The Official Magazine of The

Total Page:16

File Type:pdf, Size:1020Kb

The Official Magazine of The OceTHE OFFICIALa MAGAZINEnog OF THE OCEANOGRAPHYra SOCIETYphy CITATION Farrington, J.W. 2014. Organic chemicals of environmental concern: Water sampling and analytical challenges. Oceanography 27(1):214–216, http://dx.doi.org/10.5670/oceanog.2014.24. DOI http://dx.doi.org/10.5670/oceanog.2014.24 COPYRIGHT This article has been published inOceanography , Volume 27, Number 1, a quarterly journal of The Oceanography Society. Copyright 2014 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://WWW.TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON CHANGING OCEAN CHEMISTRY » ANTHROPOCENE: THE FUTURE…SO FAR Organic Chemicals of Environmental Concern Water Sampling and Analytical Challenges BY JOHN W. FARRINGTON Comprehensive two-dimensional gas chromatograph of heavy fuel oil from the Container Ship Cosco Busan. Reprinted from Oceanus 49(1). Image courtesy of Karin Lemkau, ©Woods Hole Oceanographic Institution 214 Oceanography | Vol. 27, No. 1 A detailed understanding of the biogeo- the surface to avoid surface slick con- Takada, 2014, in this issue). Organic Chemicals of chemical cycles of organic chemicals taminations. Eventually, in situ pumping In the early days, the gas chroma- of environmental concern (OCEC) in systems employing glass fiber filters for tography columns in routine use could the ocean requires measurement of particulate matter sampling and sorbent not resolve these mixtures of PCBs Environmental Concern their concentrations in the water col- materials to sample the dissolved phase and PAHs into individual compounds umn (Farrington and Takada, 2014, were developed for sampling both surface to allow quantitative measurements of in this issue, and references therein). and deep waters (e.g., Petrick et al., 1996). each of the components. Beginning in Obtaining these measurements remains Deployment time to pump a thousand the mid-1970s, gas chromatography– a major challenge. Those of us who or more liters of deepwater samples can mass spectrometry–computer systems have attempted low concentration be 10 hours or longer. This may be the (GC-MS) or mass spectrometry- OCEC measurements in open ocean reason that very few high-quality deep- computer systems did allow quantita- seawater know that research vessels water samples for OCEC measurements tive measurements of several of the can be considered a floating cloud of have been obtained. Another reason may PAHs and entered into frequent use contaminants of the same or interfering be the focus on the continental shelf and in the 1980s (Giger and Blumer, 1974; compounds, as is true for trace metals coastal ecosystems where OCEC concen- Hites and Biemann, 1975). (Froelich, 2014, this issue). trations are the highest and pollution has Progress in the development and use Surface water and surface films or been severe in some locations. of high-resolution capillary gas chroma- slicks can be sampled from inflatable Clean samples were and are just the tography columns then improved the rafts deployed from research vessels to beginning of the challenge. Obtaining separation of individual compounds and, travel upwind well away from the ship, or OCEC quantitative data for all samples— when coupled with mass spectrometry- surface waters can be sampled with great from deep, surface, continental shelf, computer systems or selective detectors care from the deck of the ship by pump- and coastal waters—involves extraction such as electron-capture detectors for ing through specially cleaned tubing or of samples with various organic solvents halogenated compounds, provided a through intake systems mounted in the followed by column chromatography, powerful means to quantify many, but bow of the ship (e.g., De Lappe et al., thin layer chromatography, and high not all, components of OCEC complex 1983). In the 1970s, most subsurface, performance liquid chromatography mixtures such as PCBs. The application deeper (below 10 m) water samples for (HPLC) to separate classes of OCECs of multidimensional gas chromatogra- OCEC analyses were obtained from from the myriad other compounds phy using two GCs and high-resolution lowering standard Niskin bottles, large (e.g., lipids) in the extract. However, capillary columns with different internal 90 L or 160 L stainless steel or anodized some of the OCEC classes enter the liquid phase coatings provided the means aluminum Bodman bottles (Bodman