Slip Distribution of the 2003 Tokachioki Mw 8.1 Earthquake From

Total Page:16

File Type:pdf, Size:1020Kb

Slip Distribution of the 2003 Tokachioki Mw 8.1 Earthquake From JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, B11313, doi:10.1029/2009JB006665, 2010 Slip distribution of the 2003 Tokachi‐oki Mw 8.1 earthquake from joint inversion of tsunami waveforms and geodetic data F. Romano,1 A. Piatanesi,1 S. Lorito,1 and K. Hirata2 Received 4 June 2009; revised 23 July 2010; accepted 24 August 2010; published 23 November 2010. [1] We study the 2003 Mw 8.1 Tokachi‐oki earthquake, a great interplate event that occurred along the southwestern Kuril Trench and generated a significant tsunami. To determine the earthquake slip distribution, we perform the first joint inversion of tsunami waveforms measured by tide gauges and of coseismic displacement measured both by GPS stations and three ocean bottom pressure gauges (PG) for this event. The resolution of the different data sets on the slip distribution is assessed by means of several checkerboard tests. Results show that tsunami data constrain the slip distribution offshore, whereas GPS data constrain the slip distribution in the onshore zone. The three PG data only coarsely constrain the offshore slip, indicating that denser networks should be installed close to subduction zones. Combining the three data sets significantly improves the inversion results. Joint inversion of the 2003 Tokachi‐oki earthquake data leads to maximum slip values (∼6 m) confined at depths greater than ∼25 km, between 30 and 80 km northwest of the hypocenter, with a patch of slip (3 m) in the deepest part of the source (∼50 km depth). Slip values are very low (≤1 m) updip from the hypocenter. Furthermore, the rupture does not extend on the plate interface off Akkeshi. As a significant back slip amount (∼4 m) has accumulated there since the last 1952 earthquake, this segment could rupture during the next large interplate event along the Kuril Trench. Citation: Romano, F., A. Piatanesi, S. Lorito, and K. Hirata (2010), Slip distribution of the 2003 Tokachi‐oki Mw 8.1 earthquake from joint inversion of tsunami waveforms and geodetic data, J. Geophys. Res., 115, B11313, doi:10.1029/2009JB006665. 1. Introduction et al., 2006]. Furthermore, the event generated a large tsu- nami along the southern coast of Hokkaido, with runup [2] The M 8.1 Tokachi‐oki earthquake of 25 September w heights higher than 4 m at some locations (Figure 1) [Tanioka 2003 (Figure 1) has been one of the strongest and better et al., 2004a]. The tsunami was recorded along the coasts of recorded seismic events in the last 50 years in Japan, and the both Hokkaido and Honshu islands by the Japanese tide first large interplate earthquake ever recorded by the Japanese gauge network (Figure 1). strong motion networks K‐NET and KiK‐net [Kinoshita, [4] In previous studies, the 2003 Tokachi‐oki earthquake 1998; Aoi et al., 2000]. Large earthquakes occur frequently has been analyzed following different approaches and using off Hokkaido Island (northern Japan) because the Pacific various geophysical data sets. The seismic source, for example, Plate subducts at the Kuril Trench just under the Hokkaido has been investigated inverting tsunami traveltimes [Hirata region (Figure 1). Several tsunamigenic earthquakes occurred et al., 2004], tsunami waveforms [Tanioka et al., 2004b], in the last 50 years in this region, as for example the 1952 teleseismic data [Yamanaka and Kikuchi, 2003; Horikawa, Tokachi‐oki (M8.2), the 1958 Etorofu (M8.1), the 1963 off 2004; Robinson and Cheung, 2010], strong motion data Urup (M8.1), the 1973 Nemuro‐oki (M7.7), and the 1994 [Honda et al., 2004, Aoi et al., 2008; Nozu and Irikura, 2008], Hokkaido Toho‐oki (M8.1) [Piatanesi et al., 1999; Utsu, GPS data [Miyazaki and Larson, 2008], teleseismic and 1999; Watanabe et al., 2006]. strong motion data jointly [Yagi, 2004], and finally combin- [3] Many