5) levels (n=10). There were no significant differences (p>0.05) after Cox-1 and Cox-2 inhibition occur in peripheral 20,21 between the administration of flunixin, ketoprofen, and tissues. This inhibition interferes with the process of phenylbutazone on the following variables: AST (Figure 1), converting arachidonic acid into prostaglandins. ALP (Figure 2), GGT (Figure 3), creatinine (Figure 4), urea Prostaglandins are the main protective component in the (Figure 5), epinephrine (Figure 6), norepinephrine (Figure hemodynamic function of the kidneys. 63% of NSAIDs are 7), and cortisol level (Figure 8). metabolized through glucuronidation and 34% through On the other hand, the results showed significantly different sulfation in the liver. Water-soluble metabolites will be (p<0.05) between days 2, 5, 9 and 13 (Figure 1-8). Compared excreted through the kidneys. N-Acetyl p-benzoquinone to the first day when the initial diagnosis of mild colic in (NAPQI) is a reactive intermediate formed when oxidation horses followed by a pre-treatment blood collection, all <5% paracetamol by the cytochrome P-450 enzyme. The variables showed an alleviation trend in levels. The alleviation decrease in urea in the results of this study was obtained of serum biochemical, plasma catecholamine and serum because the effect of NSAIDs was converted to inactive cortisol levels were highly significant on Day 13. metabolites, non-electrophilic, and decreased toxic effects for Non-steroidal anti-inflammatory drugs (NSAIDs) are the liver and kidneys. The decrease in NAPQI will prevent important veterinary medicines for most mammalian tubular damage which can be characterized by a decrease in 22 species. In recent years, the use of NSAIDs has increased serum creatinine and urea levels. rapidly to handle clinical cases.10 NSAIDs can reduce pain and inflammation without immunosuppressive and CONCLUSION metabolic side effects associated with corticosteroids (Figure It can be concluded that there were no significant on the 8). Flunixin meglumine is used in veterinary practice as an following variable: AST, ALP, GGT, creatinine, urea, analgesic, antipyretic, and anti-inflammatory drug. The use epinephrine, norepinephrine, and cortisol after administered of flunixin in ruminants for the treatment of various flunixin,
Recommended publications
  • Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep
    animals Article Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep Shashwati Mathurkar 1,*, Preet Singh 2 ID , Kavitha Kongara 2 and Paul Chambers 2 1 1B, He Awa Crescent, Waikanae 5036, New Zealand 2 School of Veterinary Sciences, College of Sciences, Massey University, Palmerston North 4474, New Zealand; [email protected] (P.S.); [email protected] (K.K.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +64-221-678-035 Received: 13 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Simple Summary: Scarcity of non-steroidal anti-inflammatory drugs (NSAID) to minimise the pain in sheep instigated the current study. The aim of this study was to know the pharmacokinetic parameters of salicylic acid in New Zealand sheep after administration of multiple intravenous and oral doses of sodium salicylate (sodium salt of salicylic acid). Results of the study suggest that the half-life of the drug was shorter and clearance was faster after intravenous administration as compared to that of the oral administration. The minimum effective concentration required to produce analgesia in humans (16.8 µL) was achieved in sheep for about 0.17 h in the current study after intravenous administration of 100 and 200 mg/kg body weight of sodium salicylate. However, oral administration of these doses failed to achieve the minimum effective concentration as mentioned above. This study is of significance as it adds valuable information on pharmacokinetics and its variation due to breed, species, age, gender and environmental conditions.
    [Show full text]
  • Flunixin, Extension to Horses
    The European Agency for the Evaluation of Medicinal Products Veterinary Medicines and Information Technology EMEA/MRL/744/00- FINAL June 2000 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS FLUNIXIN (Extension to horses) SUMMARY REPORT (2) 1. Flunixin is a non-steroidal anti-inflammatory drug (NSAID), and a non-narcotic analgesic with antipyretic activities. In veterinary medicine, it is used with meglumine as solubilizer as flunixin meglumine. Flunixin meglumine is used in the alleviation of inflammation and pain associated with musculo-skeletal disorders and colic in horses; the control of acute inflammation associated with infectious diseases in cattle and as an aid in the treatment of mastitis metritis agalactia syndrome (MMA) in sows. A dose of 2.2 mg/kg bw by the intravenous route once a day for up to 3 days is indicated for bovines, whilst 2.2 mg/kg bw intramuscularly (up to 2 injections, 12 hours apart) is recommended for sows affected by MMA syndrome. Flunixin meglumine is also used in veterinary medicine in combination with oxytetracycline for the treatment of bovine pneumonia at a dose of 2 mg/kg bw (once a day for 3 to 5 days by the intravenous or the intramuscular routes). The Committee for Veterinary Medicinal Products (CVMP) previously retained an ADI of 6 µg/kg bw (i.e. 360 µg/person) for flunixin, by applying a safety factor of 100 to the NOEL of 0.6 mg/kg bw/day which was established in a 90-day repeated dose gavage study in the dog. Flunixin is currently included in Annex I of Council Regulation (EEC) No 2377/90 in accordance with the following table: Pharmacologically Marker Animal MRLs Target tissue Other active substance(s) residue species provisions Flunixin Flunixin Bovine 20 µg/kg Muscle 30 µg/kg Fat 300 µg/kg Liver 100 µg/kg Kidney 5-Hydroxy Bovine 40 µg/kg Milk flunixin Flunixin Porcine 50 µg/kg Muscle 10 µg/kg Skin + fat 200 µg/kg Liver 30 µg/kg Kidney An application has now been received for the extention of the MRLs for flunixin to edible tissues of horses.
