Avatars, Agency and Performance, the Fusion of Science And

Total Page:16

File Type:pdf, Size:1020Kb

Avatars, Agency and Performance, the Fusion of Science And Avatars, Agency and Performance: The Fusion of Science and Technology within the Arts A doctoral thesis submitted for the Degree of Doctor of Philosophy. The Marcs Institute, University of Western Sydney, Australia. Richard Andrew Salmon 2014 Acknowledgements I would like to thank the Power House Museum, Ultimo, Sydney, Australia and all the staff there, who provided the space and support for most of the data in this research project to be collected in parallel with the exhibition of the Articulated Head. Thank you to all those at The Marcs Institute at the University of Western Sydney who supported the project, including the Articulated Head Engineering Team, Professor Chris Davis, Dr Damith Herath and Dr Christian Kroos. A special thank you to Zhengzhi Zhang and Dr Richard Liebbrandt for the programming of the Event Manager/Max interface and the Thought Clouds respectively. Thank you to Colin Schoknecht and Steven Fazio for their unwavering and timely technical support. Thank you to Professor Chris Davis for his strong supervisory support in the final stages of completion of this thesis. Thank you to Professor Michael Atherton for his sort lived but influential supervisory support and last but not least to Assoc. Prof Garth Paine and Stelarc, who have been the mainstay of support in the conception and completion of this work. Together, Stelarc, Assoc. Prof Garth Paine and myself formed the Articulated Head Performance Team. Statement of Authenticity The work presented in this thesis is to the best of my knowledge and belief, original other than where acknowledged in the text. I hereby declare that I have not submitted this material, either in full or part, for a higher degree at this or any other institution. Richard Andrew Salmon, June 15th, 2014 Table of Contents 1. Abstract. .......................................................................................................... 1 1.1 The Project ..................................................................................................................... 1 The purpose of this research ....................................................................................................... 1 Introduction .................................................................................................................................. 2 Methodology ............................................................................................................................... 2 Methods ........................................................................................................................................ 2 Findings ......................................................................................................................................... 2 2. Introduction ..................................................................................................... 4 2.1 Stelarc’s background .................................................................................................. 5 2.1.1 From Talking Head to Thinking Heads: Aims & Objectives ........................................... 6 2.2 History ............................................................................................................................. 7 2.2.1 Mirrored development: the Prosthetic and Articulated Head ................................... 7 2.2.2 The Projected Evolutionary Development of the Head .............................................11 2.3 Stelarc’s work and the Articulated Head set within the context of other robotic/AI chatbot artworks. .......................................................................................... 11 2.4 General history of ideas in relation to Human Machine Interaction. .............. 13 2.4.1 Anthropomorphism ...........................................................................................................16 2.4.2 Perceptions of agency.....................................................................................................17 2.4.3 Human emotional response to virtual agents ..............................................................17 2.5 The Original Plan and how this investigation differs ............................................ 19 2.5.1 A limitation of this investigation ......................................................................................20 2.5.2 Projected incorporation of interactive scenarios ........................................................20 2.6 Technical Components of the Articulated Head ................................................ 21 2.7 Operational infrastructure, maintenance and control of the Articulated Head Systems (Overview) ............................................................................................... 24 2.8 Software component based architecture ............................................................ 25 2.8.1 The Thinking Head Attention Model and Behavioural System. .................................26 2.8.2 The Event Manager (Overview) .....................................................................................27 2.8.3 The EM/Max Interface ......................................................................................................28 2.9 Where and when has this investigation taken place? ....................................... 28 2.10 The Big Question. ...................................................................................................... 29 2.11 The Research Questions .......................................................................................... 29 2.12 This study’s contribution. ......................................................................................... 30 2.13 The Approach: Prioritisation of Human Experience. ......................................... 30 2.14 What follows? ............................................................................................................ 31 2.14.1 Defense of the Articulated Head’s performance .....................................................32 2.14.2 The Problem .....................................................................................................................32 3. Methodology and methods ......................................................................... 34 3.1 Grounded Theory ....................................................................................................... 34 3.1.1 Computer assisted qualitative data analysis software (CAQDAS) ..........................38 3.1.1.1 Axial Coding ............................................................................................................................... 39 3.1.1.2 Frames analysis ........................................................................................................................... 39 3.2 Video Cued Recall .................................................................................................... 41 Reporting Experience ................................................................................................................ 41 3.2.1 Expanded discussion of applications of Video Cued Recall ....................................43 3.2.2 The best time to implement the interview ....................................................................45 3.3 Phenomenology ......................................................................................................... 46 3.4 A Comparative Analysis ........................................................................................... 51 Human ↔ human compared to human ↔ robot communication ...................................... 51 3.4.1 Communication Theory ...................................................................................................51 3.4.2 The Universal Law of Communication ...........................................................................52 3.4.3 A quick review: What was the Articulated Head again? ..........................................53 4. The Reduction ............................................................................................... 55 4.1 Scope of this Reduction ............................................................................................ 55 4.1.1 Consciousness ....................................................................................................................57 4.1.2 The senses ...........................................................................................................................58 4.1.3 A spiritual dimension .........................................................................................................58 4.1.4 Communication or information exchange, initiations and sense fields ..................58 4.1.5 The senses and range .......................................................................................................59 Imaginative variations ............................................................................................................... 60 Sight ............................................................................................................................................ 60 Hearing ....................................................................................................................................... 60 Smell ............................................................................................................................................ 60 Taste ...........................................................................................................................................
