The Chloroplast Phylogenomics and Systematics of Zoysia (Poaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GENETICS, GENOMICS and BREEDING of FORAGE CROPS Genetics, Genomics and Breeding of Crop Plants
Genetics, Genomics and Breeding of Genetics, Genomics and Breeding of About the Series Genetics, Genomics and Breeding of AboutAbout the the Series Series SeriesSeries on on BasicBasic and and advanced advanced concepts, concepts, strategies, strategies, tools tools and and achievements achievements of of Series on Basicgenetics, and advanced genomics concepts, and breeding strategies, of crops tools haveand beenachievements comprehensively of Genetics,Genetics, Genomics Genomics and and Breeding Breeding of of Crop Crop Plants Plants genetics,genetics, genomics genomics and and breeding breeding of ofcrops crops have have been been comprehensively comprehensively Genetics, Genomics and Breeding of Crop Plants deliberateddeliberated in in30 30volumes volumes each each dedicated dedicated to toan an individual individual crop crop or orcrop crop Series Editor deliberatedgroup. in 30 volumes each dedicated to an individual crop or crop Series Series Editor Editor group.group. Chittaranjan Chittaranjan Kole, Kole, Vice-Chancellor, Vice-Chancellor, BC BC Agricultural Agricultural University, University, India India The series editor and one of the editors of this volume, Prof. Chittaranjan Chittaranjan Kole, Vice-Chancellor, BC Agricultural University, India TheThe series series editor editor and and one one of theof the editors editors of thisof this volume, volume, Prof. Prof. Chittaranjan Chittaranjan Kole,Kole, is globallyis globally renowned renowned for for his his pioneering pioneering contributions contributions in inteaching teaching and and Kole,research is globally for renowned nearly three for decades his pioneering on plant contributions genetics, genomics, in teaching breeding and and researchresearch for for nearly nearly three three decades decades on onplant plant genetics, genetics, genomics, genomics, breeding breeding and and biotechnology.biotechnology. -
A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T. -
Technical Specification for Al Demer Beach
Technical Specification for Al Demer Beach TECHNICAL SPECIFICATION FOR AL DEMER BEACH 1. SITE DESCRIPTION 1.1 Location Governorate/ Region Dofar Wilayat Mirbat Distance from the Centre of This site is located 5 km west of Mirbat town. Wilayat Fame of the Site/ Distinctive N/A Features Facilities in the Site N/A Features of Surrounding Areas This site is sand dune. No mangrove tree exists. 1.2 Natural Conditions Climate Zone Dhofar Zone General Terrain Relatively flat plain Soil Proposed area locates at the beach sand area on the way to Mirbat from Taqah This area was proposed for afforestation to prevent sand shifting and for wind protection. During monsoon season in summer, the sand in this area has been blown by strong wind from beach. The area is covered by coarse sand more than 1m deep. The salinity (soil: water=1.1) of these sand soils shows low values ranging from 475 to 730μS/cm in surface soil and less than 200μS/cm in subsurface soil. The area beside the road has compact gravel soils, which were brought for road foundation. Water No data Fauna No data Flora This is an excellent example of relatively unspoilt sand dune supporting vegetation dominated at the seafront by dune grass, Halopyrum mucronatum. Other plants included Urochondra setulosa, Cyperus conglomeratus, Ipomoea pes-caprae, Polycarpae spicata, Aizoon canariense, Indigophora sp and Sporobolus spicatus. Impacts from the Surrounding None Areas 1.3 Socio-economic Situation Population of the Wilayat 14 thousand (2001) Main Economic Activities Agriculture and livestock farming Infrastructure N/A Main Usage Used for public open space for communities Community Interference with N/A the Area Cultural Significance N/A Al Demer-1 TECHNICAL SPECIFICATION FOR AL DEMER BEACH 1.4 Legal Setup and Development Plans Land Ownership and Land Use Open space Designation Development Plans in the Site N/A and the Surrounding Area Existing Conservation N/A Proposal 2. -
Background Information Study Tour Ethiopia 2007