GPS stations recorded the on land surface dis- ing GPS and strong motion data [Koketsu et al., 2004]. placement due to the 2003 Tokachi‐oki earthquake. The [5] In this study we perform, for the first time, as regards vertical component of the coseismic displacement was clearly this event, a joint inversion of geodetic and tsunami data. In captured also by three pressure gauges (PG) (two ocean ‐ general, fault planes of large subduction zone earthquakes lie bottom pressure gauges and one cable end station) installed beneath both land and ocean seafloor. Thus, tsunami wave- on the seafloor near the Kuril Trench (Figure 1) [Mikada forms and PG data can help constraining the slip distribution in the offshore zone, whereas geodetic data can mainly con- 1Department of Seismology and Tectonophysics, Istituto Nazionale di strain the slip onto the onshore zone [Satake, 1993]. There- Geofisica e Vulcanologia, Rome, Italy. 2 fore, inverting them jointly might lead to the retrieval of a Seismology and Volcanology Research Department, Meteorological better source model with respect to that estimated by inverting Research Institute, Japan Meteorological Agency, Tsukuba, Japan. data separately. Copyright 2010 by the American Geophysical Union. [6] A description of the data used, their preprocessing, the 0148‐0227/10/2009JB006665 fault parameterization, and the methods for Green’s functions B11313 1of12 B11313 ROMANO ET AL.: TOKACHI‐OKI 2003 JOINT SLIP INVERSION B11313 Figure 1. Location map of the 2003 Tokachi‐oki earthquake. Epicenter (white star) and focal mechanism are from Japan Meteorological Agency (JMA). Thin black lines are the surface projection of the subfaults used in this study. Blue triangles, green dots, and red dots are the positions of tide gauge stations, GPS stations, and ocean bottom pressure gauges (PG1, PG2, and PG3), respectively, used in the inversions (Tables S1 and S2 in the auxiliary material). In the inset, yellow squares are the aftershocks with Mw ≥ 4 in the 2 days after the main shock (U.S. Geological Survey); also indicated are the positions along the coast of Hokkaido where the runup measurements were higher than 4 m (Mabiro, Hamataiki, Horokayantou, and Oikamanai [Tanioka et al., 2004a]). calculation are provided first (sections 2, 3, and 4). Then, we recordings are provided by Japan Meteorological Agency describe the synthetic checkerboard tests used to assess data (JMA), the Hokkaido Regional Development Bureau (HRDB) resolving power for the slip distribution, both for single data of the Ministry of Land, Infrastructure and Transport, and the set inversions and for their joint inversion (section 5). Finally, Hydrographic and Oceanographic Department (HOD) of the we discuss the earthquake source characteristics of the Japan Coast Guard [Hirata et al., 2004]. In this study we use 2003 Tokachi‐oki earthquake retrieved from the inversion 16 tsunami waveforms (Table S1 in auxiliary material and (sections 6 and 7). Figure 1).1 Particular attention is dedicated in making the azimuthal coverage around the earthquake source as large as 2. Data [7] Tsunami waves from the 2003 Tokachi‐oki earth- 1Auxiliary materials are available in the HTML. doi:10.1029/ quake were recorded at Japanese coastal tide gauges. These 2009JB006665. 2of12 B11313 ROMANO ET AL.: TOKACHI‐OKI 2003 JOINT SLIP INVERSION B11313 possible, and in selecting only the recordings with a good [13] Green’s functions (horizontal and vertical coseismic signal‐to‐noise ratio. The selected records are sampled at displacements) at the GPS and PG stations, as well as the 1 min. Before using them in the inversion the tidal component initial condition for the tsunami propagation, are computed is removed by fitting it with a sum of three harmonics. using a layered Earth’s model by means of the PSGRN/ Moreover, for each waveform, we choose a time window PSCMP numerical code [Wang et al., 2006]. As input including only the