Recommended publications
  • 1 COPYRIGHT STATEMENT This Copy of the Thesis Has Been
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2012 Life Expansion: Toward an Artistic, Design-Based Theory of the Transhuman / Posthuman Vita-More, Natasha http://hdl.handle.net/10026.1/1182 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. COPYRIGHT STATEMENT This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s prior consent. 1 Life Expansion: Toward an Artistic, Design-Based Theory of the Transhuman / Posthuman by NATASHA VITA-MORE A thesis submitted to the University of Plymouth in partial fulfillment for the degree of DOCTOR OF PHILOSOPHY School of Art & Media Faculty of Arts April 2012 2 Natasha Vita-More Life Expansion: Toward an Artistic, Design-Based Theory of the Transhuman / Posthuman The thesis’ study of life expansion proposes a framework for artistic, design-based approaches concerned with prolonging human life and sustaining personal identity. To delineate the topic: life expansion means increasing the length of time a person is alive and diversifying the matter in which a person exists.
    [Show full text]
  • From Prometheus to Pistorius: a Genaelogy of Physical Ability
    FROM PROMETHEUS TO PISTORIUS: A GENAELOGY OF PHYSICAL ABILITY by Stephanie J. Cork A thesis submitted to the Department of Sociology In conformity with the requirements for the degree of Masters of Arts Queen’s University Kingston, Ontario, Canada (September, 2011) Copyright ©Stephanie J. Cork, 2011 Abstract (Fragile Frames + Monstrosities)ModernWar + (Flagged Bodies + Cyborgs)PostmodernWar = dis-AbilityCyborged ii Acknowledgements A huge thank you goes out to: my friends, colleagues, office neighbours, mentors, family, defence committee, readers, editors and Steve. Thank you, also, to the Canadian and American troops as well as Paralympic athletes, Oscar Pistorius and Aimee Mullins for their inspiration, sorry, I have borrowed your stories to perpetuate my own academic success. Thanks also to Louise Bark for her endless patience and kindness, as well as a pint (or three!) at Ben’s Pub. Anne and Wendy and especially Michelle: you are lifesavers! Finally, my eternal gratitude to the: “greatest man alive,” Dr. Rob Beamish (Scott Mason 2011). iii Table of Contents Abstract............................................................................................................................................. i Acknowledgements......................................................................................................................... iii Table of Contents............................................................................................................................ iv Chapter 1: Introduction.....................................................................................................................1
    [Show full text]
  • Modelling User Preference for Embodied Artificial Intelligence and Appearance in Realistic Humanoid Robots
    Article Modelling User Preference for Embodied Artificial Intelligence and Appearance in Realistic Humanoid Robots Carl Strathearn 1,* and Minhua Ma 2,* 1 School of Computing and Digital Technologies, Staffordshire University, Staffordshire ST4 2DE, UK 2 Falmouth University, Penryn Campus, Penryn TR10 9FE, UK * Correspondence: [email protected] (C.S.); [email protected] (M.M.) Received: 29 June 2020; Accepted: 29 July 2020; Published: 31 July 2020 Abstract: Realistic humanoid robots (RHRs) with embodied artificial intelligence (EAI) have numerous applications in society as the human face is the most natural interface for communication and the human body the most effective form for traversing the manmade areas of the planet. Thus, developing RHRs with high degrees of human-likeness provides a life-like vessel for humans to physically and naturally interact with technology in a manner insurmountable to any other form of non-biological human emulation. This study outlines a human–robot interaction (HRI) experiment employing two automated RHRs with a contrasting appearance and personality. The selective sample group employed in this study is composed of 20 individuals, categorised by age and gender for a diverse statistical analysis. Galvanic skin response, facial expression analysis, and AI analytics permitted cross-analysis of biometric and AI data with participant testimonies to reify the results. This study concludes that younger test subjects preferred HRI with a younger-looking RHR and the more senior age group with an older looking RHR. Moreover, the female test group preferred HRI with an RHR with a younger appearance and male subjects with an older looking RHR.