    [Show full text]
  • Research Article RP-HPLC Method for Determination of Several Nsaids and Their Combination Drugs
    Hindawi Publishing Corporation Chromatography Research International Volume 2013, Article ID 242868, 13 pages http://dx.doi.org/10.1155/2013/242868 Research Article RP-HPLC Method for Determination of Several NSAIDs and Their Combination Drugs Prinesh N. Patel, Gananadhamu Samanthula, Vishalkumar Shrigod, Sudipkumar C. Modh, and Jainishkumar R. Chaudhari Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Andhra Pradesh 500037, India Correspondence should be addressed to Gananadhamu Samanthula; [email protected] Received 29 June 2013; Accepted 13 October 2013 Academic Editor: Andrew Shalliker Copyright © 2013 Prinesh N. Patel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An RP-HPLC method for simultaneous determination of 9 NSAIDs (paracetamol, salicylic acid, ibuprofen, naproxen, aceclofenac, diclofenac, ketorolac, etoricoxib, and aspirin) and their commonly prescribed combination drugs (thiocolchicoside, moxifloxacin, clopidogrel, chlorpheniramine maleate, dextromethorphan, and domperidone) was established. The separation was performed on ∘ Kromasil C18 (250 × 4.6 mm, 5 m) at 35 C using 15 mM phosphate buffer pH 3.25 and acetonitrile with gradient elution ata flow rate of 1.1 mL/min. The detection was performed by a diode array detector (DAD) at 230 nm with total run time of 30min. 2 Calibration curves were linear with correlation coefficients of determinationr ( ) > 0.999. Limit of detection (LOD) and Limit of quantification (LOQ) ranged from 0.04 to 0.97 g/mL and from 0.64 to 3.24 g/mL, respectively.
    [Show full text]
  • 01012100 Pure-Bred Horses 0 0 0 0 0 01012900 Lives Horses, Except
    AR BR UY Mercosu PY applied NCM Description applied applied applied r Final Comments tariff tariff tariff tariff Offer 01012100 Pure-bred horses 0 0 0 0 0 01012900 Lives horses, except pure-bred breeding 2 2 2 2 0 01013000 Asses, pure-bred breeding 4 4 4 4 4 01019000 Asses, except pure-bred breeding 4 4 4 4 4 01022110 Purebred breeding cattle, pregnant or lactating 0 0 0 0 0 01022190 Other pure-bred cattle, for breeding 0 0 0 0 0 Other bovine animals for breeding,pregnant or 01022911 lactating 2 2 2 2 0 01022919 Other bovine animals for breeding 2 2 2 2 4 01022990 Other live catlle 2 2 2 2 0 01023110 Pure-bred breeding buffalo, pregnant or lactating 0 0 0 0 0 01023190 Other pure-bred breeding buffalo 0 0 0 0 0 Other buffalo for breeding, ex. pure-bred or 01023911 pregnant 2 2 2 2 0 Other buffalo for breeding, except pure-bred 01023919 breeding 2 2 2 2 4 01023990 Other buffalos 2 2 2 2 0 01029000 Other live animals of bovine species 0 0 0 0 0 01031000 Pure-bred breedig swines 0 0 0 0 0 01039100 Other live swine, weighing less than 50 kg 2 2 2 2 0 01039200 Other live swine, weighing 50 kg or more 2 2 2 2 0 01041011 Pure-bred breeding, pregnant or lactating, sheep 0 0 0 0 0 01041019 Other pure-bred breeding sheep 0 0 0 0 0 01041090 Others live sheep 2 2 2 2 0 01042010 Pure-bred breeding goats 0 0 0 0 0 01042090 Other live goats 2 2 2 2 0 Fowls spec.gallus domestic.w<=185g pure-bred 01051110 breeding 0 0 0 0 0 Oth.live fowls spec.gall.domest.weig.not more than 01051190 185g 2 2 2 2 0 01051200 Live turkeys, weighing not more than 185g 2 2
    [Show full text]
  • Nicolau Syndrome: a Review of Case Studies, Pharm Sci