first oscillations of the tsunami wave to parameters the PSGRN/PSCMP code needs P and S wave minimize the contribution of local effects on the tsunami velocities as well as density values for each of the layers. signal. Local effects, such as coastal reflections and resonance Here we use values from the vertical cross sections along of the bays could hide information on the seismic source and line F‐F′ as reported by Wang and Zhao [2005], adopting a are particularly difficult to model. model with four layers, whose parameters are listed in [8] The ground displacement associated to the earthquake Table S4 (see the auxiliary material). was recorded at the GPS stations of the GEONET network, operated by the Geographical Survey Institute of Japan (GSI). We use the GPS (Table S2 in auxiliary material and 5. Inversion Scheme and Checkerboard Figure 1) distributed over Hokkaido and northern Honshu Resolution Tests for which the coseismic offsets were estimated by Larson and Miyazaki [2008]. [14] We solve the inverse problem using a particular implementation of the simulated annealing technique called [9] The vertical component of the coseismic displacement “ ” has been recorded also on the seafloor by PGs, labeled as the heat bath algorithm [Rothman, 1986], following pre- PG1 (depth 2218 m), PG2 (depth 2210 m) as well as with a vious studies using tsunami, GPS, and strong motion data depth sensor, labeled PG3 (depth 2540 m), that is included [e.g., Piatanesi et al., 2007; Lorito et al., 2010]. For tsunami in a conductivity‐temperature‐depth meter (CTD) sensor time series, we use a cost function sensitive to both ampli- [Hirata et al., 2002]. In this work we use the vertical co- tude and phase matching [Spudich and Miller, 1990; Sen seismic static offsets at the PGs estimated by Mikada et al. and Stoffa, 1991]: 2 3 [2006] (Table S2 in the auxiliary material). Ptf 2 ðÞu ðÞt u ðÞt XN 6 O S 7 6 t 7 EmðÞ¼ 61 À i 7 ð1Þ 4 Ptf Ptf 5 3. Fault Parameterization k¼1 2 2 uOðÞþt uS ðÞt ti ti [10] The source area (Figure 1) is set on the basis of the k M ≥ 4 aftershock distribution in the 2 days after the main w In equation (1) u and u are the observed and synthetic shock.
Recommended publications
  • Detection of Ruptures of Andaman Fault Segments in the 2004 Great
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, B09313, doi:10.1029/2005JB004202, 2006 Click Here for Full Article Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances Kosuke Heki,1 Yuichi Otsuka,2 Nithiwatthn Choosakul,3 Narong Hemmakorn,4 Tharadol Komolmis,5 and Takashi Maruyama6 Received 2 December 2005; revised 9 March 2006; accepted 16 June 2006; published 23 September 2006. [1] Near-field coseismic perturbations of ionospheric total electron content (TEC), caused by direct acoustic waves from focal regions, can be observed with Global Positioning System (GPS). They appear 10–15 min after the earthquake with typical periods of 4–5 min and propagate as fast as 1 km/s toward directions allowed by ambient geomagnetic fields. Ionospheric disturbance, associated with the 2004 December 26 great Sumatra-Andaman earthquake, was recorded with nine continuous GPS receiving stations in Indonesia and Thailand. Here we explore the possibility to constrain the rupture process of the earthquake with the observed ionospheric disturbances. We assumed linearly distributed point sources along the zone of coseismic uplift extending 1300 km from Sumatra to the Andaman Islands that excited acoustic waves sequentially as the rupture propagate northward by 2.5 km/s. TEC variations for several satellite-receiver pairs were synthesized by simulating the propagation of acoustic waves from the ground to the ionosphere and by integrating the TEC perturbations at intersections of line of sights and the ray paths. The TEC perturbations from individual point sources were combined using realistic ratios, and the total disturbances were compared with the observed signals.