    [Show full text]
  • Pdf • Cynthia Breazeal
    © copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2019. https://www.human-robot-interaction.org Human{Robot Interaction An Introduction Christoph Bartneck, Tony Belpaeme, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, Selma Sabanovi´cˇ This material has been published by Cambridge University Press as Human Robot Interaction by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. ISBN: 9781108735407 (http://www.cambridge.org/9781108735407). This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. © copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2019. https://www.human-robot-interaction.org This material has been published by Cambridge University Press as Human Robot Interaction by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. ISBN: 9781108735407 (http://www.cambridge.org/9781108735407). This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. © copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2019. https://www.human-robot-interaction.org Contents List of illustrations viii List of tables xi 1 Introduction 1 1.1 About this book 1 1.2 Christoph
    [Show full text]
  • Examining the Use of Robots As Teacher Assistants in UAE
    Volume 20, 2021 EXAMINING THE USE OF ROBOTS AS TEACHER ASSISTANTS IN UAE CLASSROOMS: TEACHER AND STUDENT PERSPECTIVES Mariam Alhashmi* College of Education, Zayed University, [email protected] Abu Dhabi, UAE Omar Mubin Senior Lecturer in Human Computer [email protected] Interaction, Sydney, Australia Rama Baroud Part-Time Research Assistant [email protected] * Corresponding author ABSTRACT Aim/Purpose This study sought to understand the views of both teachers and students on the usage of humanoid robots as teaching assistants in a specifically Arab context. Background Social robots have in recent times penetrated the educational space. Although prevalent in Asia and some Western regions, the uptake, perception and ac- ceptance of educational robots in the Arab or Emirati region is not known. Methodology A total of 20 children and 5 teachers were randomly selected to comprise the sample for this study, which was a qualitative exploration executed using fo- cus groups after an NAO robot (pronounced now) was deployed in their school for a day of revision sessions. Contribution Where other papers on this topic have largely been based in other countries, this paper, to our knowledge, is the first to examine the potential for the inte- gration of educational robots in the Arab context. Findings The students were generally appreciative of the incorporation of humanoid robots as co-teachers, whereas the teachers were more circumspect, express- ing some concerns and noting a desire to better streamline the process of bringing robots to the classroom. Recommendations We found that the malleability of the robot’s voice played a pivotal role in the for Practitioners acceptability of the robot, and that generally students did well in smaller Accepting Editor Minh Q.
    [Show full text]
  • Are You There, God? It's I, Robot: Examining The
    ARE YOU THERE, GOD? IT’S I, ROBOT: EXAMINING THE HUMANITY OF ANDROIDS AND CYBORGS THROUGH YOUNG ADULT FICTION BY EMILY ANSUSINHA A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS Bioethics May 2014 Winston-Salem, North Carolina Approved By: Nancy King, J.D., Advisor Michael Hyde, Ph.D., Chair Kevin Jung, Ph.D. ACKNOWLEDGMENTS I would like to give a very large thank you to my adviser, Nancy King, for her patience and encouragement during the writing process. Thanks also go to Michael Hyde and Kevin Jung for serving on my committee and to all the faculty and staff at the Wake Forest Center for Bioethics, Health, and Society. Being a part of the Bioethics program at Wake Forest has been a truly rewarding experience. A special thank you to Katherine Pinard and McIntyre’s Books; this thesis would not have been possible without her book recommendations and donations. I would also like to thank my family for their continued support in all my academic pursuits. Last but not least, thank you to Professor Mohammad Khalil for changing the course of my academic career by introducing me to the Bioethics field. ii TABLE OF CONTENTS List of Tables and Figures ................................................................................... iv List of Abbreviations ............................................................................................. iv Abstract ................................................................................................................