Landscape Transformation and Sustainable Development in Ethiopia | downloaded: 13.3.2017 Background information for a study tour through Ethiopia, 4-20 September 2006 University of Bern Institute of Geography https://doi.org/10.7892/boris.71076 2007 source: Cover photographs Left: Digging an irrigation channel near Lake Maybar to substitute missing rain in the drought of 1984/1985. Hans Hurni, 1985. Centre: View of the Simen Mountains from the lowlands in the Simen Mountains National Park. Gudrun Schwilch, 1994. Right: Extreme soil degradation in the Andit Tid area, a research site of the Soil Conservation Research Programme (SCRP). Hans Hurni, 1983. Landscape Transformation and Sustainable Development in Ethiopia Background information for a study tour through Ethiopia, 4-20 September 2006 University of Bern Institute of Geography 2007 3 Impressum © 2007 University of Bern, Institute of Geography, Centre for Development and Environment Concept: Hans Hurni Coordination and layout: Brigitte Portner Contributors: Alemayehu Assefa, Amare Bantider, Berhan Asmamew, Manuela Born, Antonia Eisenhut, Veronika Elgart, Elias Fekade, Franziska Grossenbacher, Christine Hauert, Karl Herweg, Hans Hurni, Kaspar Hurni, Daniel Loppacher, Sylvia Lörcher, Eva Ludi, Melese Tesfaye, Andreas Obrecht, Brigitte Portner, Eduardo Ronc, Lorenz Roten, Michael Rüegsegger, Stefan Salzmann, Solomon Hishe, Ivo Strahm, Andres Strebel, Gianreto Stuppani, Tadele Amare, Tewodros Assefa, Stefan Zingg. Citation: Hurni, H., Amare Bantider, Herweg, K., Portner, B. and H. Veit (eds.). 2007. Landscape Transformation ansd Sustainable Development in Ethiopia. Background information for a study tour through Ethiopia, 4-20 September 2006, compiled by the participants. Centre for Development and Environment, University of Bern, Bern, 321 pp. Available from: www.cde.unibe.ch. -
Construction of High-Resolution Genetic Maps Of
Huang et al. BMC Genomics (2016) 17:562 DOI 10.1186/s12864-016-2969-7 RESEARCH ARTICLE Open Access Construction of high-resolution genetic maps of Zoysia matrella (L.) Merrill and applications to comparative genomic analysis and QTL mapping of resistance to fall armyworm Xiaoen Huang1†, Fangfang Wang1†, Ratnesh Singh1†, James A. Reinert1, M. C. Engelke1, Anthony D. Genovesi1, Ambika Chandra1,2 and Qingyi Yu1,3* Abstract Background: Zoysia matrella, widely used in lawns and sports fields, is of great economic and ecological value. Z. matrella is an allotetraploid species (2n =4x = 40) in the genus zoysia under the subfamily Chloridoideae. Despite its ecological impacts and economic importance, the subfamily Chloridoideae has received little attention in genomics studies. As a result, limited genetic and genomic information are available for this subfamily, which have impeded progress in understanding evolutionary history of grasses in this important lineage. The lack of a high-resolution genetic map has hampered efforts to improve zoysiagrass using molecular genetic tools. Results: We used restriction site-associated DNA sequencing (RADSeq) approach and a segregating population developed from the cross between Z. matrella cultivars ‘Diamond’ and ‘Cavalier’ to construct high-resolution genetic maps of Z. matrella. The genetic map of Diamond consists of 2,375 Single Nucleotide Polymorphism (SNP) markers mapped on 20 linkage groups (LGs) with a total length of 1754.48 cM and an average distance between adjacent markers at 0.74 cM. The genetic map of Cavalier contains 3,563 SNP markers on 20 LGs, covering 1824. 92 cM, with an average distance between adjacent markers at 0.51 cM. -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Molecular Phylogenetic Analysis Resolves Trisetum
Journal of Systematics JSE and Evolution doi: 10.1111/jse.12523 Research Article Molecular phylogenetic analysis resolves Trisetum (Poaceae: Pooideae: Koeleriinae) polyphyletic: Evidence for a new genus, Sibirotrisetum and resurrection of Acrospelion Patricia Barberá1,3*,RobertJ.Soreng2 , Paul M. Peterson2* , Konstantin Romaschenko2 , Alejandro Quintanar1, and Carlos Aedo1 1Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid 28014, Spain 2Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC 20013‐7012, USA 3Department of Africa and Madagascar, Missouri Botanical Garden, St. Louis, MO 63110, USA *Authors for correspondence. Patricia Barberá. E‐mail: [email protected]; Paul M. Peterson. E‐mail: [email protected] Received 4 March 2019; Accepted 5 May 2019; Article first published online 