    [Show full text]
  • Temporal Variation and Statistical Assessment of the B Value Off the Pacific Coast of Tokachi, Hokkaido, Japan
    Article Temporal Variation and Statistical Assessment of the b Value off the Pacific Coast of Tokachi, Hokkaido, Japan Weiyun Xie 1, Katsumi Hattori 2,3, * and Peng Han 4 1 Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan; [email protected] 2 Graduate School of Science, Chiba University, Chiba 263-8522, Japan 3 Center for Environmental Remote Sensing, Chiba University, Chiba 263-8522, Japan 4 Southern University of Science and Technology, Shenzhen 518055, China; [email protected] * Correspondence: [email protected]; Tel.: +81-43-290-2801; Fax:+81-43-290-2859 Received: 31 December 2018; Accepted: 26 February 2019; Published: 5 March 2019 Abstract: The Gutenberg-Richter Law describes the frequency-magnitude distribution of earthquakes. A number of studies have shown that the slope (b value) of the relationship between frequency and magnitude decreased before large earthquakes. In this paper, we investigate the temporal variation of the b value off the Pacific coast of Tokachi, Hokkaido, Japan, during 1990– 2014. The magnitude of completeness (Mc) in the catalog is evaluated by combining the maximum curvature (MAXC) technique and the bootstrap approach. Then, the b value, and its uncertainty, is computed by using the maximum likelihood estimation. The Akaike Information Criterion (AIC) with the bootstrap approach is introduced to statistically assess the temporal variation of b values and quantify the significance level. The results show a decrease in trends of the b value prior to two large earthquakes (26 September 2003 (M8.0) and 11 September 2008 (M7.1)) in the analyzed area.
    [Show full text]
  • Japan Society of Civil Engineers Engineers Without Borders, Japan
    JSCE (Japan Society of Civil Engineers) - NPO: EWB (Engineers Without Borders, Japan) Joint Team for INSTRUCTIONS FOR GEOTECHNICAL INVESTIGATION AND THE PRACTICAL UTILIZATION OF ITS RESULTS FOR RECOVERY AND RECONSTRUCTION OF NIAS ISLAND AND FOR DISASTER PREVENTION OF NORTH SUMATRA AND WEST SUMATRA PROVINCE Feb. 17 -25, 2007 Japan Society of Civil Engineers Engineers Without Borders, Japan in Collaboration with Civil Engineering Part of PII (the Institution of Engineers, Indonesia (Persatuan Insinyur Indonesia). 1. PURPOSE OF DISPATCHING THE JSCE TEAM A great earthquake with a magnitude of 8.5 hit North Sumatra, Nias Island on March 28, 2005. The earthquake caused extensive damage to mainly bridges, port facilities, houses and other buildings. Temporary repairs and Rehabilitation of infrastructures, load, bridges and so on is on of the most urgent subjects in Indonesia. By the request of a state legislature, JSCE dispatched the expert team to support the repair works and rehabilitation of public facilities in April 2005. The team visited Nias Island to investigate the damage to the infrastructure, and to make recommendations for temporary repair and rehabilitation to concerned government agency. Especially, in Gunung Sitoli, the capital of Nias Island, its infrastructure including lifeline systems, which was seriously destroyed due to liquefaction of the ground, had no prospect of being re-constructed after many months elapsed from the earthquake. In order to initiate recovery and reconstruction work in the region, the soil exploration data such as boring data is essential. However, available data is scarce and not sufficient for recovery and reconstruction works at the present time. Therefore, Japan Society of Civil Engineers dispatched experts and engineers to Nias Island again and provided the expertise advises and technical supports for recovery and re-construction with the close cooperation of the Institution of Engineers, Indonesia (Persatuan Insinyur Indonesia: PII).
