Dark Matter Direct Detection: a status review

Kaixuan Ni University of California San Diego

July 2019, DPF 2019 We used to think WIMPs are the perfect candidate for and detecting them is just a matter of target mass and time (exposure)

incoming WIMPs WIMPs detector

nuclear recoils

H. Baer, et al., arXiv:1407.0017 Phys. Rep. (2015)

2 14

Dark matter direct detection provides a very clean way to probe the nature! of DM. Figure 11. Background sources and shielding in a typical direct detection experiment 2 2 Mχ = 50 GeV/c , σχ-n = 1e-46 cm 3 10 • DM local density: 0.3~0.4 GeV/cm Xe (A=131) Ge (A=73) /Ton/Year] • WIMP dark matter: GeV~TeVneutrinos form a fundamentalnr lower bound on theAr (A=40) cross section for background-free WIMP detection [43].

Next generation experiments1 will15 have evt/ton/year sensitivity > 10 keV within an order of magnitude of the neutrino signal for • Velocity: O(100) km/s most of the mass range, and will actually detect the 8B solar neutrino signal. Rate [Events/keV • Simplest spin-(in)dependentFinally, models another method to deal with backgrounds is to exploit the fact that the Earth is moving through the dark matter that surrounds10−1 our galaxy, yielding a “WIMP wind” that appears to come from the constellation • Produce low energy nuclearCygnus. recoils This should, in principle, create a small “annual modulation” in the detected WIMP rates, as well as a somewhat larger daily modulation, as shown in Fig. 12. However, if such e↵ects were detected in an Annual and diurnal modulation • −2 10 0 10 20 30 40 50 60 70 80 Nuclear Recoil Energy [keV ] nr

June 2

dR ⇢ vesc d = 0 N (v, E )vf(v)dv dE m m dE R R N Zvmin R

Dec 2 3 Figure 12. Schematic of the possible sources of annual modulation (left) and daily modulation (right) e↵ects if WIMPs are detected in direct detection experiments

experiment, there would still have to be a convincing demonstration that there are no such modulations in background sources.

Community Planning Study: Snowmass 2013 Dark Matter “Gold Rush”

Heat

nuclear recoils

Charge Light

4 Dark Matter “Gold Rush”

Target Materials ๏Xe, Ar, Ne, He ๏Ge, Si, He ๏C3F8, CF3I ๏Ge, Si, CaWO4, NaI ๏NaI, CsI ๏CS2, CF4, CHF3 Heat

nuclear recoils

Charge Light

4 Dark Matter “Gold Rush”

Target Materials Techniques ๏Xe, Ar, Ne, He ๏Noble liquids ๏Ge, Si, He ๏Low-threshold ๏C3F8, CF3I ๏Bubble chambers ๏Ge, Si, CaWO4, NaI ๏Cryogenic bolometers ๏NaI, CsI ๏Scintillating crystals ๏CS2, CF4, CHF3 Heat ๏Directional detectors

nuclear recoils

Charge Light

4 Dark Matter “Gold Rush”

Target Materials SIMPLE Techniques ๏Xe, Ar, Ne, He PICASSO ๏Noble liquids ๏Ge, Si, He COUPP ๏Low-threshold ๏C3F8, CF3I PICO ๏Bubble chambers ๏Ge, Si, CaWO4, NaI ๏Cryogenic bolometers ๏NaI, CsI ๏Scintillating crystals ๏CS2, CF4, CHF3 Heat ๏Directional detectors

nuclear recoils

Charge Light

4 Dark Matter “Gold Rush”

Target Materials SIMPLE Techniques ๏Xe, Ar, Ne, He PICASSO ๏Noble liquids ๏Ge, Si, He COUPP ๏Low-threshold ๏C3F8, CF3I PICO ๏Bubble chambers ๏Ge, Si, CaWO4, NaI ๏Cryogenic bolometers ๏NaI, CsI ๏Scintillating crystals ๏CS2, CF4, CHF3 Heat ๏Directional detectors

CoGeNT CDEX nuclear DAMIC recoils SENSEI NEWS-G Charge Light DRIFT MIMAC DMTPC NEWAGE

