3D Kinematic and Strength Behavior of Granular Materials at the Particle-Level

Total Page:16

File Type:pdf, Size:1020Kb

3D Kinematic and Strength Behavior of Granular Materials at the Particle-Level University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2015 3D KINEMATIC AND STRENGTH BEHAVIOR OF GRANULAR MATERIALS AT THE PARTICLE-LEVEL Mehmet Burak Cil University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geotechnical Engineering Commons, and the Materials Science and Engineering Commons Recommended Citation Cil, Mehmet Burak, "3D KINEMATIC AND STRENGTH BEHAVIOR OF GRANULAR MATERIALS AT THE PARTICLE-LEVEL. " PhD diss., University of Tennessee, 2015. https://trace.tennessee.edu/utk_graddiss/3297 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mehmet Burak Cil entitled "3D KINEMATIC AND STRENGTH BEHAVIOR OF GRANULAR MATERIALS AT THE PARTICLE-LEVEL." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Civil Engineering. Khalid Alshibli, Major Professor We have read this dissertation and recommend its acceptance: Dayakar Penumadu, Eric Drumm, Angel Palomino Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) 3D KINEMATIC AND STRENGTH BEHAVIOR OF GRANULAR MATERIALS AT THE PARTICLE-LEVEL A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Mehmet Burak Cil May 2015 Copyright © 2015 by Mehmet Burak Cil All rights reserved. ii To my wife Saliha and my son Ahmet Asım & To my family iii ACKNOWLEDGEMENT Firstly, I would like to express my sincere appreciation to my academic advisor Dr. Khalid Alshibli for his guidance, constant encouragement and support throughout my graduate study. He has provided an excellent academic environment to advance my skills and technical knowledge. His professional advice and assistance have been invaluable and have helped me to become an independent researcher. I would like to thank my committee members Dr. Dayakar Penumadu, Dr. Angel Palomino, and Dr. Eric Drumm for their valuable suggestions and constructive comments. I am grateful to Dr. Mark Rivers, Dr. Peter Kenesei and Dr. Ulrich Lienert for their help during experiments and data analysis at Advanced Photon Source (APS). My special thanks go to Dr. Kenesei for sharing his expertise with me. He taught me how to use Fable and DIGIgrain, and patiently answered all my questions about 3DXRD technique. I would like to thank my officemates and friends, Andrew Druckrey, Ala'a Qasem, Maha Jarrar and Dr. Isaac Jeldes, for all of the help and support they provided. Also, I would like to acknowledge the financial support provided by National Science Foundation. Finally, I am thankful to my wife Saliha, my son Ahmet Asım, my father Ahmet, my mother Şengül, and my sisters Şeyma and Hatice for their endless love, understanding, and continuous support during my Ph.D. study. iv ABSTRACT The macro-scale behavior of uncemented granular materials is governed by the particle-to- particle interactions. Therefore, accurate assessment of the micro-scale mechanics is essential for better understanding of the fundamental behavior of granular materials. Particle fracture phenomenon and force transmission mechanisms in natural granular assemblies such as sands have not been fully understood due to the lack of micro-scale experimental measurements. The objective of this dissertation is to provide key quantitative measurements about these issues using powerful non-destructive experimental 3D x-ray diffraction (3DXRD) and synchrotron micro-tomography (SMT) techniques, as well as distinct element method (DEM). 3DXRD was employed to measure the volume-averaged lattice strain of individual silica sand particles within a sand assembly under 1D compression loading condition. The evolution and distribution of particle fracture, particle fracture mechanism and deformation characteristics of sand particles subjected to 1D compression across the scales were also investigated and quantified using SMT and DEM methods. Sand particles were modeled in DEM as crushable agglomerates composed of many spherical sub- particles that were linked by parallel bonds. DEM simulations were first calibrated and validated using laboratory experiments, and then were used to quantify micro-scale processes including the contact force network, and the fracture mechanics of crushable agglomerates. In addition, DEM was adopted to examine particle kinematic behavior and the influence of boundary conditions in triaxial testing. In first set of lattice strain measurements performed on a column composed of three sand particles, the normal strain along the loading direction increased in a linear fashion as the compression proceeded until one of the sand particle fractured. However, significant variation and v fluctuations were observed in the measured lattice strain tensor components of sand particles for relatively larger specimen due to complex deformation behavior and a non-homogenous contact force network. The SMT images and DEM model revealed that particle fracture concentrates at certain locations close to the loading platen, and the onset of particle fracture and specimen yielding occur at the same strain level in a 1D compression test. Finally, triaxial test DEM simulations showed that a flexible membrane better replicates the uniformly applied confining stress compared to a rigid boundary. vi TABLE OF CONTENTS CHAPTER 1 INTRODUCTION ........................................................................................................... 