    [Show full text]
  • The 1St Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1)
    Open-File Report of Geological Survey of Japan, no. 557 The 1st Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) Abstracts Volume February 22-25, 2012 Auditorium, AIST Tsukuba Central, Tsukuba, Japan Hosted by Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST) Supported by Ministry of Economy, Trade and Industry (METI) Ministry of Education, Culture, Sports, Science and Technology (MEXT) Ministry of Foreign Affairs of Japan (MOFA) Japan Meteorological Agency (JMA) Geographical Information Authority of Japan (GSI) National Research Institute for Earth Science and Disaster Prevention (NIED) Building Research Institute (BRI) Earthquake Research Institute, University of Tokyo (ERI) Disaster Prevention Research Institute, Kyoto University (DPRI) United States Geological Survey (USGS) EuroGeoSurveys (EGS) The Institute of Geological and Nuclear Sciences Ltd. of New Zealand (GNS Science) Asian Disaster Reduction Center (ADRC) Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) Circum Pacific Council (CPC) Global Earthquake Model (GEM) The International Union of Geodesy and Geophysics (IUGG) International Association of Seismology and Physics of the Earth’s Interior (IASPEI) International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Geological Society of Japan (GSJ) Seismological Society of Japan (SSJ) Volcanological Society of Japan (VSJ) Japan Association for Quaternary Research (JAQUR) The 1st Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) Abstracts Volume Editors Eikichi Tsukuda, Yutaka Takahashi, Shinji Takarada, Akira Takada, Yasuto Kuwahara, Takashi Azuma, Naoji Koizumi and Yuzo Ishikawa Open-File Report of Geological Survey of Japan, no. 557 Published by the Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8567, Japan.
    [Show full text]
  • Memorial Conference on the 2004 Giant Earthquake and Tsunami in the Indian Ocean
    Memorial Conference on the 2004 Giant Earthquake and Tsunami in the Indian Ocean Period: December 14 – 15 (Part 1) December 16 – 17 (Part 2) Venue: Zenkyoren Bldg, 7-9 Hirakawa-cho 2, Chiyoda, Tokyo (Dec.14-16) Akasaka Prince Hotel, 1-2, Kioi-cho, Chiyoda, Tokyo (Dec. 17) Sponsors: Earthquake Research Institute, University of Tokyo Nat’l Res. Inst. for Earth science and Disaster prevention Disaster Prevention Research Forum Preface The earthquake and tsunami of December 26, 2004, caused tremendous damage to the countries surrounding Indian Ocean. Peoples in the heavily-stricken areas are still suffering from the disasters and the restoration process would take a long time. This memorial conference has been proposed to hold in the occasion of about one year of passage after the Giant Earthquake and Tsunami. Historically Japan has suffered many earthquakes and tsunamis, in which a lot of lives and properties have been lost. Japanese people have made continuous efforts against the inherent and inevitable attack of the nature that usually presents us fruitful gift of natural harvest and beautiful scenery. After the tragedy of the Indian Ocean many Japanese people opened their eyes to realize the importance to share experiences against natural disasters with the people in Asian countries, where large amount of natural disasters happen. Even though the conference is a tiny step, our efforts should be sustainingly continued to establish safe and secure land to live peacefully in Asia, The conference consists of two parts; Part 1: International Workshop on the Restoration Program from Giant Earthquakes and Tsunami, and Part 2: International Symposium on Proposals toward International Collaboration for Disaster Reduction Technology.
    [Show full text]
  • Block Motion Changes in Japan Triggered by the 2011 Great Tohoku Earthquake Brendan Meade Harvard University
    Masthead Logo Smith ScholarWorks Geosciences: Faculty Publications Geosciences 7-3-2017 Block motion changes in Japan triggered by the 2011 great Tohoku earthquake Brendan Meade Harvard University John P. Loveless Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/geo_facpubs Part of the Geology Commons Recommended Citation Meade, Brendan and Loveless, John P., "Block motion changes in Japan triggered by the 2011 great Tohoku earthquake" (2017). Geosciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/geo_facpubs/23 This Article has been accepted for inclusion in Geosciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Block motion changes in Japan triggered by the 2011 10.1002/2017GC006983 great Tohoku earthquake Key Points: Brendan J. Meade1 and John P. Loveless2 Analytic theory for block motion changes from earthquakes 1Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA, 2Department of GPS constrained block motions Geosciences, Smith College, Northampton, Massachusetts, USA reveal select block motion changes before and after the 2011 Tohoku earthquake Abstract Plate motions are governed by equilibrium between basal and edge forces. Great earthquakes may induce differential static stress changes across tectonic plates, enabling a new equilibrium state. Here Correspondence to: B. J. Meade, we consider the torque balance for idealized circular plates and find a simple scalar relationship for changes [email protected] in relative plate speed as a function of its size, upper mantle viscosity, and coseismic stress changes. Applied 2 5 to Japan, the 2011 MW59:0 Tohoku earthquake generated coseismic stresses of 10 –10 Pa that could have Citation: induced changes in motion of small (radius 100 km) crustal blocks within Honshu.
