Ontogeny of Albertosaurus Sarcophagus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tyrannosaurus Rex by Guy Belleranti
Name: ______________________________ Tyrannosaurus Rex By Guy Belleranti One of the most dangerous dinosaurs was the Tyrannosaurus rex. It looked like a huge lizard with sharp teeth. It lived over 60 million years ago. From nose to tail, T-rex was as long as a school bus. It was taller than a house. It weighed more than an airplane. T-rex’s head was as long as a kitchen table. T-rex was the biggest meat-eating dinosaur. It could eat hundreds of pounds of meat in one bite. Animals that eat meat have sharp teeth. T-rex had 60 of them! Some of the teeth were as big as bananas. When T-rex lost a tooth, it grew a new one. T-rex stood on two powerful legs. It also had two small arms. Its strong tail helped keep it from falling over. It might be fun to see a live Tyrannosaurus rex, but I wouldn’t want to meet one. Would you? Super Teacher Worksheets - www.superteacherworksheets.com Name: ______________________________ Tyrannosaurus Rex By Guy Belleranti 1. How many teeth did a Tyrannosaurus rex have? a. thirty b. sixteen c. sixty d. seventy 2. How long ago did Tyrannosaurus rex live? ________________________________________________________________ 3. What did Tyrannosaurus rex eat? a. leaves from tall trees b. other dinosaurs c. small insects d. people 4. A T-rex was as long as a ______________________________________. 5. A T-rex weighed as much as an _______________________________. 6. Which dinosaurs had sharp teeth? a. all dinosaurs b. dinosaurs that had tails c. dinosaurs that were big d. -
Fused and Vaulted Nasals of Tyrannosaurid Dinosaurs: Implications for Cranial Strength and Feeding Mechanics
Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics ERIC SNIVELY, DONALD M. HENDERSON, and DOUG S. PHILLIPS Snively, E., Henderson, D.M., and Phillips, D.S. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51 (3): 435–454. Tyrannosaurid theropods display several unusual adaptations of the skulls and teeth. Their nasals are fused and vaulted, suggesting that these elements braced the cranium against high feeding forces. Exceptionally high strengths of maxillary teeth in Tyrannosaurus rex indicate that it could exert relatively greater feeding forces than other tyrannosaurids. Areas and second moments of area of the nasals, calculated from CT cross−sections, show higher nasal strengths for large tyrannosaurids than for Allosaurus fragilis. Cross−sectional geometry of theropod crania reveals high second moments of area in tyrannosaurids, with resulting high strengths in bending and torsion, when compared with the crania of similarly sized theropods. In tyrannosaurids trends of strength increase are positively allomeric and have similar allometric expo− nents, indicating correlated progression towards unusually high strengths of the feeding apparatus. Fused, arched nasals and broad crania of tyrannosaurids are consistent with deep bites that impacted bone and powerful lateral movements of the head for dismembering prey. Key words: Theropoda, Carnosauria, Tyrannosauridae, biomechanics, feeding mechanics, computer modeling, com− puted tomography. Eric Snively [[email protected]], Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Donald M. Henderson [[email protected]], Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, Alberta T0J 0Y0, Canada; Doug S. -
Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia. -
Tyrannosaurus Rex.Pmd
North Dakota Stratigraphy Tyrannosaurus rex ROCK ROCK UNIT COLUMN PERIOD EPOCH AGES MILLIONS OF YEARS AGO Common Name: Holocene Oahe .01 Tyrant reptile king Coleharbor Pleistocene QUATERNARY Classification: 1.8 Pliocene Unnamed 5 Miocene Class: Reptilia 25 Arikaree Order: Saurischia Family: Tyrannosauridae Brule Oligocene 38 Tyrannosaurus rex shed tooth. Tooth collected in Morton South Heart Chadron Chalky Buttes County. Height of tooth is 64 mm. North Dakota State Fossil Camels Butte Eocene Golden Collection. 