1 Background ................................................................................................................................. 2 Objectives ................................................................................................................................... 6 Dissertation Outline .................................................................................................................... 8 References ................................................................................................................................. 11 CHAPTER 2 LITERATURE REVIEW ............................................................................................... 12 Introduction ............................................................................................................................... 13 Distinct Element Method (DEM) ............................................................................................. 13 Previous studies .................................................................................................................... 14 Particle Flow Code in Three Dimensions (PFC3D) ............................................................. 17 Fundamentals of Three Dimensional X-ray Diffraction (3DXRD) .......................................... 20 Introduction to x-ray diffraction ........................................................................................... 20 Diffraction theory and Bragg’s Law ..................................................................................... 22 Reciprocal lattice................................................................................................................... 24 Synchrotron radiation at Advanced Photon Source (APS) ................................................... 27 Beamline 1-ID at APS .......................................................................................................... 29 Coordinate systems ............................................................................................................... 30 References ................................................................................................................................. 36 CHAPTER 3 STRAIN TENSOR DETERMINATION OF COMPRESSED INDIVIDUAL SILICA SAND PARTICLES USING HIGH-ENERGY SYNCHROTRON DIFFRACTION ............................................. 41 Abstract ..................................................................................................................................... 42 Introduction ............................................................................................................................... 43 Principle of 3DXRD Microscopy ............................................................................................. 46 Experiments .............................................................................................................................. 47 Diffraction Data Analysis ......................................................................................................... 53 Results ....................................................................................................................................... 59 Track particle orientation ...................................................................................................... 59 vii Lattice strain tensor measurements ......................................................................................
Recommended publications
  • Mechanics of Granular Materials
    Mechanics of Granular Materials: Constitutive Behavior and Pattern Transformation Cover image !c Luca Galuzzi - www.galuzzi.it Sand dunes of Wan Caza in the Sahara desert region of Fezzan in Libya. Used under Creative Commons Attribution-Share Alike 2.5 Generic license. Mechanics of Granular Materials: Constitutive Behavior and Pattern Transformation PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben, voorzitter van het College van Promoties, in het openbaar te verdedigen op maandag 2 juli 2012 om 10.00 uur door Fatih GÖNCÜ Master of Science in Applied Mathematics, École Normale Supérieure de Cachan, France geboren te Ilgaz, Turkije Dit proefschrift is goedgekeurd door de promotoren : Prof. dr. rer.-nat. S. Luding Prof. dr. A. Schmidt-Ott Samenstelling promotiecommissie : Rector Magnificus voorzitter Prof. dr. rer.-nat. S. Luding Universiteit Twente, promotor Prof. dr. A. Schmidt-Ott Technische Universiteit Delft, promotor Dr. K. Bertoldi Harvard University, Verenigde Staten Prof.dr.ir. L.J. Sluys Technische Universiteit Delft Prof.dr.-ing. H. Steeb Ruhr-Universität Bochum, Duitsland Prof.dr.ir. A.S.J. Suiker Technische Universiteit Eindhoven Prof.dr. M. Liu Universität Tübingen, Duitsland Prof.dr. S.J. Picken Technische Universiteit Delft, reservelid This research has been supported by the Delft Center for Computational Science and Engi- neering (DCSE). Keywords: granular materials, pattern transformation, discrete element method Published by Ipskamp Drukkers, Enschede, The Netherlands ISBN: 978-94-6191-341-8 Copyright c 2012 by Fatih Göncü ! All rights reserved. No part of the material protected by thiscopyrightnoticemaybere- produced or utilized in any form or by any means, electronic ormechanical,includingpho- tocopying, recording or by any information storage and retrieval system, without written permission of the author.