    [Show full text]
  • Field Survey of the Tsunami Caused by the Sumatra-Andaman Earthquake of December 26, 2004 and the Restoration
    Field Survey of the Sumatra-Andaman Earthquake Tsunami Survey Report: Field Survey of the Tsunami Caused by the Sumatra-Andaman Earthquake of December 26, 2004 and the Restoration of Impacted Inland Water Bodies in Sri Lanka £ £ Anil C. Wijeyewickrema £1, Shusaku Inoue 2, Priyantha Gunaratna 3, £ Manoj Madurapperuma £1, Hiroyuki Matsumoto 4, £ Hiroyuki Miura £5, and Toru Sekiguchi 6 £1Department of Civil Engineering, Tokyo Institute of Technology, Japan E-mail: [email protected] £2Department of Built Environment, Tokyo Institute of Technology, Japan £3Department of Civil Engineering, University of Moratuwa, Sri Lanka £4Japan Agency for Marine-Earth Science and Technology, Japan £5Center for Urban Earthquake Engineering, Tokyo Institute of Technology, Japan £6Department of Architecture and Building Engineering, Tokyo Institute of Technology, Japan [Received May 31, 2006; accepted July 10, 2006] The magnitude 9.0 Sumatra-Andaman earthquake on December 26, 2004, was one of the world’s largest since 1900. The devastating tsunami resulting from it caused more casualties than any previously reported tsunami. This paper describes two field visits to assess tsunami damage in Sri Lanka by a team of Japanese and Sri Lankan researchers and environ- mental restoration plans for tsunami-impacted inland water bodies. The first field visit, Dec. 30, 2004-Jan. 04, 2005, covered western, southwestern and southern Sri Lanka and included the cities of Beruwala, Pere- liya, Hikkaduwa, Galle, Talpe, Matara, and Hamban- tota. The second field visit, March 10-18, 2005, cov- ered northeastern, eastern, southeastern and southern Sri Lanka and included Trincomalee, Kuchchaveli, Pasikkudah, Batticaloa, Arugam Bay, Yala (National Park), and Kirinda.
    [Show full text]
  • Simulation of Earthquake Generation Process in a Complex System of Faults: 2008
    Chapter 1 Earth Science Simulation of Earthquake Generation Process in a Complex System of Faults: 2008 Project Representative Kazuro Hirahara Graduate School of Science, Kyoto University Authors Kazuro Hirahara Graduate School of Science, Kyoto University Naoyuki Kato Earthquake Research Institute, University of Tokyo Takashi Miyatake Earthquake Research Institute, University of Tokyo Kengo Nakajima Information Technology Center, University of Tokyo Takane Hori Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology Mamoru Hyodo The Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology Kachishige Sato Natural Science Division, Tokyo Gakugei University Jun Inn Advanced Simulation Technology of Mechanics Noa Mitsui Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology Keisuke Ariyoshi Department of Ocean Floor Network System Development for Earthquakes and Tsunamis, Japan Agency for Marine-Earth Science and Technology Bunichiro Shibazaki International Institute of Seismology and Earthquake Engineering, Building Research Institute Tomoshi Miyamura College of Engineering, Nihon University Yutaka Nakama Fuji Research Institute Cooperation Takashi Kanai Faculty of Environmental Information, Keio University In this project, we aim at simulating the generation of interplate and intraplate earthquakes in a complex system of interac- tive faults in northeast and southwest Japan, respectively. We use simply a homogeneous elastic half-space medium at present, to simulate quasi-static earthquake cycles based on a laboratory-derived rate and state friction law, in which the long-term slow deformation process is mainly dealt with, though including a quasi-dynamic treatment of dynamic rupture process. First, we show the simulation of short-term slow slip events and low-frequency tremors recently observed in southwest Japan.