    The following manuscript was accepted for publication in Pharmaceutical Sciences. It is assigned to an issue after technical editing, formatting for publication and author proofing. Citation: Mojarrad P, Mollazadeh H, Barikbin B, Oghazian MB. Nicolau syndrome: a review of case studies, Pharm Sci. 2021, doi: 10.34172/PS.2021.32 Nicolau syndrome: a review of case studies Paria Mojarrad1, Hamid Mollazadeh2,3, Behnaz Barikbin1, Mohammad Bagher Oghazian4,1* 1 Clinical Research Development Unit, Imam Hasan Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran 2 Department of Physiology and Pharmacology, North Khorasan University of Medical Sciences, Bojnurd, Iran 3 Natural Product and Medicinal Plant Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran 4 Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran *Corresponding author: Mohammad Bagher Oghazian, Tel: +989151087370.Email: [email protected] Pharmaceutical Sciences (Indexed in ISI and Scopus) https://ps.tbzmed.ac.ir Abstract Nicolau syndrome, although it is quite rare, often occurs following intramuscular injections of different medications, especially diclofenac and penicillins. Accordingly, its symptoms usually begin with severe pain during injection, leading to ulceration and necrosis of the local tissue over time. Immediate diagnosis and treatment in the case of this syndrome, are of great importance. There are no established criteria for Nicolau's diagnosis, and preferably, these can be achieved by examining the patient's symptoms and eliminating differential diagnoses. The proposed treatments are primarily symptomatic therapy and measures such as fasciotomy, debridement, and plastic surgery provided in the affected area. The exact cause of this syndrome has not been determined yet.
    [Show full text]
  • Non-Steroidal Anti-Inflammatory Drugs (Nsaids)
    NON-STEROIDAL ANTI-INFLAMMATORY DRUGS ANALYSIS IN MILK BY QUECHERS AND LC-MS: LOW AND HIGH RESOLUTION DETECTION AND CONFIRMATION APPROACHES A. Rúbies1, L. Guo2, I. Beguiristain1, F. Centrich1, M. Granados2 1. Laboratori Agència de Salut Pública de Barcelona, 2. Departament de Química Analítica - Universitat de Barcelona. * INTRODUCTION NON-STEROIDAL ANTI-INFLAMATORY DRUGS (NSAIDs) Non-steroidal anti-inflammatory drugs (NSAIDs) are used as anti-inflammatory, analgesic and OXICAMS ANTHRANILIC ACID DERIVATIVES ACETIC ACID antipyretic drugs in medicine and veterinary. Their action mechanism is based on the blocking of PROPIONIC ACID DERIVATIVES DERIVATIVES the biosynthesis of prostaglandins. NSAIDs are highly effective and extensively used, but they have some adverse side effects, such as hepatotoxicity, renal disorders or allergic reactions. In the European Union, to assure food safety and protect consumers, maximum residue limits have been established for some authorised NSAIDs in food products. Therefore, high throughput and reliable analytical methodology is required for the effective control of NSAIDs in food from animal Flufenamic acid origin. Liquid chromatography (LC) coupled to mass spectrometry (MS) is currently the technique of choice in confirmatory analysis of NSAIDs residues. We present a new method for the determination of representative NSAIDs in milk based on QuEChERS methodology, LC-MS/MS and UHPLC-HRMS. Meloxicam Ketoprofen Diclofenac EU Maximum Residue Limits (MRLs) Recommended NSAIDs concentrations for NSAIDs in milk.