    [Show full text]
  • “Phonon” Conductivity Along a Column of Spheres in Contact Relation to Volume Fraction Invariance in the Core of Granular flows Down Inclines
    Granular Matter manuscript No. (will be inserted by the editor) \Phonon" conductivity along a column of spheres in contact Relation to volume fraction invariance in the core of granular flows down inclines Michel Y. Louge Received: June 14, 2011 / Accepted: date Abstract We calculate energy conduction and dissipa- as tion along a column of spheres linked with linear springs p ∗ ∗ ∗ du and dashpots to illustrate how grains in simultaneous τ = f1 T ; (1) xyI dy∗ contact may produce a constant \phonon" conductiv- ∗ 2 ity of granular fluctuation kinetic energy. In the core of ∗ ∗ du τ = −f4T + f6 ; (2) dense unconfined granular flows down bumpy inclines, yyI dy∗ we show that phonon conductivity dominates its coun- p dT ∗ dν terpart calculated from gas kinetic theory. However, the q∗ = −f T ∗ − f T ∗3=2 ; (3) I 2 dy∗ 5 dy∗ volume dissipation rate of phonon fluctuation energy is ∗ ∗3=2 of the same order as the kinetic theory prediction. γI = f3T ; (4) Keywords Granular conduction · Dense flows where f1{f6 are functions of ν, the pair distribution function at contact g12(ν), and properties characteriz- PACS 44.10.+i · 46.40.-f · 45.70.Mg · 62.30.+d ing binary impacts [2{4]. (In Eqs. (1) and (2), we define τij as the component of the cartesian stress tensor τ on a surface of normal j directed along i. We also adopt the convention that compressive normal stresses are nega- 1 Introduction tive, and that the shear stress on a surface of normal y^ directed along x^ is positive, where x^ if the unit vector A feature of the core of dense, steady, fully-developed along the flow and y^ is the downward normal to its free free-surface flows of spheres of diameter d and mate- surface).
    [Show full text]
  • LECTURE 2 - Statistical Ensembles for Jammed Granular States
    LECTURE 2 - Statistical Ensembles for Jammed Granular States Notes based on Henkes, O'Hern and Chakrabory, PRL 99, 038002 (2007), Henkes and Chakraborty , PRE 79, 061301 (2009), and Henkes, PhD thesis, Brandeis Equilibrium - microcanonical to canonical We quickly review the steps one takes in ordinary equilibrium statistical mechanics, in going from the microcanonical to the canonical ensemble. In the microcanonical ensemble, energy is conserved. One assumes that all states with the same total energy E are equally likely, and computes microcanonical averages by averaging observables over all states with the same E, using equal weights. For N particles in a box of volume V , one counts the number number of states Ω(E; V; N) with total energy E. The temperature is defined by 1=T = @S=@E, with S(E) = ln Ω(E) the entropy. Consider now a small subsystem with N particles in volume V , and the subsystem is in contact with a big reservoir with which it can exchange energy. The reservoir contains NR N particles in a volume VR V . The total system of subsystem + reservoir is treated in the microcanonical ensemble. Since energy is additive, the total energy ET = E + ER is fixed. One assumes the subsystem and the reservoir are uncorrelated and so the number of states of the total system factorizes, X ΩT (ET ) = Ω(E)ΩR(ET − E) E One then expands for E ET , ΩR(ET − E) = expfln ΩR(ET ) − [@ ln ΩR=@ET ]Eg ∼ exp{−E=TRg In equilibrium we know that the temperatures of the subsystem and reservoir equilibrate, T = TR, and so if we assume that the probability to find the subsystem with energy E is proportional to the number of states in which the subsystem has energy E and the reservoir has ET − E, then we get the canonical distribution, P (E) ∼ Ω(E) exp{−E=T g Edwards volume ensemble for granular matter Consider a jammed granular system of N rigid, incompressible, particles confined to a box of volume V .