4 Dark Matter “Gold Rush”

Target Materials SIMPLE Techniques ๏Xe, Ar, Ne, He PICASSO ๏Noble liquids ๏Ge, Si, He COUPP ๏Low-threshold ๏C3F8, CF3I PICO ๏Bubble chambers ๏Ge, Si, CaWO4, NaI ๏Cryogenic bolometers ๏NaI, CsI ๏Scintillating crystals ๏CS2, CF4, CHF3 Heat ๏Directional detectors

CoGeNT CDEX nuclear DAMIC recoils DAMA SENSEI DM-Ice NEWS-G Charge Light COSINE DRIFT SABRE MIMAC ANAIS DMTPC DEAP NEWAGE XMASS

4 Dark Matter “Gold Rush”

Target Materials SIMPLE Techniques ๏Xe, Ar, Ne, He PICASSO ๏Noble liquids ๏Ge, Si, He COUPP ๏Low-threshold ๏C3F8, CF3I PICO ๏Bubble chambers ๏Ge, Si, CaWO4, NaI ๏Cryogenic bolometers ๏NaI, CsI ๏Scintillating crystals ๏CS2, CF4, CHF3 Heat ๏Directional detectors

SuperCDMS CRESST EDELWEISS COSINUS CoGeNT CDEX nuclear DAMIC recoils DAMA SENSEI DM-Ice NEWS-G Charge Light COSINE DRIFT SABRE MIMAC ANAIS DMTPC DEAP NEWAGE XMASS

4 Dark Matter “Gold Rush”

Target Materials SIMPLE Techniques ๏Xe, Ar, Ne, He PICASSO ๏Noble liquids ๏Ge, Si, He COUPP ๏Low-threshold ๏C3F8, CF3I PICO ๏Bubble chambers ๏Ge, Si, CaWO4, NaI ๏Cryogenic bolometers ๏NaI, CsI ๏Scintillating crystals ๏CS2, CF4, CHF3 Heat ๏Directional detectors

SuperCDMS CRESST EDELWEISS COSINUS CoGeNT CDEX nuclear DAMIC recoils DAMA SENSEI DM-Ice NEWS-G Charge Light COSINE DRIFT SABRE MIMAC LUX/LZ ANAIS ArDM DMTPC PandaX DEAP DarkSide NEWAGE XENON XMASS

4 # of researchers in this field increased by ~10 times in the last 20 years

5 # of researchers in this field increased by ~10 times in the last 20 years

Detector sensitivity improved by 5 orders of magnitude in the last 20 years

5 DAMA/LIBRA so far the only experiment claimed detection of “dark matter”

arXiv:1805.10486 Nucl. Phys. At. Energy 19, 307 (2018)

• phase-1: 1.33 ton x yr (14 annual cycles) • phase-2 • 250 kg radio-pure NaI crystals • 1.13 ton x yr (6 annual cycles) • Sm = 0.0103 ± 0.0008 cpd/kg/keV • confirms phase-1 modulation at 9.5σ C.L.

6 Many experiments have already ruled our DAMA signals in various dark matter models.

Xe Target

XENON100: 5.7σ discrepancy with DAMA LUX: 9.2σ tension with DAMA arXiv:1701.00769 arXiv:1807.07113 PRL 118, 101101 (2017) PRD 98, 062005 (2018)

7 Many experiments have already ruled our DAMA signals in various dark matter models.

Xe Target

XENON100: 5.7σ discrepancy with DAMA LUX: 9.2σ tension with DAMA arXiv:1701.00769 arXiv:1807.07113 PRL 118, 101101 (2017) PRD 98, 062005 (2018)

Ge Target

CDEX modulation analysis: excluded DAMA/LIBRA & CoGeNT modulation signals at >99.99% & 98% C.L. arXiv:1904.12889 7 Experiments using NaI target in confront with DAMA COSINE-100

Nature 564, 83-86 (2018) analysis on absolute rate

• 106 kg NaI crystals • first 59.5 days of data • ruled out DAMA signal as from WIMP SI interaction with NaI

8 Experiments using NaI target in confront with DAMA COSINE-100 arXiv:1903.10098 Nature 564, 83-86 (2018) PRL (2019) analysis on absolute rate model independent modulation analysis