55 Valley Bear Den Description: Sentinel Butte Tyrannosaurus rex was one of the largest carnivorous (meat TERTIARY eating) dinosaurs and was one of the largest terrestrial carnivores yet known. The adults grew to lengths of 40 feet from the end of the tail to tip of the nose and weighed about 8 tons. When they Bullion Paleocene Creek stood on their hind legs they were up to about 20 feet tall. They had huge heads, about 5 feet long, and possessed large, Slope approximately 50, dagger-like teeth, some as large as bananas. Cannonball The teeth, which were serrated, could puncture bone and carve Ludlow through flesh of prey. Its back legs were long, heavily built, and 65 powerful with 3 clawed toes on each foot. Each foot was broad Hell Creek with three forward-pointing toes. Each toe ended in a sharply- curved talon. T. rex’s arms were very short and contained hands Fox Hills with only two, clawed fingers on each hand. Its tail was long, heavy, and held off the ground to act as a counterbalance. They ACEOUS could tear off as much as about 500 pounds of flesh at one time Pierre with their powerful jaws. -
Skulls of Tarbosaurus Bataar and Tyrannosaurus Rex Compared
Giant theropod dinosaurs from Asia and North America: Skulls of Tarbosaurus bataar and Tyrannosaurus rex compared Jørn H. Hurum and Karol Sabath Acta Palaeontologica Polonica 48 (2), 2003: 161-190 The skull of a newly prepared Tarbosaurus bataar is described bone by bone and compared with a disarticulated skull of Tyrannosaurus rex. Both Tarbosaurus bataar and Tyrannosaurus rex skulls are deep in lateral view. In dorsal view, the skull of T. rex is extremely broad posteriorly but narrows towards the snout; in Ta. bataar the skull is narrower (especially in its ventral part: the premaxilla, maxilla, jugal, and the quadrate complex), and the expansion of the posterior half of the skull is less abrupt. The slender snout of Ta. bataar is reminiscent of more primitive North American tyrannosaurids. The most obvious difference between T. rex and Ta. bataar is the doming of the nasal in Ta. bataar which is high between the lacrimals and is less attached to the other bones of the skull, than in most tyrannosaurids. This is because of a shift in the handling of the crushing bite in Ta. bataar . We propose a paleogeographically based division of the Tyrannosaurinae into the Asiatic forms (Tarbosaurus and possibly Alioramus) and North American forms (Daspletosaurus and Tyrannosaurus). The division is supported by differences in anatomy of the two groups: in Asiatic forms the nasal is excluded from the major series of bones participating in deflecting the impact in the upper jaw and the dentary-angular interlocking makes a more rigid lower jaw. Key words: Dinosauria, Theropoda, Tyrannosauridae, Tarbosaurus, Tyrannosaurus, skull, anatomy, Mongolia. -
Prootic Anatomy of a Juvenile Tyrannosauroid from New Jersey and Its Implications for the Morphology and Evolution of the Tyrannosauroid Braincase
Prootic anatomy of a juvenile tyrannosauroid from New Jersey and its implications for the morphology and evolution of the tyrannosauroid braincase Chase D Brownstein Corresp. 1 1 Collections and Exhibitions, Stamford Museum & Nature Center, Stamford, Connecticut, United States Corresponding Author: Chase D Brownstein Email address: [email protected] Among the most recognizable theropods are the tyrannosauroids, a group of small to large carnivorous coelurosaurian dinosaurs that inhabited the majority of the northern hemisphere during the Cretaceous and came to dominate large predator niches in North American and Asian ecosystems by the end of the Mesozoic era. The clade is among the best-represented of dinosaur groups in the notoriously sparse fossil record of Appalachia, the Late Cretaceous landmass that occupied the eastern portion of North America after its formation from the transgression of the Western Interior Seaway. Here, the prootic of a juvenile tyrannosauroid collected from the middle-late Campanian Marshalltown Formation of the Atlantic Coastal Plain is described, remarkable for being the first concrete evidence of juvenile theropods in that plain during the time of the existence of Appalachia and the only portion of theropod braincase known from the landmass. Phylogenetic analysis recovers the specimen as an “intermediate” tyrannosauroid of similar grade to Dryptosaurus and Appalachiosaurus. Comparisons with the corresponding portions of other tyrannosauroid braincases suggest that the Ellisdale prootic is more similar to Turonian forms in morphology than to the derived tyrannosaurids of the Late Cretaceous, thus supporting the hypothesis that Appalachian tyrannosauroids and other vertebrates were relict forms surviving in isolation from their derived counterparts in Eurasia. -
Immigrant Species, Or Native Species?