    [Show full text]
  • Evidence That the Reactivity of the Martian Soil Is Due To
    R EPORTS Similar coherence between heavy-hole and 8. E. Hagley et al., Phys. Rev. Lett. 79, 1 (1997). ed. For some carefully arranged excitation (red-side- light-hole excitons has been reported in (33). 9. See the article in the Search and Discovery section band excitation) and a specific initial condition (two-ion [Phys. Today 53, 20 (January 2000)] for discussions ground state with one phonon), no sublevels in the These are examples of quantum coherence in- on entanglement in liquid-state NMR. For experimen- fourth (upper-most) level are resonant with the laser volving a nonradiative superposition of states, tal demonstrations of quantum algorithms using beams, resulting in a zero-probability amplitude of this which leads to many novel phenomena such as NMR, see, for example, I. L. Chuang et al., Phys. Rev. level and therefore a nonfactorizable wavefunction. the Hanle effect, dark states, lasing without Lett. 80, 3408 (1998). 24. N. H. Bonadeo et al., Phys. Rev. Lett. 81, 2759 (1998). 10. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. 25. For our experiment, the pump and probe fields (Epump inversion, electromagnetically induced trans- Wineland, Phys. Rev. Lett. 75, 4714 (1995). and Eprobe) are amplitude-modulated by two standing- parency, and population trapping [see (33) and 11. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, wave acousto-optical modulators at frequency fpump and f , respectively. These frequencies (ϳ100 MHz) references therein]. However, unlike the QD H. J. Kimble, Phys. Rev. Lett. 75, 4710 (1995). probe 12. J. Ahn, T. C.
    [Show full text]
  • Nanomagnetism and Spin Electronics: Materials, Microstructure and Novel Properties
    40TH ANNIVERSARY J MATER SCI 41 (2006)793–815 Nanomagnetism and spin electronics: materials, microstructure and novel properties K. M. KRISHNAN∗, A. B. PAKHOMOV, Y. BAO, P. BLOMQVIST, Y. CHUN, M. GONZALES, K. GRIFFIN, X. JI, B. K. ROBERTS Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA, 98195-2120 E-mail: [email protected] We present an overview of the critical issues of current interest in magnetic and magnetoelectronic materials. A broad demonstration of the successful blend of materials synthesis, microstructural evolution and control, new physics and novel applications that is central to research in this field is presented. The critical role of size, especially at the nanometer length scale, dimensionality, as it pertains to thin films and interfaces, and the overall microstructure, in determining a range of fundamental properties and potential applications, is emphasized. Even though the article is broad in scope, examples are drawn mainly from our recent work in magnetic nanoparticles and core-shell structures, exchange, proximity and interface effects in thin film heterostructures, and dilute magnetic dielectrics, a new class of materials for spin electronics applications. C 2006 Springer Science + Business Media, Inc. 1. Introduction sions quantum-mechanical tunneling effects are expected Magnetism, subtle in its manifestations, is electronically to predominate [2]. driven but weak compared with electrostatic interactions. In the ideal case, considering only dipolar interactions, It has its origin in quantum mechanics, i.e. the Pauli ex- the spin-flip barrier for a small magnetic object [3]is clusion principle and the existence of electron spin. How- a product of the square of the saturation magnetization, 3 ever, it is also known for a variety of classical effects, Ms and its volume (V ∼ a ).