• 1.7 years of data for modulation analysis • analysis for 2-6 keV region • 106 kg NaI crystals • R = 2.7 cpd/kg/keV first 59.5 days of data • ruled out DAMA signal as from • Sm = 0.0092 ± 0.0067 cpd/keV/kg • so far not yet in conflict with DAMA WIMP SI interaction with NaI • • also consistent with NO modulation

8 Experiments using NaI target in confront with DAMA ANAIS-112

• 112.5 kg NaI crystals • 1.5 years of data arXiv:1903.03973 • analysis for 1-6 keV region PRL 123, 031301 (2019) • R = 2.94 ± 0.87 exp(−t/217.8) cpd/kg/keV • Sm = − 0.0044 ± 0.0057 cpd/kg/keV • Consistent with NO modulation five years running to reach 3 sensitivity of DAMA • σ 9 Comments on the annual modulation search

• All these results rely on signal rates only. • Most analyses do NOT distinguish signal types: electronic (ER) or nuclear recoils (NR) • Most electronic recoil events of these experiments are coming from radioactive background

• no claim is valid without fully understanding the background

• Need experiments with the capability to distinguish ER/NR signals to detect WIMPs.

10 Technology with ER/NR discrimination and better background control

• Bubble chambers • Cryogenic bolometers • Liquid • Liquid Xenon: two-phase (TPC)

• Good 3D position resolution (~mm) • S2/S1 to distinguish ERs & NRs • Large target mass (ton-scale) • Low background • Low threshold • keV with both S1+S2 • <100 eV with S2-only

11 The Era of Liquid Xenon TPCs

100 cm 48 cm 60 cm

LUX PandaX-II Active Target: ~250 kg Active Target: ~580 kg XENON1T Active Target: 2000 kg

12 Reducing the dominant internal electronic recoils background

Kr85 dominant

XENON1T

Kr/Xe~0.66 ppt

13 XENON1T placed the most stringent constraints for WIMPs above 6 GeV/c2

arXiv:1805.12562 PRL 121, 111302 (2018)

• 279 days data in 1.3 ton (1.0 ton yr) • Energy region: 5-41 keVnr (1.4-10.6 keVee) • ER background: 82 evts/ton/yr/keVee • Best SI limit: 4.1 x10-47 cm2 at 30 GeV/c2

14 XENON1T placed the most stringent constraints for WIMPs above 6 GeV/c2

arXiv:1805.12562 arXiv:1902.03234 PRL 121, 111302 (2018) PRL 122, 141301 (2019)

• 279 days data in 1.3 ton (1.0 ton yr) • same data as for the SI search • Energy region: 5-41 keVnr (1.4-10.6 keVee) • Xe129 (29.5%), Xe131 (23.7%) • ER background: 82 evts/ton/yr/keVee • best SD-neutron limit: 6.3x10-42 cm2 at • Best SI limit: 4.1 x10-47 cm2 at 30 GeV/c2 30 GeV/c2

14 Technology with ER/NR discrimination and better background control: Liquid Argon PRD 2018, arXiv:1802.07198

DarkSide-50 DarkSide-50, PSD-only

DarkSide-50, PSD+radial+S2/S1 cut

• Pulse-shape discrimination (PSD) to reject ERs • Target: 46 kg liquid argon (Ar-39 depleted) • Exposure: 532 live-days 15 Technology with ER/NR discrimination and better background control: Liquid Argon

DEAP-3600

arXiv:1902.04048

• Use PSD to reject ERs, dominated by Ar-39 • 3.3-ton liquid argon target • 231 live-days DM search • best SI limit with Ar: 3.9e-45 cm-2 for 100 GeV WIMPs 16 SuperCDMS at Soudan Underground Lab

PRL 120, 061802 (2018) (arXiv: 1708.08869)

• interleaved Z-sensitive Ionization and Photon-mediated (iZIP) detectors • Each detector: 76-mm diameter, 25-mm • 1690 kg days exposure thick Ge (0.6 kg) • single candidate observed, consistent with bkg • Cryogenic operation: O(10) mK • best limits for WIMP-germanium-nucleus interaction > 12 GeV/c2

17 PICO-60: bubble chamber technology

arXiv:1902.04031 SI PRD 100, 022001 (2019)