environment as complex mixtures of for separation and quantitative measure- et al., 1961), or similar large samplers, individual chemicals. For example, ments of individual components in PCB all cleaned with care and lowered, open, PCB commercial mixtures contain of mixtures (e.g., Duinker et al., 1988). through the surface slick, with the atten- up to 50 individual chlorobiphenyls, Comprehensive two-dimensional dant risk of the slick and its components and the mixture of medium and higher gas chromatography is now available contaminating the interior of the bottle molecular weight hydrocarbons in (Frysinger et al., 2003) and is being and eventually the deepwater samples. petroleum, including polycyclic aro- applied to several environmental samples Boehm (1980) was among the first matic hydrocarbons (PAHs), contains to report on the use of large Bodman hundreds of individual compounds John W. Farrington ([email protected]) bottles modified to enter the surface (Erickson, 1997; see Example Chemical is Dean Emeritus, Woods Hole Oceanographic ocean closed and then opened under Structures box in Farrington and Institution, Woods Hole, MA, USA. Oceanography | March 2014 215 to provide quantitative measurements of (2014, in this issue), to synthesize data time-of-flight mass spectrometric method and software for inventorying persis- individual components of complex mix- and conclusions from different studies tent and bioaccumulative contaminants tures of organic chemicals in the envi- into a more comprehensive view of the in marine environments. Environmental ronment, including OCEC in samples biogeochemical cycles of OCEC in the Science and Technology 46:8,001–8,008, http://dx.doi.org/10.1021/es301139q. from marine ecosystems. Techniques marine environment. Kujawinski, E.B., M.C. Kido-Soule, are now available for isolating sufficient D.L. Valentine, A.K. Boysen, K. Longnecker, and M.C. Redmond. 2011. Fate of dis- quantities of individual OCEC, for REFERENCES persants associated with the Deepwater example, an individual PAH, to measure Bodman, R.H., L.V. Slabaugh, and V.T. Bowen. Horizon oil spill. Environmental 1961. A multipurpose large volume water sam- Science and Technology 45:1,298–1,306, an individual compound’s C-14 activity. pler. Journal of Marine Research 19:141–148. http://dx.doi.org/10.1021/es103838p. The data enable discernment of organic Boehm, P.D. 1980. Evidence for the decou- Petrick, G., D.E. Schulz-Bull, V. Martens, pling of dissolved, particulate and surface chemicals with a fossil carbon source, K. Scholz, and J.C. Duinker, 1996. An in-situ microlayer hydrocarbons in northwestern filtration/extraction system for the recovery such as PAH from fossil fuel combus- Atlantic continental shelf waters. Marine of trace organics in solution and on par- Chemistry 9:255–281, http://dx.doi.org/ tion versus PAH from recent forest fires ticles tested in deep ocean water. Marine 10.1016/0304-4203(80)90029-8. Chemistry 54:97–105, http://dx.doi.org/ (Reddy et al., 2002). Ultrahigh-resolution De Lappe. B.W., R.W. Risebrough, and 10.1016/0304-4203(96)00029-1. mass spectrometry and liquid chroma- W. Walker II. 1983. A large-volume sam- Reddy, C.M., A. Pearson, L. Xu, A.P. McNichol, pling assembly for the determination of B.A. Benner Jr., S.A. Wise, G.A Klouda, tography with tandem mass spectrometry synthetic organic and petroleum compounds L.A. Currie, and T.I. Eglinton. 2002. has been applied recently to quantify a in the dissolved and particulate phases of Radiocarbon as a tool to apportion the seawater. Canadian Journal of Fisheries key ingredient in a dispersant used at the sources of polycyclic aromatic hydro- and Aquatic Sciences 40(S2):s322–s336, carbons and black carbon in envi- Deepwater Horizon oil spill (Kujawinski http://dx.doi.org/10.1139/f83-337. ronmental samples. Environmental Duinker, J.C., D.E. Schulz, and G. Petrick. 1988. et al., 2011). Added to this is the report of Science and Technology 36:1,774–1,782, Multidimensional gas chromatography with http://dx.doi.org/10.1021/es011343f. recent coupling of two-dimensional gas electron capture detection for the determination chromatography to time-of-flight mass of toxic congeners in polychlorinated biphenyl mixtures. Analytical Chemistry 60:478–482, spectrometry and new software to inven- http://dx.doi.org/10.1021/ac00156a021. tory OCEC in environmental samples Erickson, M.D. 1997. Analytical Chemistry of PCBs, 2nd Ed. CRC Lewis Publishers, Boca Raton, FL, (Hoh et al., 2012). 