    [Show full text]
  • ABCD Just Released New Books October 2010 English
    ABCD springer.com Just Released New Books October 2010 English Titles Sorted by author and title within the main subject springer.com 2 P. Abrahamsson, University of Helsinki, Finland; N. Oza, VTT Tech- E. Abrams, Paris, France; I. Chvatík, Academy of Sciences, Praque, V. Acary, INRIA, Saint-Ismier, France; O. Bonnefon, INRIA, Saint- nical Research Centre of Finland, Espoo, Finland (Eds.) Czech Republic (Eds.) Ismier, France; B. Brogliato, INRIA, Saint-Ismier, France Lean Enterprise Software and Jan Pato#ka and the Heritage of Nonsmooth Modeling and Systems Phenomenology Simulation for Switched Circuits First International Conference, LESS 2010, Helsinki, finland, Centenary Papers October 17-20, 2010, Proceedings Nonsmooth Modeling and Simulation for Switched Circuits concerns the modeling and the numerical Whereas for the wider public Jan Patocka is known simulation of switched circuits with the nonsmooth This book contains the refereed proceedings of the mainly as a defender of human rights and one of dynamical systems (NSDS) approach, using piece- 1st International Conference on Lean Enterprise the first spokespersons of Charter 77, who died in wise-linear and multivalued models of electronic Software and Systems, LESS 2010, held in Helsinki, Prague several days after long interrogations by devices like diodes, transistors, switches. Numerous Finland, in October 2010. LESS 2010 is the first sci- secret police of the Communist regime, the inter- examples (ranging from introductory academic cir- entific conference dedicated to advance the body of national philosophical community sees in him an cuits to various types of power converters) are ana- knowledge for lean enterprise software and systems important and inspiring thinker, who in an origi- lyzed and many simulation results obtained with development.
    [Show full text]
  • Vapor Liquid
    U.P.B. Sci. Bull., Series A, Vol. 81, Iss. 3, 2019 ISSN 1223-7027 STUDY OF SURFACE PLASMON RESONANCE STRUCTURE WITH AS2S3 AMORPHOUS CHALCOGENIDE COMPOUND WAVEGUIDE Aurelian A. POPESCU1, Mihai STAFE2*, Dan SAVASTRU1, Laurentiu BASCHIR1*, Constantin NEGUTU2 and Niculae PUSCAS2 In this paper we present theoretical and experimental results regarding the analysis of optimum conditions to couple the light within a BK7-Au-As2S3-Air plasmonic compound. We first determined the characteristic equation for the plasmonic waveguide structure consisting in four thin layers by solving the system of Helmholtz equations and applying continuity conditions at the three interfaces of the structure. Subsequently, numerical calculations have been done to obtain the propagation constant and the field distribution within the structure layers. The plasmonic mode confined to the metal interface corresponds to TM0 waveguide mode. The structure supports higher order waveguide modes which can be exited, for several dielectric thicknesses, using low refractive index prism. The investigations emphasize that the value of the resonance angle is in very good accordance with our theoretical findings. Plasmonic waveguide which contains As2S3 as active optical material is a promising configuration for optical memory and switching devices due to well-known photo-induced phenomena in such materials. Keywords: Surface Plasmon Resonance, Amorphous Chalcogenide Materials, As2S3 thin films. 1. Introduction The ability of light to transmit information is enormous, due to the fact that the light frequency as the electromagnetic wave overpass 100 THz. Beyond of this, in optics there exists the simple possibility of information parallel processing by Fourier transform with the aid of a lens.