    [Show full text]
  • 18 Analgesics Anti-Inflammatory Drugs and Antipyretics the Dosage of Alfentanil Used Depends on Whether the 2
    18 Analgesics Anti-inflammatory Drugs and Antipyretics The dosage of alfentanil used depends on whether the 2. Virkkilä M, et al. Pharmacokinetics and effects of i.m. alfentanil minutes). However, some considered that there was no over- patient has spontaneous respiration or assisted ventila- as premedication for day-case ophthalmic surgery in elderly pa- all advantage of epidural over intravenous alfentanil either as tients. Br J Anaesth 1993; 71: 507–11. patient-controlled analgesia2 or by continuous infusion.3 tion and on the expected duration of anaesthesia. Doses 3. Hughes DA, Hill DA. Intrathecal alfentanil with and without bupivacaine for analgesia in labour. Anaesthesia 2000; 55: 1. Chrubasik J, et al. Relative analgesic potency of epidural fenta- are adjusted according to the needs of the patient. Chil- 1116–21. nyl, alfentanil, and morphine in treatment of postoperative pain. dren may require higher or more frequent doses than Anesthesiology 1988; 68: 929–33. Administration in children. Alfentanil is licensed in the UK 2. Chauvin M, et al. Equivalence of postoperative analgesia with adults, whereas the elderly or debilitated patients may for use in ventilated children during surgical procedures as an patient-controlled intravenous or epidural alfentanil. Anesth An- require lower or less frequent doses. Obese patients analgesic and adjunct to general anaesthetics or as a primary an- alg 1993; 76: 1251–8. may require doses based on their ideal (lean) body- aesthetic. When used as an adjunct in the maintenance of gen- 3. van den Nieuwenhuyzen MCO, et al. Epidural vs intravenous infusion of alfentanil in the management of postoperative pain weight.
    [Show full text]
  • In 1977 a Conclusion of the National Association of State Racing Commissioners Veterinary-Chemist Advisory Board Concluded That
    Lawrence R. Soma, VMD, University of Pennsylvania, School of Veterinary Medicine. This review was undertaken at the request of the Racing Medication and Testing Consortium, Medication Advisory Committee. Review: The use of phenylbutazone in the horse This review presents a brief historical prospective of the genesis of regulated medication in the US racing industry of which the non-steroidal anti-inflammatory drug phenylbutazone (PBZ) is the focus. It presents some historical guide posts in the development of the current rules on the use on PBZ by racing jurisdictions in the US. Based on its prevalent use, PBZ still remains a focus of attention. The review examines the information presented in a number of different models used to determine the effects and duration of PBZ in the horse. They include naturally occurring lameness and reversible induced lameness models that directly examine the effects and duration of the administration of various doses of PBZ. The review also examines indirect plasma and tissue models studying the suppression of the release of arachidonic acid- derived mediators of inflammation. The majority of studies suggest an effect of PBZ at 24 hours at 4.4 mg/kg. This reflects and substantiates the opinion of many clinical veterinarians, many of whom will not perform a pre-purchase lameness examination unless the horse is shown to be free of NSAID. This remains the opinion of many Commission Veterinarians in that they wish to examine a horse pre-race without the possibility of a NSAID interfering with the examination and masking possible musculoskeletal conditions. Based on scientific studies, residual effects of PBZ remain at 24 hours following administration.
    [Show full text]
  • Nonsteroidal Anti-Inflammatory Agents Differ in Their Ability to Suppress
    Oncogene (2004) 23, 9247–9258 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $30.00 www.nature.com/onc Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-jB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation Yasunari Takada1, Anjana Bhardwaj1, Pravin Potdar1 and Bharat B Aggarwal*,1 1Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, TX 77030, USA Nonsteroidal anti-inflammatory drugs (NSAIDs) such as Introduction aspirin have been shown to suppress transcription factor NF-jB, which controls the expression of genes such as Owing to its analgesic and anti-inflammatory effects, cyclooxygenase (COX)-2 and cyclin D1, leading to aspirin (acetylsalicylic acid), first synthesized in 1897, inhibition of proliferation of tumor cells. There is no was approved for the treatment of rheumatoid arthritis systematic study as to how these drugs differ in their ability in 1899 (Botting, 1999). Since then several other to suppress NF-jB activation and NF-jB-regulated gene nonsteroidal anti-inflammatory drugs (NSAIDs) have expression or cell proliferation. In the present study, we been synthesized and approved for human use. The anti- investigated the effect of almost a dozen different commonly inflammatory and analgesic effects of NSAIDs have used NSAIDs on tumor necrosis factor (TNF)-induced NF- been shown to be due to their ability to inhibit the jB activation and NF-jB-regulated gene products, and on enzymatic activity of cyclooxygenases (COXs), which cell proliferation. Dexamethasone, an anti-inflammatory convert arachidonic acid to prostaglandins (PGs) (Vane, steroid, was included for comparison with NSAIDs.