667 pp. Thus, clean sampling capabilities exist. Farrington, J.W., and H. Takada. 2014. Persistent organic pollutants (POPs), polycyclic aromatic High-resolution analytical chemical hydrocarbons (PAHs), and plastics: Examples of methods are available. Yet, very few stud- the status, trend, and cycling of organic chemi- ies have combined these new methods cals of environmental concern in the ocean. Oceanography 27(1):196–213, http://dx.doi.org/ to obtain open ocean deepwater data for 10.5670/oceanog.2014.23. OCEC. Significantly more field sampling Froelich, F. 2014. In praise of marine chemists. Oceanography 27(1):88–91, http://dx.doi.org/ campaigns and accompanying high- 10.5670/oceanog.2014.12. quality analyses are needed if we are to Frysinger, G.S., R.B Gaines, L. Xu, and C.M. Reddy. 2003. Resolving the unresolved have a much needed understanding of complex mixture in petroleum contami- the biogeochemical cycles of OCEC in nated sediments.
Recommended publications
  • Purification and Characterization of Bromocresol Purple for Spectrophotometric Seawater Alkalinity Titrations
    University of Montana ScholarWorks at University of Montana Undergraduate Theses and Professional Papers 2016 PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS Taymee A. Brandon The University Of Montana, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/utpp Part of the Analytical Chemistry Commons, and the Environmental Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Brandon, Taymee A., "PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS" (2016). Undergraduate Theses and Professional Papers. 97. https://scholarworks.umt.edu/utpp/97 This Thesis is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in Undergraduate Theses and Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS By TAYMEE ANN MARIE BRANDON Undergraduate Thesis presented in partial fulfillment of the requirements for the University Scholar distinction Davidson Honors College University of Montana Missoula, MT May 2016 Approved by: Dr. Michael DeGrandpre Department of Chemistry and Biochemistry ABSTRACT Brandon, Taymee, B.S., May 2016 Chemistry Purification and Characterization of Bromocresol Purple for Spectrophotometric Seawater Alkalinity Titrations Faculty Mentor: Dr. Michael DeGrandpre The topic of my research is the purification of the sulfonephthalein indicator bromocresol purple (BCP). BCP is used as an acid-base indicator in seawater alkalinity determinations. Impurities in sulfonephthalein indicator salts often result in significant errors in pH values3.
    [Show full text]
  • Geochemistry of Corals: Proxies of Past Ocean Chemistry, Ocean Circulation, and Climate
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8354–8361, August 1997 Colloquium Paper This paper was presented at a colloquium entitled ‘‘Carbon Dioxide and Climate Change,’’ organized by Charles D. Keeling, held November 13–15, 1995, at the National Academy of Sciences, Irvine, CA. Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate ELLEN R. M. DRUFFEL Department of Earth System Science, University of California, Irvine, CA 92697 ABSTRACT This paper presents a discussion of the status Second, a synthesis is presented of the available proxy of the field of coral geochemistry as it relates to the recovery of records from corals as they relate to past climate, ocean past records of ocean chemistry, ocean circulation, and climate. circulation changes, and anthropogenic input of excess CO2. The first part is a brief review of coral biology, density banding, For some databases, the anthropogenic CO2 appears clear and and other important factors involved in understanding corals as globally distributed. For other databases it appears that vari- proxies of environmental variables. The second part is a syn- ability on interannual to decadal time scales complicates a thesis of the information available to date on extracting records straightforward attempt to separate natural perturbations of the carbon cycle and climate change. It is clear from these from the anthropogenic CO2 signal on the Earth’s environ- proxy records that decade time-scale variability of mixing pro- ment. Shen (4) presents a review of the types of coral archives cesses in the oceans is a dominant signal. That Western and available from the perspective of historical El Nin˜o-Southern Eastern tropical Pacific El Nin˜o-Southern Oscillation (ENSO) Oscillation (ENSO) influences on the tropical Pacific Ocean.
