Pathological Calcification and Replicating Calcifying- Nanoparticles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 99 – Urological Disorders Episode Overview Urinary Tract Infections in Adults 1
Crack Cast Show Notes – Urological Disorders – August 2017 www.crackcast.org Chapter 99 – Urological Disorders Episode Overview Urinary Tract Infections in Adults 1. Differentiate between the three major causes of dysuria in women? (ddx of dysuria) 2. List 3 common UTI pathogens, and list 3 additional pathogens in complicated UTIs 3. Define uncomplicated UTI and antibiotic options 4. Define complicated UTI and antibiotic options 5. List two antibiotic options for uncomplicated and complicated pyelonephritis. 6. How is pyelonephritis managed in pregnancy? What are safe antibiotic options for bacteriuria in pregnancy? Prostatitis 1. Describe the diagnosis and management of prostatitis Renal Calculi 1. Name the areas of narrowing in the ureter 2. Name 6 risk factors for urolithiasis 3. List 8 alternative diagnoses (other than renal colic) for pain associated with urolithiasis 4. What are indications for hospitalization of patients with urolithiasis Bladder (Vesical) Calculi 1. Describe this condition and its management Acute Scrotal Pain 1. List causes of acute scrotal swelling by age groups (infant, child, adolescent, adult) 2. Describe the physiology, diagnosis and management of testicular torsion 3. Describe the treatment for sexually vs. non-sexually acquired epididymitis Acute Urinary Retention 1. Describe the physiology of urination 2. List 10 causes of acute urinary retention in adults 3. List 6 causes of urinary retention in women Hematuria 1. List causes of red-coloured urine without hematuria 2. List risk factors for urinary tract malignancy Wisecracks: 1. When is a urine culture indicated (box 89.1) 2. What is a CAUTI and how is it managed? 3. What are two medication classes of drugs for prostatic enlargement? 4. -
Sarcoidosis, Hypercalcemia and Calcium-Sensing Receptor Mutation: a Case Report
468 Letters to the Editor Sarcoidosis, Hypercalcemia and Calcium-sensing Receptor Mutation: A Case Report Shreya Dixit1 and Pablo Fernandez-Peñas1,2* 1Skin and Cancer Foundation Australia, 7 Ashley Lane, Westmead, NSW 2145, and 2Sydney Medical School Western, The University of Sydney, NSW, Australia. *E-mail: [email protected] Accepted October 28, 2010. Sarcoidosis is a multisystem granulomatous disease of The incidence of hypercalcaemia in patients with unknown aetiology. It predominantly affects the lungs; sarcoidosis is approximately 10% (3). It has previously however, 25% of patients have skin involvement, ranging been found that these abnormalities of calcium metabo- from non-specific maculopapular eruptions to erythema lism are due to dysregulated production of calcitriol by nodosum and lupus pernio (1). activated macrophages trapped in pulmonary alveoli and Familial hypocalciuric hypercalcaemia (FHH) results granulomatous inflammation (4). Conversion of calcidiol from an autosomal dominantly inherited inactivating to calcitriol is facilitated by 1 alpha-hydroxylase, a cyto- mutation of the calcium-sensing receptor (CaSR) gene chrome P450 enzyme. The activity of 1 alpha-hydroxyla- and is typically asymptomatic (2). Sarcoidosis has not se is tightly regulated through complex mechanisms that previously been reported in FHH. We had the opportu- depend on the circulating levels of calcium, phosphorus, nity to study a patient with sarcoidosis that has a CaSR PTH, 1,25 (OH)2D3 (calcitriol) and calcitonin. The role mutation. of CaSR in the regulation of 1 alpha-hydroxylase has not been defined, although there are suggestions that CaSR activation can repress the enzyme (5). CASE REPORT The incidence of FHH in patients with sarcoidosis A 70-year-old woman was referred by her endocrinologist with is unknown. -
Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean. -
Confocal Raman Microscope Mapping As a Tool to Describe Different