22 June 2019 Abstract To investigate the evolutionary relationships among the species of Trisetum and other members of subtribe Koeleriinae, a phylogeny based on DNA sequences from four gene regions (ITS, rpl32‐trnL spacer, rps16‐trnK spacer, and rps16 intron) is presented. The analyses, including type species of all genera in Koeleriinae (Acrospelion, Avellinia, Cinnagrostis, Gaudinia, Koeleria, Leptophyllochloa, Limnodea, Peyritschia, Rostraria, Sphenopholis, Trisetaria, Trisetopsis, Trisetum), along with three outgroups, confirm previous indications of extensive polyphyly of Trisetum. We focus on the monophyletic Trisetum sect. Sibirica cladethatweinterprethereasadistinctgenus,Sibirotrisetum gen. nov. We include adescriptionofSibirotrisetum with the following seven new combinations: Sibirotrisetum aeneum, S. bifidum, S. henryi, S. scitulum, S. sibiricum, S. sibiricum subsp. litorale,andS. turcicum; and a single new combination in Acrospelion: A. distichophyllum. Trisetum s.s. is limited to one, two or three species, pending further study. Key words: Acrospelion, Aveneae, grasses, molecular systematics, Poeae, Sibirotrisetum, taxonomy, Trisetum. -
Physiological and Transcriptomic Analyses Reveal the Mechanisms
Wang et al. BMC Plant Biology (2020) 20:114 https://doi.org/10.1186/s12870-020-02330-6 RESEARCH ARTICLE Open Access Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud Jingjing Wang, Cong An, Hailin Guo*, Xiangyang Yang, Jingbo Chen, Junqin Zong, Jianjian Li and Jianxiu Liu Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Zoysia salt treatment transcriptome shows the 24-h and roots may make significant contributions to the salt tolerance. -
Cynodonteae Tribe
POACEAE [GRAMINEAE] – GRASS FAMILY Plant: annuals or perennials Stem: jointed stem is termed a culm – internodial stem most often hollow but always solid at node, mostly round, some with stolons (creeping stem) or rhizomes (underground stem) Root: usually fibrous, often very abundant and dense Leaves: mostly linear, sessile, parallel veins, in 2 ranks (vertical rows), leaf sheath usually open or split and often overlapping, but may be closed Flowers: small in 2 rows forming a spikelet (1 to several flowers), may be 1 to many spikelets with pedicels or sessile to stem; each flower within a spikelet is between an outer limna (bract, with a midrib) and an inner palea (bract, 2-nerved or keeled usually) – these 3 parts together make the floret – the 2 bottom bracts of the spikelet do not have flowers and are termed glumes (may be reduced or absent), the rachilla is the axis that hold the florets; sepals and petals absent; 1-6 but often 3 stamens; 1 pistil, 1-3 but usually 2 styles, ovary superior, 1 ovule – there are exceptions to most everything!! Fruit: seed-like grain (seed usually fused to the pericarp (ovary wall) or not) Other: very large and important family; Monocotyledons Group Genera: 600+ genera; locally many genera 2 slides per species WARNING – family descriptions are only a layman’s guide and should not be used as definitive POACEAE [GRAMINEAE] – CYNODONTEAE TRIBE Sideoats Grama; Bouteloua curtipendula (Michx.) Torr. var. curtipendula - Cynodonteae (Tribe) Bermuda Grass; Cynodon dactylon (L.) Pers. (Introduced) - Cynodonteae (Tribe) Egyptian Grass [Durban Crowfoot]; Dactyloctenium aegyptium (L.) Willd (Introduced) [Indian] Goose Grass; Eleusine indica (L.) Gaertn. -
22. Tribe ERAGROSTIDEAE Ihl/L^Ä Huameicaozu Chen Shouliang (W-"^ G,), Wu Zhenlan (ß^E^^)
POACEAE 457 at base, 5-35 cm tall, pubescent. Basal leaf sheaths tough, whit- Enneapogon schimperianus (A. Richard) Renvoize; Pap- ish, enclosing cleistogamous spikelets, finally becoming fi- pophorum aucheri Jaubert & Spach; P. persicum (Boissier) brous; leaf blades usually involute, filiform, 2-12 cm, 1-3 mm Steudel; P. schimperianum Hochstetter ex A. Richard; P. tur- wide, densely pubescent or the abaxial surface with longer comanicum Trautvetter. white soft hairs, finely acuminate. Panicle gray, dense, spike- Perennial. Culms compactly tufted, wiry, erect or genicu- hke, linear to ovate, 1.5-5 x 0.6-1 cm. Spikelets with 3 fiorets, late, 15^5 cm tall, pubescent especially below nodes. Basal 5.5-7 mm; glumes pubescent, 3-9-veined, lower glume 3-3.5 mm, upper glume 4-5 mm; lowest lemma 1.5-2 mm, densely leaf sheaths tough, lacking cleistogamous spikelets, not