    [Show full text]
  • Recent Damaging Earthquakes in Japan, 2003-2008
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (2008) - Sixth International Conference on Case Geotechnical Engineering Histories in Geotechnical Engineering 16 Aug 2008, 8:45am - 12:30pm Recent Damaging Earthquakes in Japan, 2003-2008 Robert Kayen U.S. Geological Survey, Menlo Park, CA Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Kayen, Robert, "Recent Damaging Earthquakes in Japan, 2003-2008" (2008). International Conference on Case Histories in Geotechnical Engineering. 21. https://scholarsmine.mst.edu/icchge/6icchge/session03/21 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. RECENT DAMAGING EARTHQUAKES IN JAPAN, 2003-2008 Robert Kayen, Ph.D. P.E. U.S. Geological Survey 345 Middlefield Road Menlo Park, CA 94025 USA ABSTRACT During the last six years, from 2003-2008, Japan has been struck by three significant and damaging earthquakes: The most recent M6.6 Niigata Chuetsu Oki earthquake of July 16, 2007 off the coast of Kashiwazaki City, Japan; The M6.6 Niigata Chuetsu earthquake of October 23, 2004, located in Niigata Prefecture in the central Uonuma Hills; and the M8.0 Tokachi Oki Earthquake of September 26, 2003 effecting southeastern Hokkaido Prefecture.
    [Show full text]
  • Detection of Ruptures of Andaman Fault Segments in the 2004 Great Sumatra Earthquake with Coseismic Ionospheric Title Disturbances
    Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric Title disturbances Heki, Kosuke; Otsuka, Yuichi; Choosakul, Nithiwatthn; Hemmakorn, Narong; Komolmis, Tharadol; Maruyama, Author(s) Takashi Journal of Geophysical Research, 111(B09313) Citation https://doi.org/10.1029/2005JB004202 Issue Date 2006-09-23 Doc URL http://hdl.handle.net/2115/14746 An edited version of this paper was published by AGU; Copyright 2006, American Geophysical Union, JOURNAL OF Rights GEOPHYSICAL RESEARCH, 111 Type article (author version) File Information ZS21-12.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Detection of Ruptures of Andaman Fault Segments in the 2004 Great Sumatra Earthquake with Coseismic Ionospheric Disturbances Kosuke Heki1, Yuichi Otsuka2, Nithiwatthn Choosakul3, Narong Hemmakorn4, Tharadol Komolmis5, Takashi Maruyama6 1Div. Earth Planet. Sci., Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan Tel: 81-11-706-3826 email:[email protected] 2Solar Terrestrial Environment Lab., Nagoya Univ., Honohara, Toyokawa-city, Aichi 442-8507, Japan Tel: 81-533-89-5168 email:[email protected] 3Dept.Geology, Faculty of Science, Chulalongkorn Univ., Phayathai Road, Bangkok 10330, Thailand Tel: 66-218-5463 email:[email protected] 4Dept.Telecommunications, Faculty of Engineering, King Mongkut’s Inst. Tech., Ladkrabang, Bangkok, 10520 Thailand Tel: 662-737-3000 e-mail: [email protected] 5Dept.Electrical Engineering, Faculty of Engineering, Chiang Mai Univ. Chiang Mai, 50200 Thailand Tel: 66-5394-4139 e-mail: [email protected] 6National Institute of Information and Communications Technology, 4-2-1 Nukui-Kita, Koganei-city, 184-8795 Tokyo, Japan Tel: 81-42-327-6584 email:[email protected] Abstract Near field coseismic perturbations of ionospheric total electron content (TEC), caused by direct acoustic waves from focal regions, can be observed with Global Positioning System (GPS).