Biogeosciences, 8, 3761–3769, 2011 www.biogeosciences.net/8/3761/2011/ Biogeosciences doi:10.5194/bg-8-3761-2011 © Author(s) 2011. CC Attribution 3.0 License. Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina) G. Nehrke1 and J. Nouet2 1Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 2University Paris Sud, IDES UMR 8148, batimentˆ 504, campus universitaire, 91405 Orsay cedex, France Received: 20 May 2011 – Published in Biogeosciences Discuss.: 9 June 2011 Revised: 10 November 2011 – Accepted: 7 December 2011 – Published: 20 December 2011 Abstract. Marine biogenic carbonates formed by inverte- 1 Introduction brates (e.g. corals and mollusks) represent complex compos- ites of one or more mineral phases and organic molecules. Calcium carbonates formed by marine calcifying organisms This complexity ranges from the macroscopic structures ob- (e.g. corals and mollusks) received much attention in the field served with the naked eye down to sub micrometric struc- of biogeosciences during the last decades. On the one hand tures only revealed by micro analytical techniques. Under- they represent important proxy archives (e.g. oxygen isotopic standing to what extent and how organisms can control the composition can be used for temperature reconstruction (Mc- formation of these structures requires that the mineral and Crea, 1950; Urey et al., 1951)) and on the other hand they are organic phases can be identified and their spatial distribution affected by the increasing acidification of the ocean due to related. -
Reduced Calcification of Marine Plankton in Response to Increased
letters to nature Acknowledgements representatives of the coccolithophorids, Emiliania huxleyi and This research was sponsored by the EPSRC. T.W.F. ®rst suggested the electrochemical Gephyrocapsa oceanica, are both bloom-forming and have a deoxidation of titanium metal. G.Z.C. was the ®rst to observe that it was possible to reduce world-wide distribution. G. oceanica is the dominant coccolitho- thick layers of oxide on titanium metal using molten salt electrochemistry. D.J.F. suggested phorid in neritic environments of tropical waters9, whereas the experiment, which was carried out by G.Z.C., on the reduction of the solid titanium dioxide pellets. M. S. P. Shaffer took the original SEM image of Fig. 4a. E. huxleyi, one of the most prominent producers of calcium carbonate in the world ocean10, forms extensive blooms covering Correspondence and requests for materials should be addressed to D. J. F. large areas in temperate and subpolar latitudes9,11. (e-mail: [email protected]). The response of these two species to CO2-related changes in seawater carbonate chemistry was examined under controlled ................................................................. pH Reduced calci®cation 8.4 8.2 8.1 8.0 7.9 7.8 PCO2 (p.p.m.v.) of marine plankton in response 200 400 600 800 a 10 to increased atmospheric CO2 ) 8 –1 Ulf Riebesell *, Ingrid Zondervan*, BjoÈrn Rost*, Philippe D. Tortell², d –1 Richard E. Zeebe*³ & FrancËois M. M. Morel² 6 * Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161, 4 D-27515 Bremerhaven, Germany mol C cell –13 ² Department of Geosciences & Department of Ecology and Evolutionary Biology, POC production Princeton University, Princeton, New Jersey 08544, USA (10 2 ³ Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA 0 ............................................................................................................................................. -
Polymorphic Protective Dps–DNA Co-Crystals by Cryo Electron Tomography and Small Angle X-Ray Scattering
biomolecules Article Polymorphic Protective Dps–DNA Co-Crystals by Cryo Electron Tomography and Small Angle X-Ray Scattering Roman Kamyshinsky 1,2,3,* , Yury Chesnokov 1,2 , Liubov Dadinova 2, Andrey Mozhaev 2,4, Ivan Orlov 2, Maxim Petoukhov 2,5 , Anton Orekhov 1,2,3, Eleonora Shtykova 2 and Alexander Vasiliev 1,2,3 1 National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia; [email protected] (Y.C.); [email protected] (A.O.); [email protected] (A.V.) 2 Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; [email protected] (L.D.); [email protected] (A.M.); [email protected] (I.O.); [email protected] (M.P.); [email protected] (E.S.) 3 Moscow Institute of Physics and Technology, Institutsky lane 9, 141700 Dolgoprudny, Moscow Region, Russia 4 Shemyakin-Ovchinnikov Institute of bioorganic chemistry of Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia 5 Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prospect, 31, 119071 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-916-356-3963 Received: 6 November 2019; Accepted: 22 December 2019; Published: 26 December 2019 Abstract: Rapid increase of intracellular synthesis of specific histone-like Dps protein that binds DNA to protect the genome against deleterious factors leads to in cellulo crystallization—one of the most curious processes in the area of life science at the moment. However, the actual structure of the Dps–DNA co-crystals remained uncertain in the details for more than two decades. -
PROGRAMME ABSTRACTS AGM Papers
The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important. -
Magnesium Silicate on Chloroquine Phosphate, Against Plasmodium Berghei