    [Show full text]
  • Ocean Acidification in the Geological Past
    UK Ocean Acidification programme synopsis Ocean acidification in the geological past www.oceanacidification.org.uk Lessons from the past Global-scale ocean acidification is happening now, as a result of human activities adding CO2 to the atmosphere. But ocean acidity has increased previously in the Earth’s history, as a result of natural changes in atmospheric composition. Of particular interest are past releases of CO2 that have occurred relatively rapidly in geological terms, since they may provide natural analogues for the effects of current acidification on chemical processes and marine life. Calcifying organisms (that construct their shells out of calcium carbonate) provide an important research focus, since they are preserved in the fossil record and are also likely to be especially sensitive to changes in ocean chemistry. Most of the palaeo-oceanographic Specific aims of the consortium study were: work in UKOA was carried out by a consortium project Abrupt ocean l To produce new estimates of seawater acidity and atmospheric CO2 levels for acidification events and their effects the period 40-65 million years ago in the Earth’s past, led by Paul l To study the response of the carbon cycle during the onset of the Paleocene - Pearson at Cardiff University. Formal Eocene thermal maximum (PETM) using new data from Tanzania and elsewhere partners were at Southampton, and new computer models University College London and the l To compare the PETM with other known ocean acidification events in the Open University, with additional Earth’s past contributions by researchers at Bristol, l To quantify the biotic response to ocean acidification events both directly Oxford, Yale and elsewhere.
    [Show full text]
  • The Physical and Chemical Characteristics of Marine Primary Open Access Organic Aerosol: a Review Biogeosciences Biogeosciences Discussions B
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmos. Chem. Phys., 13, 3979–3996, 2013 Atmospheric Atmospheric www.atmos-chem-phys.net/13/3979/2013/ doi:10.5194/acp-13-3979-2013 Chemistry Chemistry © Author(s) 2013. CC Attribution 3.0 License. and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access The physical and chemical characteristics of marine primary Open Access organic aerosol: a review Biogeosciences Biogeosciences Discussions B. Gantt and N. Meskhidze Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA Open Access Open Access Correspondence to: N. Meskhidze ([email protected]) Climate Climate Received: 19 July 2012 – Published in Atmos. Chem. Phys. Discuss.: 23 August 2012 of the Past of the Past Revised: 5 March 2013 – Accepted: 24 March 2013 – Published: 18 April 2013 Discussions Open Access Open Access Abstract. Knowledge of the physical characteristics and 1 Introduction Earth System chemical composition of marine organic aerosols is needed Earth System for the quantification of their effects on solar radiation trans- Dynamics Dynamics fer and cloud processes. This review examines research per- One of the largest uncertainties of the aerosol-cloud sys- Discussions tinent to the chemical composition, size distribution, mixing tem is the background concentration of natural aerosols, es- state, emission mechanism, photochemical oxidation and cli- pecially over clean marine regions where cloud condensa- Open Access Open Access matic impact of marine primary organic aerosol (POA) asso- tion nuclei (CCN) concentrationGeoscientific ranges from less than 100 Geoscientific −3 ciated with sea-spray.