The Journal of Paleontological Sciences: JPS.C.2017.01 TESTING THE HYPOTHESES OF THE ORIGIN OF TYRANNOSAURUS REX: IMMIGRANT SPECIES, OR NATIVE SPECIES? __________________________________________________________________________________________________________________ Chan-gyu Yun Vertebrate Paleontological Institute of Incheon, Incheon 21974, Republic of Korea & Biological Sciences, Inha University, Incheon 22212, Republic of Korea [email protected] __________________________________________________________________________________________________________________ Abstract: It is an undoubtable fact that Tyrannosaurus rex is the most iconic dinosaur species of all time. However, it is currently debatable whether this species has a North American origin or Asian origin. In this paper, I test these two hypotheses based on current fossil records and former phylogenetic analyses. Phylogenetic and fossil evidence, such as derived tyrannosaurine fossils of Asia, suggests that the hypothesis of an Asian origin of Tyrannosaurus rex is the most plausible one, but this is yet to be certain due to the scarcity of fossil records. INTRODUCTION The most famous and iconic dinosaur of all time, Tyrannosaurus rex, is only known from upper Maastrichtian geological formations in Western North America (e.g. Carr and Williamson, 2004; Larson, 2008). However, older relatives of Tyrannosaurus rex (e.g. Daspletosaurus, Tarbosaurus) are known from both Asia and North America. This leads to an evolutionary question: is the origin of Tyrannosaurus rex from Asia, or North America? About six of the currently valid tyrannosaurine taxa were described in the twenty-first century (based on parsimony analysis of Brusatte and Carr, 2016), with new species which are being described (Sebastian Dalman, Pers. Comm., 2016; Thomas Carr, Pers. Comm., 2016). It can be said that "now" is the "golden age” for studying tyrannosaurine evolution. -
Nanotyrannus’ As a Valid Taxon Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Dentary groove morphology does not distinguish ‘Nanotyrannus’ as a valid taxon of tyrannosauroid dinosaur. Comment on: “Distribution of the dentary groove of theropod dinosaurs: implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988” Stephen L. Brusatte1*, Thomas D. Carr2, Thomas E. Williamson3, Thomas R. Holtz, Jr.4,5, David W. E. Hone6, Scott A. Williams7 1 School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh, EH9 3FE, United Kingdom, [email protected] 2Department of Biology, Carthage College, 2001 Alford Park Drive, Kenosha, WI 53140, USA 3New Mexico Museum of Natural History and Science, 1801 Mountain Road, NW, Albuquerque, NM 87104, USA 4Department of Geology, University of Maryland, 8000 Regents Drive, College Park, MD 20742, USA 5Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 6School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom. 7Burpee Museum of Natural History, 737 North Main Street, Rockford, IL 60115, USA *Corresponding author ABSTRACT: There has been considerable debate about whether the controversial tyrannosauroid dinosaur ‘Nanotyrannus lancensis’ from the uppermost Cretaceous of North America is a valid taxon or a juvenile of the contemporaneous Tyrannosaurus rex. In a recent Cretaceous Research article, Schmerge and Rothschild (2016) brought a new piece of evidence to this discussion: the morphology of the dentary groove, a depression on the lateral surface of the dentary that houses neurovascular foramina. -
Limb Design, Function and Running Performance in Ostrich-Mimics and Tyrannosaurs
GAIA Nº 15, LISBOA/LISBON, DEZEMBRO/DECEMBER 1998, pp. 257-270 (ISSN: 0871-5424) LIMB DESIGN, FUNCTION AND RUNNING PERFORMANCE IN OSTRICH-MIMICS AND TYRANNOSAURS Gregory S. PAUL 3109 N Calvert St. Side Apt., BALTIMORE MD 21218. USA ABSTRACT: Examination of the limb morphology of small ornithomimids and large tyranno- saurids shows that they remained remarkably constant in design regardless of size. The changes that were present were consistent with maintaining limb strength and function constant with size. It is concluded that ornithomimid and tyrannosaurid legs functioned in a similar manner, and always exhibit the features normally associated with a fast running gait. This is in contrast to modern animals, in which elephants as gigantic as large tyranno- saurids have limbs that are modified for a slow walking gait. INTRODUCTION to run observed in elephants. The hypothesis can be challenged if it can be shown that at least some ex- Because they had long, gracile, bird-like legs, it tinct giants retained the skeletal adaptations for run- has long been accepted that the smaller predatory ning observed in smaller species, and in their own dinosaurs were swift runners (O [& GREG- SBORN offspring. In turn, the hypothesis that giants can run ], 1916; COLBERT, 1961; RUSSELL, 1972; ORY fast if they retain limbs similar to smaller runners can C , 1978; THULBORN, 1982; PAUL, 1988; OOMBS be challenged if it is shown that the skeleton is too H , 1994). Much more controversial has been OLTZ vulnerable to structural failure. the locomotory abilities of their giant relatives, which have been restored as no faster than elephants BODY MASSES (LAMBE, 1917; HALSTEAD &HALSTEAD, 1981; THUL- BORN, 1982; BARSBOLD, 1983), able to run at only Sources for mass data for extinct and extant ani- modest speeds (COOMBS, 1978; MOLNAR &FAR- mals include PAUL (1988, 1997), NOWAK (1991) and LOW, 1990; HORNER &LESSEM, 1993; FARLOW, MATTHEWS (1994). -