    [Show full text]
  • Topical NSAID for Osteoarthritis Safe and Effective (Print)
    The Horse: Study: Topical NSAID for Osteoarthritis Safe and Effective (print) Study: Topical NSAID for Osteoarthritis Safe and Effective by: Stacey Oke, DVM, MSc February 26 2009 Article # 13686 Move over, Bute. In a new independent study, researchers at Colorado State University's Gail Holmes Equine Orthopaedic Research Center concluded that diclofenac liposomal cream (1% diclofenac sodium, trade name Surpass) is safer and more effective than phenylbutazone for treating discomfort associated with osteoarthritis in horses. Phenylbutazone, commonly known as "Bute," is a non-steroidal anti-inflammatory (NSAID) drug administered systemically (i.e., intravenously or orally) to help control the pain and inflammation caused by osteoarthritis in horses. "Considering that phenylbutazone and other NSAIDs are known to have important adverse effects in horses when used long-term and that these drugs are not able to alter the course of OA but only help control clinical signs, alternatives are needed," explained researcher David Frisbie, DVM, PhD, Dipl. ACVS. One such alternative is diclofenac liposomal cream--an NSAID that is applied to the skin overlying the affected joint(s) to control pain and inflammation of the tarsal, carpal, metacarpophalangeal, metatarsophalangeal and proximal interphalangeal joints. This product is approved by the Food and Drug Administration and is the first product of its kind manufactured for horses. Results of this study were presented at the 2007 annual American Association of Equine Practitioners' conference and were recently published in the study, "Evaluation of topically administered diclofenac liposomal cream for treatment of horses with experimentally induced osteoarthritis," in the February edition of the American Journal of Veterinary Research.
    [Show full text]
  • Flunixin: a Vulture-Toxic Drug
    Flunixin: a vulture-toxic drug Summary of evidence that flunixin is toxic to vultures; and that meloxicam, an alternative to flunixin, is not toxic to vultures as well as a safe and effective veterinary drug Version 1: November 2016 SAVE is an international consortium of conservation and research organisations whose mission is to respond to the vulture crisis in Asia by striving to halt vulture population declines and working to minimise their negative impacts on ecological and human health. For further details go to www.save-vultures.org Flunixin: a vulture-toxic drug SAVE 11.2016 Flunixin is toxic to Gyps vultures; however, meloxicam is not toxic to Gyps vultures and an effective alternative to flunixin for veterinary purposes Aim This paper, intended for decision-makers involved in drug licensing, presents evidence of the toxicity of flunixin, a non-steroidal anti-inflammatory drug (NSAID), to Gyps vultures; and the safety, to both vultures and domesticated animals, and effectiveness, in domesticated animals, of meloxicam, an alternative NSAID. Executive summary 1. The NSAID flunixin has been found in dead wild Gyps vultures. 2. Wild vultures are exposed to NSAIDs when feeding on carcasses of domesticated ungulates treated with these drugs shortly before death. 3. Published and unpublished data from wildlife forensic investigations in Spain shows visceral gout (i.e., a clinical sign of renal failure in birds) and flunixin residue, but not diclofenac residue, in carcasses of three Eurasian griffon vultures Gyps fulvus. 4. Captive vultures are also exposed to NSAIDs through veterinary care. 5. A survey of wildlife veterinarians found the use of flunixin caused visceral gout and death in 2 out of 4 cases involving a captive Gyps vulture.
    [Show full text]
  • List Item Frequently Asked Questions on Phenylbutazone in Horsemeat
    15 April 2013 Frequently asked questions on Phenylbutazone in horsemeat 1. What is phenylbutazone? 2. What is the situation regarding phenylbutazone in food in the EU? 3. Why was phenylbutazone banned for use in food-producing animals? 4. What are the known toxic effects of phenylbutazone? 5. What is the likelihood of consumers being exposed to phenylbutazone in horsemeat? 6. What were EFSA and EMA asked to do by the European Commission? 7. What information did EFSA and EMA consider in their risk assessment of phenylbutazone? 8. What are the main conclusions of the joint statement? 9. What did the report conclude with regard to the potential risk for consumers? 10. What recommendations did EFSA and EMA make to further reduce the risk of phenylbutazone entering the food chain? 11. What is EFSA’s role with regards to the management of issues such as the contamination of beef products with horsemeat? 12. What is EMA’s contribution to this joint risk assessment regarding the public health implications of phenylbutazone in horsemeat? 1. What is phenylbutazone? Phenylbutazone – sometimes also referred to as “bute” – is a substance that falls into the class of drugs known as non steroidal anti-inflammatory drugs (NSAIDs). NSAIDs are routinely used as painkillers in human and veterinary medicine. Phenylbutazone was introduced in 1949 as a human medicine for the treatment of rheumatoid arthritis and gout. These days it is used only under specialist supervision in patients who suffer from a severe form of arthritis where other treatments have not worked. Phenylbutazone is used for the treatment of pain and fever in horses and dogs.
    [Show full text]