becom- villous; awns 2-A mm, subequal, ciliate in lower 2/3 of their ing fibrous; leaf blades usually involute, rarely fiat, often di- length; third lemma 0.5-3 mm, reduced to a small tuft of awns. verging at a wide angle from the culm, 3-17 cm, "i-^ mm wide, Anthers 0.3-0.6 mm. PL and &. Aug-Nov. 2« = 36. pubescent, acuminate. Panicle olive-gray or tinged purplish, contracted to spikelike, narrowly oblong, 4•18 x 1-2 cm. Dry hill slopes; 1000-1900 m. Anhui, Hebei, Liaoning, Nei Mon- Spikelets with 3 or 4 florets, 8-14 mm; glumes puberulous, (5-) gol, Ningxia, Qinghai, Shanxi, Xinjiang, Yunnan [India, Kazakhstan, 7-9-veined, lower glume 5-10 mm, upper glume 7-11 mm; Kyrgyzstan, Mongolia, Pakistan, E Russia; Africa, America, SW Asia]. -
Melatonin Influences the Early Growth Stage in Zoysia Japonica Steud. By
www.nature.com/scientificreports OPEN Melatonin infuences the early growth stage in Zoysia japonica Steud. by regulating plant oxidation and genes of hormones Di Dong, Mengdi Wang, Yinreuizhi Li, Zhuocheng Liu, Shuwen Li, Yuehui Chao* & Liebao Han* Zoysia japonica is a commonly used turfgrass species around the world. Seed germination is a crucial stage in the plant life cycle and is particularly important for turf establishment and management. Experiments have confrmed that melatonin can be a potential regulator signal in seeds. To determine the efect of exogenous melatonin administration and explore the its potential in regulating seed growth, we studied the concentrations of several hormones and performed a transcriptome analysis of zoysia seeds after the application of melatonin. The total antioxidant capacity determination results showed that melatonin treatment could signifcantly improve the antioxidant capacity of zoysia seeds. The transcriptome analysis indicated that several of the regulatory pathways were involved in antioxidant activity and hormone activity. The hormones concentrations determination results showed that melatonin treatment contributed to decreased levels of cytokinin, abscisic acid and gibberellin in seeds, but had no signifcant efect on the secretion of auxin in early stages. Melatonin is able to afect the expression of IAA (indoleacetic acid) response genes. In addition, melatonin infuences the other hormones by its synergy with other hormones. Transcriptome research in zoysia is helpful for understanding the regulation of melatonin and mechanisms underlying melatonin- mediated developmental processes in zoysia seeds. Melatonin (MT, N-acetyl-5-methoxytryptamine), commonly known as a vertebrate neurohormone released by the pineal gland, is a tryptophan-derived metabolite. Melatonin is a versatile substance with diverse efects in various animal physiological processes. -
DRAFT OAEC NATIVE PLANT LIST FERNS and FERN ALLIES
DRAFT OAEC NATIVE PLANT LIST FERNS and FERN ALLIES: Blechnaceae: Deer Fern Family Giant Chain Fern Woodwardia fimbriata Dennstaedtiaceae: Bracken Fern Bracken Pteridium aquilinum Dryopteridaceae: Wood Fern Family Lady Fern Athyrium filix-femina Wood Fern Dryopteris argutanitum Western Sword Fern Polystichum muitum Polypodiaceae: Polypody Family California Polypody Polypodium californicum Pteridaceae: Brake Family California Maiden-Hair Adiantum jordanii Coffee Fern Pellaea andromedifolia Goldback Fern Pentagramma triangularis Isotaceae: Quillwort Family Isoetes sp? Nuttallii? Selaginellaceae: Spike-Moss Family Selaginella bigelovii GYMNOPSPERMS Pinaceae: Pine Family Douglas-Fir Psuedotsuga menziesii Taxodiaceae: Bald Cypress Family Redwood Sequoia sempervirens ANGIOSPERMS: DICOTS Aceraceae: Maple Family Big-Leaf Maple Acer macrophyllum Box Elder Acer negundo Anacardiaceae: Sumac Family Western Poison Oak Toxicodendron diversilobum Apiaceae: Carrot Family Lomatium( utriculatum) or (carulifolium)? Pepper Grass Perideridia kelloggii Yampah Perideridia gairdneri Sanicula sp? Sweet Cicely Osmorhiza chilensis Unidentified in forest at barn/deer fence gate Angelica Angelica tomentosa Apocynaceae: Dogbane or Indian Hemp Family Apocynum cannabinum Aristolochiaceae Dutchman’s Pipe, Pipevine Aristolochia californica Wild Ginger Asarum caudatum Asteraceae: Sunflower Family Grand Mountain Dandelion Agoseris grandiflora Broad-leaved Aster Aster radulinus Coyote Brush Baccharis pilularis Pearly Everlasting Anaphalis margaritacea Woodland Tarweed Madia