    [Show full text]
  • The Statistical Physics of Athermal Materials
    The Statistical Physics of Athermal Materials Dapeng Bi,1 Silke Henkes,2 Karen E. Daniels,3 and Bulbul Chakraborty4 1Department of Physics, Syracuse University, Syracuse, New York 13244 2ICSMB, Department of Physics, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom 3Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 4Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454; email: [email protected] Annu. Rev. Condens. Matter Phys. 2015. 6:63–83 Keywords The Annual Review of Condensed Matter Physics is granular materials, statistical physics, athermal online at conmatphys.annualreviews.org This article’s doi: Abstract 10.1146/annurev-conmatphys-031214-014336 At the core of equilibrium statistical mechanics lies the notion of sta- Copyright © 2015 by Annual Reviews. tistical ensembles: a collection of microstates, each occurring with All rights reserved a given a priori probability that depends on only a few macroscopic parameters, such as temperature, pressure, volume, and energy. In this review, we discuss recent advances in establishing statistical ensem- bles for athermal materials. The broad class of granular and particu- Access provided by Syracuse University Library on 07/22/15. For personal use only. late materials is immune to the effects of thermal fluctuations because Annu. Rev. Condens. Matter Phys. 2015.6:63-83. Downloaded from www.annualreviews.org the constituents are macroscopic. In addition, interactions between grains are frictional and dissipative,
    [Show full text]
  • Wet Granular Materials
    Advances in Physics ISSN: 0001-8732 (Print) 1460-6976 (Online) Journal homepage: http://www.tandfonline.com/loi/tadp20 Wet granular materials Namiko Mitarai & Franco Nori To cite this article: Namiko Mitarai & Franco Nori (2006) Wet granular materials, Advances in Physics, 55:1-2, 1-45, DOI: 10.1080/00018730600626065 To link to this article: http://dx.doi.org/10.1080/00018730600626065 Published online: 01 Feb 2007. Submit your article to this journal Article views: 724 View related articles Citing articles: 122 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tadp20 Download by: [National Taiwan University] Date: 26 June 2016, At: 13:51 Advances in Physics, Vol. 55, Nos. 1–2, January–April 2006, 1–45 Wet granular materials NAMIKO MITARAI*y and FRANCO NORIz} yDepartment of Physics, Kyushu University 33, Fukuoka 812-8581, Japan zFrontier Research System, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan }Center for Theoretical Physics, Physics Department, Center for the Study of Complex Systems, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA (Received 26 July 2005; in final form 2 September 2005) Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g. food processing, pharmaceuticals, ceramics, civil engineering, construction, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g.
    [Show full text]
  • Mapping Polycrystalline Materials in 3D: Diffraction Contrast Tomography and Related Techniques
    Mapping polycrystalline materials in 3D: Diffraction contrast tomography and related techniques Andrew King ! Synchrotron SOLEIL W. Ludwig, P. Reischig, L. Nervo, S. Schmiederer, N. Viganò, Y. Guilhem, G. Johnson and many others… Outline • Introduction • Motivation • Underlying techniques • Diffraction contrast tomography – Setup, data acquisition and processing • Application examples • Developments in progress • Related techniques 1 Myself • Diffraction for strain, stress and damage characterisation – Manchester 2001-2005 • Tomography for 3D morphology of porous and granular materials – INSA de Lyon 2006 • Diffraction Contrast Tomography for mapping polycrystals and materials applications. – Manchester/ESRF/HZG 2009-2013 • At SOLEIL since 2013… – PSICHE beamline, tomography for materials science Outline • Introduction • Motivation • Underlying techniques • Diffraction contrast tomography – Setup, data acquisition and processing • Application examples • Developments in progress • Related techniques 2 450 S. Terzi et al. / Scripta Materialia 61 (2009) 449–452 serted into alumina tubes and fixed with ceramic glue. In The liquid regions have been outlined in blue. At the on- order to localize the deformation of the specimen in the set of deformation, time t0, the liquid of near-eutectic region of interest where X-ray images are recorded, the composition is fairly homogeneously distributed within cross-section of the specimen was locally reduced to the whole specimen. The measured volume fraction of about 1.5 mm in diameter (i.e. a notched zone). The liquid, typically 7–8%, can be compared to the theoreti- specimen was heated by an induction coil and the tem- cal value predicted by two microsegregation models. At perature was controlled and monitored by using a ther- the temperature of 555 °C, the liquid fraction is equal to mocouple 0.5 mm in diameter inserted into the lower 9% under equilibrium conditions, whereas the Scheil– alumina tube and in close contact with the specimen.