• bubble chamber: 52 kg C3F8 • excellent electron recoil and alpha rejection

• 1404-kg-day exposure at 2.45 keV threshold SD-proton • previous: 1167-kg-day exposure at 3.3 keV threshold

• larger fiducial volume • most stringent SD WIMP-proton limit: 2.5e-41 cm2 at 25 GeV/c2

18 Prospect for heavy WIMP Searches

XENON1T

Discovery(Ruppin, Limits Billard(Xe) due et toal.) CEvNS

✦Major on-going G2 experiments with Noble Liquids, with Liquid Xenon/Argon ✦Start operational as early as 2020 and for ~5 years ✦Next generation (G3) experiment DARWIN is under preparation to start ~2025 and run for 10 years. ✦Expect another 15 years of “neutrino-background free” search for heavy WIMPs 19 Low-mass (GeV-scale) dark matter 2 2 Mχ = 5 GeV/c , σχ-n = 1e-42 cm 4

10th Xe (A=131) Ge (A=73) Ar (A=40) - Kinematic energy transfer is low 3 Ne (A=20) 10 (favors lighter nuclei) - Requires lower energy threshold

102 Rate [Events/Ton/Year] > E - detectors lose ER/NR discrimination - background/noise high and sometime

10 not well understood

1 0 1 2 3 4 5 6 7 8 9 10 Nuclear Recoil Threshold [keV ] nr Low-mass (GeV-scale) dark matter 2 2 Mχ = 5 GeV/c , σχ-n = 1e-42 cm 4

10th Xe (A=131) Ge (A=73) Ar (A=40) - Kinematic energy transfer is low 3 Ne (A=20) 10 (favors lighter nuclei) - Requires lower energy threshold

102 Rate [Events/Ton/Year] > E - detectors lose ER/NR discrimination - background/noise high and sometime

10 not well understood

1 0 1 2 3 4 5 6 7 8 9 10 Nuclear Recoil Threshold [keV ] nr Low-mass (1-10 GeV) dark matter: low-threshold counting

CDEX-10 at China Jinping Lab • 10kg Ge detector in liquid nitrogen • 102.8 kg-days exposure • analysis threshold: 160 eVee • residual bkg rate: ~2.5 evt/keVee/kg/day • improved SI & SD-n limits at 5 GeV/c2

21 Low-mass (1-10 GeV) dark matter: low-threshold counting

CDEX-10, PRL 120, 241301 (2018) CDEX-10 at China Jinping Lab (arXiv:1802.09016) • 10kg Ge detector in liquid nitrogen

• 102.8 kg-days exposure CDMSlite Run2 • analysis threshold: 160 eVee • residual bkg rate: ~2.5 evt/keVee/kg/day • improved SI & SD-n limits at 5 GeV/c2

21 Low-mass (1-10 GeV) dark matter: cryogenic bolometers

CDMSlite, Phys. Rev. D 97, 022002 (2018), arXiv:1707.01632 CDMSlite, Phys. Rev. D 99, 062001 (2019), arXiv:1808.09098

CDMSlite: HV operation SI • no ER/NR discrimination: higher bkg • but lowering the threshold: ~100 eVee • Bkg rate: 1~2 evts/keVee/kg/day • gain sensitivity for low-mass WIMPs

SD-neutron

22 First results from CRESST-III (arXiv:1904.00498)

• 23.6 g CaWO4 • 30.1 eV threshold • total exposure: 3.64 kg days • phonon & scintillation readout • silicon-on-sapphire light absorber • lowest DM mass: 160 MeV/c2

23 Low-mass (1-10 GeV) dark matter: liquid argon

Ionization-only (S2-only) Low-mass DM search in DarkSide-50

Phys.Rev.Lett. 121, 081307 (2018) (arXiv:1802.06994)

• no ER/NR discrimination • Ultra-low threshold: ~100 eVee (a few electrons) • bkg: ~1.5 event/keVee/kg/d at 0.5 keVee • 6786 kg day exposure • Constrains low-mass DM between 2-5 GeV/c2

24 LUX: lower threshold using single scintillation photon signals

arXiv:1907.06272

dark counts scint. light

• Use single photon induced double photoelectron emission signal to reduce threshold • Improving the sensitivity for WIMP mass down to 2.5 GeV/c2