Ajuvant effect of a Synthetic Aluminium – Magnesium Silicate on chloroquine phosphate, against Plasmodium berghei. * Ezeibe Maduike, Elendu – Eleke Nnenna, Okoroafor Obianuju and Ngene Augustine Department of Veterinary Medicine, University of Nigeria, Nsukka. *Corresponding authur [email protected] Abstract Effect of a synthetic Aluminium – Magnesium Silicate (AMS) on antiplasmodial activity of chloroquine was tested.Plasmodium berghei infected mice were treated with 7 mg/ kg, 5 mg / kg and 3 mg / kg chloroquine, respectively.Subgroups in each experiment were treated with chloroquine alone and with chloroquine in AMS.Parasitaemia (%) of the group treated with 7 mg / kg was higher than that of the control.At 5 mg / kg, chloroquine treatment reduced parasitaemia from 3.60 to 2.46 (P = ).Incorporating chloroquine in AMS improved its ability to reduce P.berghei parasitaemia at 5 mg /kg and at 3 mg / kg, from 2.46 0.21 to 1.57 0.25 (P = ) and from 3.82 0.06 to 2.12 0.08 (P = ). It also increased mortality of mice treated at 7 mg / kg from 20 to 80 % (P = ). Key words: Antiplasmodial resistance, chloroquine toxicity, Aluminium – Magnesium Silicate, chloroquine phosphate. Background. Nature Precedings : hdl:10101/npre.2012.6749.1 Posted 2 Jan 2012 Protozoan parasites of the genus plasmodium are causative agents of malaria1, 2. Malaria is a zoonotic disease , affecting man, zoo primates, avian species and rodents3,4. It has also been reported that when species of plasmodium which infect animals were passaged in human volunteers they produced malaria in man5. In humans, malaria is cause of between one to three million deaths in sub saharan Africa every year 6.Malaria is not only an effect of poverty it is also a cause of poverty7.To combat malaria, most countries in Africa spend upto 40 % of their public health budget on the disease annually8. -
Distribution of Calcium Phosphate in the Exoskeleton of Larval Exeretonevra Angustifrons Hardy (Diptera: Xylophagidae)
Arthropod Structure & Development 34 (2005) 41–48 www.elsevier.com/locate/asd Distribution of calcium phosphate in the exoskeleton of larval Exeretonevra angustifrons Hardy (Diptera: Xylophagidae) Bronwen W. Cribba,b,*, Ron Rascha, John Barrya, Christopher M. Palmerb,1 aCentre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Qd 4072, Australia bDepartment of Zoology and Entomology, The University of Queensland, Brisbane, Qd 4072, Australia Received 28 July 2004; accepted 26 August 2004 Abstract Distribution and organisation of the mineral, amorphous calcium phosphate (ACP), has been investigated in the exoskeleton of the xylophagid fly larva Exeretonevra angustifrons Hardy. While head capsule and anal plate are smooth with a thin epicuticle, the epicuticle of the body is thicker and shows unusual micro-architecture comprised of minute hemispherical (dome-shaped) protrusions. Electron microprobe analysis and energy dispersive spectroscopy revealed heterogeneity of mineral elements across body cuticle and a concentration of ACP in the epicuticle, especially associated with the hemispherical structures. Further imaging and analysis showed the bulk of the ACP to be present in nano-sized granules. It is hypothesised that the specific distribution of ACP may enhance cuticular hardness or durability without reducing flexibility. q 2004 Elsevier Ltd. All rights reserved. Keywords: Insect; Cuticle; Integument; Hardening; Analytical electron microscopy; Electron microprobe 1. Introduction was distributed heterogeneously. Further investigation of the distribution of the mineral phase at the micron and Strengthening of biological structures through cuticular nanometre level is needed to discover where deposition is calcification is well developed in decapod crustaceans but it occurring and how this might affect exoskeletal organis- rarely occurs in insects, where it is poorly understood ation. -
Effects of Ocean Acidification and Sea-Level Rise on Coral Reefs
Effects of Ocean Acidification and Sea-Level Rise on Coral Reefs Coral reefs are vital to the long-term to produce CaCO3, carbon dioxide (CO2), As CO2 increases in the atmosphere, viability of coastal societies, providing and water (H2O). Over time as these more is absorbed by the surface of the economic, recreational, and aesthetic organisms grow and die, their skeletons ocean, where it combines with seawater value from which coastal communities break down and become calcium carbon- to make a weak acid called carbonic thrive. Some of the services that coral ate sediments. These sediments fill in acid (H2CO3). This process, called reefs provide include protection from the framework of the reef and eventually