    [Show full text]
  • Spatio-Temporal Distribution of Seismic Moment Release Near the Source Area of the 2011 Tohoku-Oki Earthquake
    Earth Planets Space, 64, 1067–1075, 2012 Spatio-temporal distribution of seismic moment release near the source area of the 2011 Tohoku-Oki earthquake Jing-Yi Lin1 and Wen-Nan Wu2 1Institute of Geophysics and Department of Earth Sciences, National Central University, 300 Jhongda Road, Jhongli City, Taoyuan County 32001, Taiwan 2Institute of Earth Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan (Received December 29, 2011; Revised March 16, 2012; Accepted April 9, 2012; Online published January 28, 2013) To understand the generation mechanism of the 2011 Tohoku-Oki earthquake, we analyzed the spatial and temporal distribution of the cumulative seismic moment (M0) for all earthquakes along the Japan Trench listed in the global centroid moment tensor catalog between January 1976 and November 2011. Three areas with distinct characteristics of M0 are identified: (1) in the 2011 Tohoku-Oki source area, the M0 released in the down-dip portion (≥30 km) was greater than that in the up-dip portion (<30 km) before the mainshock; (2) the M0 of the up-dip portion in the region where slow slip activity prevails is greater than that of the down-dip portion throughout the study period; (3) in the surroundings of the source area, where interplate coupling is relatively low and the largest foreshock occurred, values of M0 for the down-dip and up-dip portions are both intermediate. Our results show that a megathrust rupture could be generated by large accumulations of strain energy at the subduction interface, resulting from the differential strain energy released in the down-dip and up- dip portions during the interseismic interval.
    [Show full text]
  • Revision of Survey Results of Control Points After the 2011 Off the Pacific Coast of Tohoku Earthquake 31
    Revision of Survey Results of Control Points after the 2011 off the Pacific Coast of Tohoku Earthquake 31 Revision of Survey Results of Control Points after the 2011 off the Pacific Coast of Tohoku Earthquake Yohei HIYAMA, Atsushi YAMAGIWA, Toshio KAWAHARA, Masao IWATA, Yoshihiro FUKUZAKI, Yasushi SHOUJI, Yudai SATO, Toru YUTSUDO, Toshiyuki SASAKI, Hiromi SHIGEMATSU, Hiromi YAMAO, Takaaki INUKAI, Mitsuo OHTAKI, Kensuke KOKADO, Shinobu KURIHARA, Isao KIMURA, Takashi TSUTSUMI, Toshihiro YAHAGI, Yukiko FURUYA, Isao KAGEYAMA, Satoshi KAWAMOTO, Kazunori YAMAGUCHI, Hiromichi TSUJI and Shoichi MATSUMURA Abstract Large-scale crustal deformation over a wide area of eastern Japan was detected by GEONET, Japan's dense Global Positioning System (GPS) network, following the 2011 off the Pacific coast of Tohoku Earthquake occurred on March 11, 2011. Since it was assumed that coordinates of the control points for public surveys, such as GEONET stations, triangulation stations and leveling bench marks, in a wide area were greatly changed and could hardly maintain consistency between nearby stations, the Geospatial Information Authority of Japan (GSI) stopped providing ‘Survey Results’ of them, which were the coordinates for survey use, and announced it publicly on March 14, 2011. In order to promote various public restoration programs in the affected area, it was strongly required to revise the Survey Results in an urgent manner. On the other hand, because large postseismic deformation had continued widely after the event, it was concerned that even if the Survey Results were updated immediately, they would become ineffective in a short time. Therefore GSI examined the optimal timing to calculate their new coordinates by predicting the amount of future postseismic movement based on the observation data of GEONET stations.
    [Show full text]