25 LUX: lower threshold using single scintillation photon signals

arXiv:1907.06272

dark counts xenon scint. light

• Use single photon induced double photoelectron emission signal to reduce threshold • Improving the sensitivity for WIMP mass down to 2.5 GeV/c2

25 XENON1T “S2-only” Results • threshold: ~200 eVee • bkg: ~1 event/keVee/tonne/d (>400 eVee) arXiv:1907.11485 • Exposure: 22 tonne-days

26 XENON1T “S2-only” Results • threshold: ~200 eVee • bkg: ~1 event/keVee/tonne/d (>400 eVee) arXiv:1907.11485 • Exposure: 22 tonne-days

2 XENON1T constrains new DM parameter space down to 3~4 GeV/c 26 Status of the Low-mass (GeV-scale) Dark Matter Searches

CRESST-III

DarkSide-50 S2-Only

XENON1T S2-Only

XENON1T

S1+S2

Discovery Limits due to CEvNS (Ruppin, Billard et al.)

Future improvement relies on suppression of known/unknown background with a reasonable large target mass.

27 Probing even Lighter (sub-GeV) Dark Matter

• Need to look at electron signals • Electrons emitted as a secondary process (Migdal, Bremsstrahlung) • Dark matter interacts with electrons • Require: detect down to a few or even single electrons • Reducing the “few-electron” background to improve sensitivity • Existing large experiments (LUX/LZ, DarkSide, XENON, SuperCDMS) can perform simultaneous search while searching for heavy WIMPs • Smaller target experiments: DAMIC, SENSEI, LBECA … with goals to achieve negligible single-to-few electron background Light DM Search with the Migdal effect

• Migdal effect in dark matter detection • Masahiro Ibe et al, arXiv:1707.07258, Dolan et al., 1711.09906 • atomic electrons lags behind recoil nucleus resulting in ionization/excitation of atoms

Xe

Ge

Xe

CDEX, arXiv:1905.00354

LUX, arXiv:1811.11241 PRL 122, 131301 (2019) Light (sub-GeV) dark matter scattering on electrons

Essig et al., arXiv:1703.00910 DarkSide-50, arXiv:1802.06998 PRD 96, 043017 (2017) PRL 121,111303 (2018) SuperCDMS, arXiv:1804.10697 PRL 121,051301 (2018) Xe Ar Si

SENSEI, arXiv:1901.10478 PRL 122, 161801 (2019)

Si Light (sub-GeV) dark matter scattering on electrons

Essig et al., arXiv:1703.00910 DarkSide-50, arXiv:1802.06998 PRD 96, 043017 (2017) PRL 121,111303 (2018) SuperCDMS, arXiv:1804.10697 PRL 121,051301 (2018) Xe Ar Si

SENSEI, arXiv:1901.10478 PRL 122, 161801 (2019) XENON1T S2-only arXiv:1907.11485

Xe Si dark matter absorption

An et al., arXiv:1412.8378 SuperCDMS, arXiv:1804.10697 PLB 747 (2015) 331 PRL 121,051301 (2018)

Si

Xe SENSEI, arXiv:1901.10478 PRL 122, 161801 (2019)

XENON1T S2-only arXiv:1907.11485 Si

Xe also see DAMIC, arXiv:1611.03066 PRL 118, 131803 (2017) Summary

32 Summary

• Although there is NO clear direct detection of dark matter, sensitivity has been improved dramatically in recent years for both heavy WIMPs and . For future:

32 Summary

• Although there is NO clear direct detection of dark matter, sensitivity has been improved dramatically in recent years for both heavy WIMPs and light dark matter. For future: • Heavy WIMPs: • large experiments are coming online soon: PandaX-4T, XENONnT, LZ, DarkSide-20k, PICO-500, SuperCDMS • direct detection of WIMPs by 2025?

32 Summary

• Although there is NO clear direct detection of dark matter, sensitivity has been improved dramatically in recent years for both heavy WIMPs and light dark matter. For future: • Heavy WIMPs: • large experiments are coming online soon: PandaX-4T, XENONnT, LZ, DarkSide-20k, PICO-500, SuperCDMS • direct detection of WIMPs by 2025? • Light dark matter: • simultaneous search in existing large experiments • dedicated search in smaller “zero background” experiments 32