ocean acidification, causes a decrease storm waves, nurseries and habitats for become cemented together, construct- in seawater pH (or increase in acidity) commercially important fish species, ing the foundation for continued upward that can result in a decrease in biogenic and production of sand for beaches. growth of the reef structure. The infilling calcification rates, dissolution of carbon- Coral reefs develop over thousands of the reef framework with sediments is ate sediments, and loss of reef structure. of years as tropical marine organ- what allows vertical accretion over time One of the primary concerns associated isms build skeletons of calcium carbonate and enables reef growth to keep up with with ocean acidification is whether coral (CaCO3) minerals to form a three-dimen- sea-level rise. Calcification is a revers- reefs will be able to continue to grow at sional structure (fig. 1). This process, ible process. -
Doenças Infeciosas Do Rim – Revisão Pictórica
ACTA RADIOLÓGICA PORTUGUESA Maio-Agosto 2014 nº 102 Volume XXVI 37-43 Artigo de Revisão / Review Article DOENÇAS INFECIOSAS DO RIM – REVISÃO PICTÓRICA INFECTIOUS DISEASES OF THE KIDNEY – A PICTORIAL REVIEW Ângela Figueiredo1, Luísa Andrade2, Hugo Correia1, Nuno Ribeiro1, Rui Branco1, Duarte Silva1 1 - Serviço de Radiologia do Centro Hospitalar Resumo Abstract Tondela - Viseu Diretor: Dr. Duarte Silva A pielonefrite aguda é o tipo de infeção renal Acute pyelonephritis is the most common 2 - Serviço de Imagem Médica do Centro mais frequente, no entanto, o rim pode ser renal infection but a variety of other Hospitalar e Universitário de Coimbra afetado por vários outros processos infectious processes can be seen in the kidney. Diretor: Prof. Doutor Filipe Caseiro Alves infeciosos. Embora a avaliação imagiológica Although radiologic evaluation is not não seja necessária nos casos de pielonefrite necessary in cases of uncomplicated não complicada, pode desempenhar um papel pyelonephritis, it plays an important role in Correspondência importante nos doentes de risco, nos que não high-risk patients and in those who do not respondem de modo adequado à terapêutica respond to therapy or whose clinical Ângela Figueiredo e naqueles com uma apresentação clínica presentation is atypical. Serviço de Radiologia atípica. Although ultrasonography (US) is relatively Centro Hospitalar Tondela-Viseu A ecografia, embora pouco sensível nas fases insensitive in early stages of acute Av. Rei D. Duarte iniciais da pielonefrite, é o exame de primeira pyelonephritis, it is considered the first level 3504-509 Viseu linha por ser uma técnica acessível e não investigation technique for its availability and e-mail: [email protected] utilizar radiação ionizante. -
Seltzer and Benders Dental Pulp 2012 4.Pdf
Effects of Thermal and Mechanical Challenges burs).19 Collectively, these results indicate that pulpal 8 HS air reactions to various restorative procedures17-19 are not necessarily caused by excessive heat production. However, it is difficult to precisely position tempera ture sensors to detect heat generated during cut ting. In addition, the poor thermal conductivity of dentin can result in thermal burns to surface dentin without much change in pulpal temperature.20 HS air-water Pulpal reactions to restorative procedures may / - - - ...... in part be caused indirectly. It is possible that a high LS air-water surface temperature can thermally expand the den tinal fluid in the tubules immediately beneath poorly -5 0 5 10 15 20 25 30 35 irrigated burs. If the rate of expansion of dentinal Time(s) fluid is high, the fluid flow across odontoblast pro cesses, especially where the odontoblast cell body fills the tubules in predentin, may create shear forces Fig 15-2 Changes in pulpal temperature during low-speed (LS) and high sufficiently large to tear the cell membrane21 and speed (HS) cavity preparation with and without air-water cooling. (Modified from Zach and Cohen10 with permission.) induce calcium entry into the ce//,22 possibly leading to cell death.23 This hypothesis suggests that ther mally induced fluid shifts across tubules serve as the transduction mechanism for pulp cell injury without causing much change in pulpal temperature. An additional factor that can cause pulpal irrita that produced in pulp tissues. However, the out tion is evaporative fluid flow.24 Blowing air on dentin come may be influenced by the fact that the blood causes rapid outward fluid flow that can induce the flow per milligram of tissue is higher in the periodon same cell injury as the inward fluid flow caused by tal ligament (PDL) than in the pulp.9 heat.