    [Show full text]
  • A Report on Research Trends in Mechanics: “REPORT on RECENT TRENDS in GRANULAR MECHANICS” US National Committee on Theoretical and Applied Mechanics (USNC/TAM)
    A Report on Research Trends in Mechanics: “REPORT ON RECENT TRENDS IN GRANULAR MECHANICS” US National Committee on Theoretical and Applied Mechanics (USNC/TAM) Granular Materials Committee, Engineering Mechanics Institute Mustafa Alsaleh1, Ching S. Chang2, Ali Daouadji3, Usama El Shamy4, Mahdia Hattab3, Pierre-Yves Hicher5, Matthew R. Kuhn6, Shunying Ji7, Bo Li8, Shuiqing Li9, Anil Misra10, Jean-Noel Roux11, Antoinette Tordesillas12, Xu Yang13, Zhen-Yu Yin14, Zhanping You15, Mourad Zeghal16, Jidong Zhao17 OVERVIEW Granular materials are complex systems that are receiving intense interest within the engineering, physics, and mathematics communities. These ubiquitous materials play a significant role in geosystems, mining, petroleum storage and extraction, ceramics engineering, and pharmaceutical science. The report reviews recent developments and new advances in experimental, computational, and modeling methods that extend understanding to a wide range of materials and phenomena: multi-phase systems with strong solid-fluid interactions; multi-field systems in which van der Waals and electrical fields gain dominance; and bonded granular systems for advanced pavements. Experimental advances include computed neutron and nanometer scale tomography, magnetic resonance imaging, refractive index matching, digital image correlation, and acoustic emission analysis. Complex systems and data mining tools are now being used to extracting meaningful information and patterns from data. The state of the art in continuum modeling has shifted to micromechanical
    [Show full text]
  • Table of Contents (Print, Part 1)
    PERIODICALS PHYSICAL REVIEW E Postmaster send address changes to: For editorial and subscription correspondence, American Institute of Physics please see inside front cover Suite 1NO1 (ISSN: 1539-3755) 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 69, NUMBER 6 CONTENTS JUNE 2004 PART 1: SOFT MATTER AND BIOLOGICAL PHYSICS RAPID COMMUNICATIONS Statistical physics of soft matter Hybrid method for simulating front propagation in reaction-diffusion systems (4 pages) .................. 060101(R) Esteban Moro Colloidal dispersions, suspensions, and aggregates Electrostatic attraction between neutral microdroplets by ion fluctuations (4 pages) ...................... 060401(R) Yu-Jane Sheng and Heng-Kwong Tsao Liquid crystals Self-assembled uniaxial and biaxial multilayer structures in chiral smectic liquid crystals frustrated between ferro- and antiferroelectricity (4 pages) .......................................................... 060701(R) V. P. Panov, N. M. Shtykov, A. Fukuda, J. K. Vij, Y. Suzuki, R. A. Lewis, M. Hird, and J. W. Goodby ARTICLES Statistical physics of soft matter Partition function, metastability, and kinetics of the escape transition for an ideal chain (15 pages) .......... 061101 L. I. Klushin, A. M. Skvortsov, and F. A. M. Leermakers Scaling and crossovers in activated escape near a bifurcation point (17 pages) .......................... 061102 D. Ryvkine, M. I. Dykman, and B. Golding Noise-enhanced stability in fluctuating metastable states (7 pages) .................................... 061103 Alexander A. Dubkov, Nikolay V. Agudov, and Bernardo Spagnolo Analytical results for fundamental time-delayed feedback systems subjected to multiplicative noise (11 pages) ............................................................................. 061104 T. D. Frank Ornstein-Zernike equation and Percus-Yevick theory for molecular crystals (13 pages) .................... 061105 Michael Ricker and Rolf Schilling Colored-noise-induced discontinuous transitions in symbiotic ecosystems (8 pages) .....................
    [Show full text]