    [Show full text]
  • Planetary Exploration Using Bio Inspired Technologies
    © 2016 California Institute of Technology. Government sponsorship acknowledged. Planetary exploration using bio inspired technologies Ref.: Y. Bar-Cohen & D. Hanson “Humanlike Robots” 2009. Courtesy of Adi Marom, Graphics Artist. Yoseph Bar-Cohen, Jet Propulsion Laboratory, California Institute of Technology http://ndeaa.jpl.nasa.gov/ Who really invented the wheel? Ref: http://www.natgeocreative.com/photography/1246755 2 Biology – inspiring human innovation Honeycomb structures are part of almost every aircraft The fins were copied to significantly improve Flying was enabled using aerodynamic swimming and diving principles http://www.wildland.com/trips/details/326/ne The spider is quite an w_zealand_itin.aspx “engineer”. Its web may have inspired the fishing net, fibers, clothing and others. http://www.swimoutlet.com/Swim_Fins _s/329.htm The octopus as a model for biomimetics Adaptive shape, texture and camouflage of the Octopus Courtesy of William M. Kier, of North Carolina Courtesy of Roger T. Hanlon, Director, Marine Resources Center, Marine Biological Lab., MA Camouflage has many forms The swan puffs its wings to look Jewel Scarab Beetles - Leafy seadragon bigger in an attack posture bright colors appear bigger Butterfly - Color matching Owl butterfly Wikipedia freely licensed media Lizard - Color matching http://en.wikipedia.org/wiki/Owl_butterfly 5 Plants use of camouflage • To maximize the pollination opportunities - flowers are as visible as possible. • To protect from premature damage – initially, fruits are green, have sour taste, and are camouflaged by leaves. • Once ripped, fruits become colorful and tasty, as well as have good smell Biomimetic robotic exploration of the universe The mountain goat is an inspiring model for all- terrain legged rovers The Curiosity rover and the Mars Science Laboratory MSL) landed on Mars in Aug.
    [Show full text]
  • Smart Wonder: Cute, Helpful, Secure Domestic Social Robots
    Northumbria Research Link Citation: Dereshev, Dmitry (2018) Smart Wonder: Cute, Helpful, Secure Domestic Social Robots. Doctoral thesis, Northumbria University. This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/39773/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html SMART WONDER: CUTE, HELPFUL, SECURE DOMESTIC SOCIAL ROBOTS D. DERESHEV PhD 2018 SMART WONDER: CUTE, HELPFUL, SECURE DOMESTIC SOCIAL ROBOTS DMITRY DERESHEV A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Doctor of Philosophy Research undertaken in the Faculty of Engineering and Environment, School of Computer and Information Sciences December 2018 Abstract Sci-fi authors and start-ups alike claim that socially enabled technologies like companion robots will become widespread. However, current attempts to push companion robots to the market often end in failure, with consumers finding little value in the products offered.
    [Show full text]
  • Technological Enhancement and Criminal Responsibility1
    THIS VERSION DOES NOT CONTAIN PAGE NUMBERS. PLEASE CONSULT THE PRINT OR ONLINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION. ARTICLE HUMANS AND HUMANS+: TECHNOLOGICAL ENHANCEMENT AND CRIMINAL RESPONSIBILITY1 SUSAN W. BRENNER2 I. INTRODUCTION [G]radually, the truth dawned on me: that Man had not remained one species . .3 It has been approximately 30,000 years since our species—Homo sapiens sapiens—shared the earth with another member of the genus Homo.4 I note 1 It was only after I decided to use Humans+ as part of the title for this article that I discovered the very similar device used by the transhumanist organization, Humanity+. See Mission, HUMANITY PLUS, http://humanityplus.org/about/mission/ (last visited Feb. 25, 2013). 2 NCR Distinguished Professor of Law & Technology, University of Dayton School of Law, Dayton, Ohio, USA. Email: [email protected]. 3 H.G. WELLS, THE TIME MACHINE 59 (Frank D. McConnell ed. 1977). 4 See GRAHAM CONNAH, FORGOTTEN AFRICA: AN INTRODUCTION TO ITS ARCHAEOLOGY 7–16 (2004) (supporting emergence of genus Homo in Africa); CHRIS GOSDEN, PREHISTORY: A VERY SHORT INTRODUCTION xiv–xv, 39–42 (2003) (summarizing rise of Homo sapiens sapiens). “Taxonomy,” or “the study of classification,” involves the process of sorting plants and animals into categories, including species. STEPHEN JAY GOULD, EVER SINCE DARWIN: REFLECTIONS IN NATURAL HISTORY 231 (1977). The species Homo sapiens includes Homo sapiens sapiens (modern humans) as well as several “archaic” members of the species. See, e.g., William Howells, Getting Here: The Story of Human Evolution 122– 23 (Washington, DC: Compass Press 1993). See also R.A.