    [Show full text]
  • Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide
    Ocean acidification due to increasing atmospheric carbon dioxide Policy document 12/05 June 2005 ISBN 0 85403 617 2 This report can be found at www.royalsoc.ac.uk ISBN 0 85403 617 2 © The Royal Society 2005 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6-9 Carlton House Terrace London SW1Y 5AG email [email protected] Copy edited and typeset by The Clyvedon Press Ltd, Cardiff, UK ii | June 2005 | The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide Ocean acidification due to increasing atmospheric carbon dioxide Contents Page Summary vi 1 Introduction 1 1.1 Background to the report 1 1.2 The oceans and carbon dioxide: acidification 1 1.3 Acidification and the surface oceans 2 1.4 Ocean life and acidification 2 1.5 Interaction with the Earth systems 2 1.6 Adaptation to and mitigation of ocean acidification 2 1.7 Artificial deep ocean storage of carbon dioxide 3 1.8 Conduct of the study 3 2 Effects of atmospheric CO2 enhancement on ocean chemistry 5 2.1 Introduction 5 2.2 The impact of increasing CO2 on the chemistry of ocean waters 5 2.2.1 The oceans and the carbon cycle 5 2.2.2 The oceans and carbon dioxide 6 2.2.3 The oceans as a carbonate buffer 6 2.3 Natural variation in pH of the oceans 6 2.4 Factors affecting CO2 uptake by the oceans 7 2.5 How oceans have responded to changes in atmospheric CO2 in the past 7 2.6 Change in ocean chemistry due to increases in atmospheric CO2 from human activities 9 2.6.1 Change to the oceans
    [Show full text]
  • Analysis of Seawater a Guide for the Analytical and Environmental Chemist T.R
    Analysis of Seawater A Guide for the Analytical and Environmental Chemist T.R. Crompton Analysis of Seawater A Guide for the Analytical and Environmental Chemist With 48 Figures and 45 Tables 123 T.R. Crompton Hill Cottage (Bwthyn Yr Allt) Anglesey, Gwynedd United Kingdom Library of Congress Control Number: 2005929412 ISBN-10 3-540-26762-X Springer Berlin Heidelberg New York ISBN-13 978-3-540-26762-1 Springer Berlin Heidelberg New York DOI 10.1007/b95901 This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.
    [Show full text]
  • The Origin of Life in Alkaline Hydrothermal Vents
    ASTROBIOLOGY Volume 16, Number 2, 2016 Review Article ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1406 The Origin of Life in Alkaline Hydrothermal Vents Victor Sojo,1,2 Barry Herschy,1 Alexandra Whicher,1 Eloi Camprubı´,1 and Nick Lane1,2 Abstract Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents.
    [Show full text]
  • A Deductive Approach to Biogenesis! Rob Hengeveld* Vrije Universiteit, Amsterdam, the Netherlands
    ry: C ist urr m en e t Hengeveld, Organic Chem Curr Res 2015, 4:1 h R C e c s i e DOI: 10.4172/2161-0401.1000135 n a a r Organic Chemistry c g r h O ISSN: 2161-0401 Current Research ResearchReview Article Article OpenOpen Access Access A Deductive Approach to Biogenesis! Rob Hengeveld* Vrije Universiteit, Amsterdam, The Netherlands Abstract This article reviews the main arguments on the nature of the early startup of life. It first puts the biogenetical processes into a physical and systems-theoretical perspective. Biogenesis in this case would not be about the construction of individual molecules according to a chemical approach, but about building up an energetically self- sustaining, dynamically organized chemical system from scratch. Initially, this system would have separated out from generally operating physicochemical processes, gradually becoming more independent of them. As a system, it had to build up its structure stepwise, each stage being more complex and stable than the previous one, without, however, changing its basic structure too much; as long as the structure of a system stays intact, it still operates in the same way even if chemical constituents change. This property of a system became especially useful when the systems, which had already evolved and operated for some 1.3 billion years, had to adapt to new environmental conditions at the time of the Great Oxygen Event, the GOE, and some 2.5 billion years ago. As energy processing systems, their constituent molecules carry the energy and can as such be replaced by other, more efficient ones as soon as the system require, or as soon as external chemical conditions change.