New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muira, and Ian B. Butlera aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom; bZoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; cDepartment of Sedimentary Geology, Saint Petersburg State University, St. Petersburg 199178, Russia; and dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved January 29, 2016 (received for review January 5, 2016) Tyrannosaurids—the familiar group of carnivorous dinosaurs in- We here report the first diagnostic tyrannosauroid from the mid- cluding Tyrannosaurus and Albertosaurus—were the apex predators Cretaceous, a new species from the Turonian (ca. 90–92 million in continental ecosystems in Asia and North America during the years ago) Bissekty Formation of Uzbekistan. This formation has latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes recently emerged as one of the most important records of mid- and keen senses are considered key to their evolutionary and eco- Cretaceous dinosaurs globally (9–11). Possible tyrannosauroid logical success, but little is known about how these features devel- specimens from the Bissekty Formation were reported more than oped as tyrannosaurids evolved from smaller basal tyrannosauroids a half century ago (12), and, more recently, several isolated fossils that first appeared in the fossil record in the Middle Jurassic (ca. 170 were assigned to the group (9, 13), but none of these has been million years ago). -
A Tyrannosauroid Metatarsus from the Merchantville Formation of Delaware Increases the Diversity of Non-Tyrannosaurid Tyrannosauroids on Appalachia
A tyrannosauroid metatarsus from the Merchantville Formation of Delaware increases the diversity of non-tyrannosaurid tyrannosauroids on Appalachia Chase D. Brownstein Collections and Exhibitions, Stamford Museum & Nature Center, Stamford, CT, USA ABSTRACT During the Late Cretaceous, the continent of North America was divided into two sections: Laramidia in the west and Appalachia in the east. Although the sediments of Appalachia recorded only a sparse fossil record of dinosaurs, the dinosaur faunas of this landmass were different in composition from those of Laramidia. Represented by at least two taxa (Appalachiosaurus montgomeriensis and Dryptosaurus aquilunguis), partial and fragmentary skeletons, and isolated bones, the non-tyrannosaurid tyrannosauroids of the landmass have attracted some attention. Unfortunately, these eastern tyrants are poorly known compared to their western contemporaries. Here, one specimen, the partial metatarsus of a tyrannosauroid from the Campanian Merchantville Formation of Delaware, is described in detail. The specimen can be distinguished from A. montgomeriensis and D. aquilunguis by several morphological features. As such, the specimen represents a potentially previously unrecognized taxon of tyrannosauroid from Appalachia, increasing the diversity of the clade on the landmass. Phylogenetic analysis and the morphology of the bones suggest the Merchantville specimen is a tyrannosauroid of “intermediate” grade, thus supporting the notion that Appalachia was a refugium Submitted 18 July 2017 for relict dinosaur -
Memoir of the Fukui Prefectural Dinosaur Museum 16: 29–38 (2017) ARTICLE © by the Fukui Prefectural Dinosaur Museum
Memoir of the Fukui Prefectural Dinosaur Museum 16: 29–38 (2017) ARTICLE © by the Fukui Prefectural Dinosaur Museum FIRST OCCURRENCE OF A TYRANNOSAUROID DINOSAUR FROM THE LOWER CAMPANIAN MERCHANTVILLE FORMATION OF DELAWARE, USA Sebastian G. DALMAN1, Steven E. JASINSKI2,3 and Spencer G. LUCAS1 1 New Mexico Museum of Natural History and Science, 1801 Mountain Road N. W. Albuquerque, NM 87104 USA 2 The State Museum of Pennsylvania, Section of Paleontology and Geology, 300 North Street, Harrisburg, PA 17120-0024 USA 3 University of Pennsylvania, Department of Earth and Environmental Science, Philadelphia, PA 19104-6316 USA ABSTRACT This study provides a detailed osteological description of an isolated proximal caudal centrum and two nearly complete isolated metatarsals II and IV of the left foot of a gracile theropod dinosaur from the Lower Campanian of the Merchantville Formation in northern Delaware, USA. The caudal centrum and the metatarsals are referred to Tyrannosauroidea. The centrum is not well preserved, and thus not diagnostic; however, both metatarsals are diagnostic. The referral to Tyrannosauroidea is supported by several morphological features, including extensive surfaces on metatarsals II and IV for the articulation with metatarsal III, and a characteristic low, slightly convex muscle scar on metatarsal IV developed as a thin low ridge located on the posterior surface between the M. gastrocnemius pars lateralis insertion scar and the metatarsal III articular surface. This ridge has been previously interpreted as the plantar ridge, which is present in some derived Late Campanian tyrannosauroid taxa. Additionally, metatarsal IV has a deep medial notch for the accommodation of an“ L”– shaped proximal articulation of metatarsal III, and a“ U”– shaped proximal articular end.