Proceedings of the IMAC-XXVIII February 1–4, 2010, Jacksonville, Florida USA ©2010 Society for Experimental Mechanics Inc. Practical Aspects of Dynamic Substructuring in Wind Turbine Engineering S.N. Voormeeren,¤ P.L.C. van der Valk and D.J. Rixen Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering Department of Precision and Microsystem Engineering, section Engineering Dynamics Mekelweg 2, 2628CD, Delft, The Netherlands
[email protected] ABSTRACT In modern day society concern is growing about the use of fossil fuels to meet our constantly rising energy demands. Although wind energy certainly has the potential to play a signi¯cant role in a sustainable future world energy supply, a number of challenges are still to be met in wind turbine technology. One of those challenges concerns the correct determination of dynamic loads caused by structural vibrations of the individual turbine components (such as rotor blades, gearbox and tower). Thorough understanding of these loads is a prerequisite to further increase the overall reliability of a wind turbine. Hence, improved insight in the component structural dynamics could eventually lead to more cost-e®ective wind turbines. This paper addresses the use of dynamic substructuring (DS) as an analysis tool in wind turbine engineering. The bene¯ts of a component-wise approach to structural dynamic analysis are illustrated, as well as a number of practical issues that need to be tackled for successful application of substructuring techniques in an engineering setting. Special attention is paid to the modeling of interfaces between components. The potential of the proposed approach is illustrated by a DS analysis on a Siemens SWT-2.3-93 turbine yaw system.