Classification, Follow-Up, and Analysis of Gamma-Ray Bursts and Their Early-Time Near- Infrared/Optical Afterglows
Total Page:16
File Type:pdf, Size:1020Kb
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Classification, Follow-Up, and Analysis of Gamma-Ray Bursts and their Early-Time Near- Infrared/Optical Afterglows Permalink https://escholarship.org/uc/item/37f0c759 Author Morgan, Adam Nolan Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Classification, Follow-Up, and Analysis of Gamma-Ray Bursts and their Early-Time Near-Infrared/Optical Afterglows By Adam Nolan Morgan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Astrophysics in the Graduate Division of the University of California, Berkeley Committee in charge: Joshua S. Bloom, Chair Alexei V. Filippenko John Rice Spring 2014 Classification, Follow-Up, and Analysis of Gamma-Ray Bursts and their Early-Time Near-Infrared/Optical Afterglows Copyright 2014 by Adam Nolan Morgan 1 Abstract Classification, Follow-Up, and Analysis of Gamma-Ray Bursts and their Early-Time Near-Infrared/Optical Afterglows by Adam Nolan Morgan Doctor of Philosophy in Astrophysics University of California, Berkeley Joshua S. Bloom, Chair In the study of astronomical transients, deriving knowledge from discovery is a multifaceted process that includes real-time classification to identify new events of interest, deep, multi- wavelength follow-up of individual events, and the global analysis of multi-event catalogs. Here we present a body of work encompassing each of these steps as applied to the study of gamma-ray bursts (GRBs). First, we present our work on utilizing machine-learning algorithms on early-time metrics from the Swift satellite to inform the resource allocation of follow-up telescopes in order to optimize time spent on high-redshift GRB candidates. Next, we show broadband observations and analysis of the early-time afterglow of GRB 120119A, utilizing data obtained with a dozen telescope facilities both in space and on the ground. This event exhibits extreme red-to-blue color change in the first few minutes after the trigger at levels unseen in prior afterglows, and our model fits of this phenomenon reveal the best support yet for the direct detection of dust destruction in the local environment of a GRB. Finally, we present results from the PAIRITEL early-time near-infrared (NIR) afterglow catalog. The 1.3 meter PAIRITEL has autonomously observed 14 GRBs in under 3 minutes after the burst, yielding a homogenous sample of early-time JHKs light curves. Our analysis of these events provides constraints on the early-time NIR GRB afterglow luminosity function and gives insight into the importance of dust extinction in the suppression of some optical afterglows. i I dedicate this dissertation to my family. ii Contents List of Figuresv Acknowledgments vii 1 Introduction1 1.1 Classification and Follow-Up of GRBs......................1 1.2 The Role of Dust Extinction...........................2 1.2.1 Historical Overview............................2 1.2.2 Introduction to Dust Destruction....................5 1.2.3 Testing for Dust Destruction.......................6 1.3 Thesis Outline...................................7 2 Rapid, Machine-Learned Resource Allocation: Application to High-redshift GRB Follow-up9 2.1 Introduction.................................... 10 2.2 Data Collection.................................. 11 2.3 Classification Methodology............................ 15 2.3.1 Random Forest classification....................... 16 2.3.2 RATE GRB-z : Random forest Automated Triage Estimator for GRB redshifts.................................. 19 2.4 Validation of Classifier Performance....................... 20 2.4.1 Comparison of Weight Choices...................... 21 2.4.2 Effects of Feature Selection........................ 21 2.4.3 Final Classifier.............................. 22 2.4.4 Feature Importance of Classifier..................... 24 2.5 Discussion..................................... 25 2.5.1 Calibration on GRBs with unknown redshifts............. 25 2.5.2 Validation Set: Application to Recent GRBs.............. 27 2.5.3 Comparison to Previous Efforts..................... 31 2.6 Conclusions.................................... 32 Contents iii 3 Evidence for Dust Destruction from the Early-time Color Change of GRB 120119A 47 3.1 Introduction.................................... 48 3.2 Observations.................................... 49 3.2.1 Swift Observations............................ 49 3.2.2 PROMPT Observations......................... 50 3.2.3 PAIRITEL Observations......................... 50 3.2.4 KAIT Observations............................ 51 3.2.5 Liverpool Observations.......................... 51 3.2.6 SMARTS Observations.......................... 