    [Show full text]
  • Arctic Ocean Acidification
    Abstract Volume Arctic Ocean Acidification Bergen, Norway 6-8 May, 2013 Arctic Ocean Acidification Bergen, Norway 6-8 May, 2013 Abstract Volume Contents Preface ................................................................................................................................................................................................................................................... 7 Background .................................................................................................................................................................................................................................... 7 Session 1 Acidification in the Arctic Ocean – set the scene ...................................................................................... 8 Plankton community responses to ocean acidification: implications for food webs and biogeochemical cycling..................... 8 Ulf Riebesell The alpha and omega of ocean acidification – biological impacts on benthic organisms .................................................................... 8 Sam Dupont Policy and Ocean Acidification ........................................................................................................................................................................................ 9 Carol Turley Session 2 Chemistry .......................................................................................................................................................................................................
    [Show full text]
  • The West Coast Ocean Acidification and Hypoxia Science Panel MAJOR FINDINGS, RECOMMENDATIONS, and ACTIONS
    The West Coast Ocean Acidification and Hypoxia Science Panel MAJOR FINDINGS, RECOMMENDATIONS, AND ACTIONS APRIL 2016 Table of Contents I. Introduction ............................................................................................................................................................................................................................. 4 II. Major Findings ......................................................................................................................................................................................................................... 5 III. Panel Recommendations ......................................................................................................................................................................................................... 6 IV. Appendices...............................................................................................................................................................................................................................13 Appendix A: Why West Coast managers should care about ocean acidification .......................................................................................................................................................14 Appendix B: Why the West Coast is vulnerable to ocean acidification – and what we can learn from it .............................................................................................................16 Appendix c: Managing for resilience
    [Show full text]
  • History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification
    EA40CH07-Zeebe ARI 1 April 2012 7:44 History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification Richard E. Zeebe School of Ocean and Earth Science and Technology, Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii 96822; email: [email protected] Annu. Rev. Earth Planet. Sci. 2012. 40:141–65 Keywords First published online as a Review in Advance on carbon dioxide, paleochemistry, fossil fuels January 3, 2012 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Humans are continuing to add vast amounts of carbon dioxide (CO2)tothe This article’s doi: atmosphere through fossil fuel burning and other activities. A large fraction by University of Hawaii at Manoa Library on 05/03/12. For personal use only. 10.1146/annurev-earth-042711-105521 of the CO2 is taken up by the oceans in a process that lowers ocean pH Copyright c 2012 by Annual Reviews. Annu. Rev. Earth Planet. Sci. 2012.40:141-165. Downloaded from www.annualreviews.org and carbonate mineral saturation state. This effect has potentially serious All rights reserved consequences for marine life, which are, however, difficult to predict. One 0084-6597/12/0530-0141$20.00 approach to address the issue is to study the geologic record, which may provide clues about what the future holds for ocean chemistry and marine organisms. This article reviews basic controls on ocean carbonate chemistry on different timescales and examines past ocean chemistry changes and ocean acidification events during various geologic eras. The results allow evaluation of the current anthropogenic perturbation in the context of Earth’s history.
    [Show full text]
  • An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity CBD Technical Series No
    Secretariat of the CBD Technical Series Convention on No. 75 Biological Diversity 75 An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity CBD Technical Series No. 75 AN UPDATED SYNTHESIS OF THE IMPACTS OF OCEAN ACIDIFICATION ON MARINE BIODIVERSITY The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the copyright holders concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that use this document as a source. Reuse of the figures is subject to permission from the original rights holders. Published by the Secretariat of the Convention on Biological Diversity. ISBN 92-9225-527-4 (print version); ISBN 92-9225-528-2 (web version) Copyright © 2014, Secretariat of the Convention on Biological Diversity Citation: Secretariat of the Convention on Biological Diversity (2014). An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity (Eds: S. Hennige, J.M. Roberts & P. Williamson). Montreal, Technical Series No. 75, 99 pages For further information, contact: Secretariat of the Convention on Biological Diversity World Trade Centre, 413 Rue St. Jacques, Suite 800, Montréal, Quebec,Canada H2Y 1N9 Tel: +1 (514) 288 2220 Fax: +1 (514) 288 6588 E-mail: [email protected] Website: www.cbd.int Cover images, top to bottom: Katharina Fabricius; N.
    [Show full text]