52 3.2.7 P60 Observations............................. 52 3.2.8 Gemini-S spectroscopy.......................... 53 3.2.9 Gemini-N Observations.......................... 53 3.2.10 Keck Observations............................ 54 3.2.11 Hubble Space Telescope Observations.................. 55 3.2.12 CARMA Millimeter Observations.................... 55 3.3 Analysis...................................... 55 3.3.1 Optical/NIR Light Curve........................ 55 3.3.2 Late-Time SED and Extinction Profile................. 56 3.3.3 Construction of Early-time SEDs.................... 62 3.3.4 Modelling Color Change......................... 63 3.3.5 Optical Rise and Shock Constraints................... 67 3.3.6 Host-Galaxy Properties.......................... 71 3.4 Discussion and Conclusions........................... 73 4 The PAIRITEL Early-time Near-infrared GRB Afterglow Catalog 84 4.1 Introduction.................................... 84 4.2 Methodology................................... 85 4.2.1 Data Collection.............................. 85 4.2.2 Data Reduction.............................. 87 4.2.3 Photometry................................ 88 4.3 Observations.................................... 90 4.3.1 GRB 051109A............................... 90 4.3.2 GRB 061126................................ 90 4.3.3 GRB 061222A............................... 91 4.3.4 GRB 070208................................ 93 4.3.5 GRB 071025................................ 93 4.3.6 GRB 080319A............................... 94 4.3.7 GRB 080319B............................... 94 4.3.8 GRB 080319C............................... 95 4.3.9 GRB 080320................................ 95 4.3.10 GRB 080604................................ 97 Contents iv 4.3.11 GRB 080607................................ 98 4.3.12 GRB 090530................................ 98 4.3.13 GRB 090618................................ 99 4.3.14 GRB 090709A............................... 99 4.4 Discussion..................................... 102 4.4.1 Detection Rates and the Role of Dust Extinction........... 102 4.4.2 Brightness and Luminosity Distributions................ 103 Bibliography 115 A Software and Web Products for GRB Follow-Up and Analysis 125 v List of Figures 1.1 SED Dependence on Absorption AV ........................3 1.2 SED Dependence on RV ...............................3 1.3 SED Dependence on Extinction Law........................4 1.4 SED Dependence on Spectral Index β ........................6 1.5 Optical Rise in GRB Afterglow from Dust Destruction..............7 2.1 Redshift distribution of long-duration Swift GRBs................. 12 2.2 Correlations of Early-time Swift Features...................... 16 2.3 Illustration of the RATE GRB-z Process........................ 20 2.4 Cross-validated Ranking Predictions of Training Data............... 22 2.5 Sensitivity of Efficiency and Purity to Classifier Weight.............. 23 2.6 Sensitivity of Efficiency and Purity to Useless Features.............. 24 2.7 Efficiency and Purity of Classifier for z 4:0 Cutoff................ 25 2.8 Efficiency and Purity of Classifier for z ≥ 3:5 Cutoff................ 26 2.9 Efficiency and Purity of Classifier for z ≥ 3:0 Cutoff................ 27 2.10 Feature Importance..................................≥ 28 2.11 Calibration of Follow-up Criterion ........................ 29 Q 3.1 GMOS-South Spectrum of GRB 120119A...................... 53 3.2 First-day Optical/NIR Light Curve of GRB 120119A............... 57 3.3 XRT Light Curve of GRB 120119A......................... 58 3.4 Late-time SED of GRB 120119A........................... 59 3.5 PAIRITEL Light Curve Interpolation........................ 64 3.6 Time-varying Spectral Energy Distribution..................... 66 3.7 Best-fit Model Values for AV (t) (mag) and β(t)................... 68 3.8 Covariance Between ∆AV and ∆β .......................... 69 3.9 False-color NIR HST Imaging of the Field of GRB 120119A............ 72 4.1 Histogram of PAIRITEL response times to Swift triggers.............. 86 4.2 False color (J,H,Ks) PAIRITEL image of the field of GRB 090709A....... 88 4.3 Optimal Aperture Determination.......................... 89 4.4 PAIRITEL Light Curve of GRB 051109A..................... 91 4.5 PAIRITEL Light Curve of GRB 061126...................... 92 List of Figures vi 4.6 PAIRITEL Light Curve of GRB 061222A..................... 92 4.7 PAIRITEL Light Curve of GRB 070208...................... 93 4.8 PAIRITEL Light Curve of GRB 071025...................... 94 4.9 PAIRITEL Light Curve of GRB 080319A..................... 95 4.10 PAIRITEL Light Curve of GRB 080319B...................... 96 4.11 PAIRITEL Light Curve of GRB 080319C...................... 96 4.12 PAIRITEL Light Curve of GRB 080320...................... 97 4.13 PAIRITEL