    [Show full text]
  • Essentializing Femininity in AI Linguistics
    Student Publications Student Scholarship Fall 2019 Designing Women: Essentializing Femininity in AI Linguistics Ellianie S. Vega Gettysburg College Follow this and additional works at: https://cupola.gettysburg.edu/student_scholarship Part of the Artificial Intelligence and Robotics Commons, Feminist, Gender, and Sexuality Studies Commons, and the Linguistics Commons Share feedback about the accessibility of this item. Recommended Citation Vega, Ellianie S., "Designing Women: Essentializing Femininity in AI Linguistics" (2019). Student Publications. 797. https://cupola.gettysburg.edu/student_scholarship/797 This open access student research paper is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact [email protected]. Designing Women: Essentializing Femininity in AI Linguistics Abstract Since the eighties, feminists have considered technology a force capable of subverting sexism because of technology’s ability to produce unbiased logic. Most famously, Donna Haraway’s “A Cyborg Manifesto” posits that the cyborg has the inherent capability to transcend gender because of its removal from social construct and lack of loyalty to the natural world. But while humanoids and artificial intelligence have been imagined as inherently subversive to gender, current artificial intelligence perpetuates gender divides in labor and language as their programmers imbue them with traits considered “feminine.” A majority of 21st century AI and humanoids are programmed to fit emalef stereotypes as they fulfill emotional labor and perform pink-collar tasks, whether through roles as therapists, query-fillers, or companions. This paper examines four specific chat-based AI --ELIZA, XiaoIce, Sophia, and Erica-- and examines how their feminine linguistic patterns are used to maintain the illusion of emotional understanding in regards to the tasks that they perform.
    [Show full text]
  • Bluecover C-Bfront
    ! 0%67(KNO5VWFKGU%GPVGT $NWG/CIRKG'ZRGTKOGPVCN(KNO 5GTKGU6CKYCP ⛑䍄繷灓⻇洸㉒⼶ 5GRVGODGTł,CPWCT[ *WOCPKVKGU$WKNFKPI0%67%KPGOCHQTVJG#TVU *55 (KNO 5ETGGPKPI5EJGFWNG (TGG#FOKUUKQP RORO 㞎㤁⨑熿獌⧬䶬ↅ聆Ⰸ⹙␪砕㬂☡ ↛䰟Ⅽ氉 ↅⰈ↛㡨槜㉒楃 *55 㞎㤁羝峫獌哋䠒⑆⬕苌㺰⢏␤⬕禈磢桴䎛䡗Ⰺ 哨 5%*'&7.' 9/27/2017 ZANY EXPERIMENTAL ANIMATION AND MONTAGE •!M. Woods, THE DOCTOR IS IN (Digitized Mechanomorphic Consciou{SIC}ness Landscape #5) (USA 2016) 00:02:26 •!Adrián Regnier Chavez, A. (Mexico 2015) 00:07:13 •!Adrián Regnier Chavez, U. (Mexico 2014) 00:04:40 •!Naween Noppakun, WE LOVE ME (Thailand 2017) 00:13:00 •!Paul Wiersbinski, FLY HIGH OR I FLY ABOVE YOU (Germany 2016) 00:7:00 •!Victoria Karmin, EXTRATERRESTRIAL (Mexico 2015) 00:15:00 •!Deborah Kelly, BEASTLINESS (Australia 2011) 00:04:32 •!Jean-Michel Rolland, CARS MELODY (France 2011) 00:05:32 •!Marcantonio Lunardi, UNUSUAL JOURNEY (Italy 2017) 00:03.22 •!Marcantonio Lunardi, THE CAGE (Italy 2016) 00:05:47 •!Marcantonio Lunardi, ANTHROPOMETRY 154855 (Italy 2016) 00:03:36 •!Martin Sulzer, WETWARE (Germany 2017) 00:04:30 •!Przemek Wegrzyn, SECURITY MEASURES (Poland, 2015) 00:05:55 •!Bob Georgeson, WHY IS THIS HAPPENING? (Australia 2015) 00:07:31 10/18/2017 THE BODY—DANCE AND HAPTIC VISUALITY •!Anouska Samms and Sofia Pancucci-McQueen, THE BATHS (UK 2014– 2016) 00:012:27 •!Mark Freeman, BODY WITHOUT A BRAIN (US 2014) 00:06:50 •!Mark Freeman, BODY/BAG (US 2017) 00:02:45 •!Jean-Michel Rolland, THE RACE/LA COURSE (France 2013) 00:03:45 •!Suhrke/Skevik: Hilde Skevik and Ellen Henriette Suhrke, TRANSACTIONS #1 (Norway 2011) 00:03:44 •!Nishat Hossain, 45 MINUTES (USA 2016) 00:10:00 •!Suhrke/Skevik: Hilde Skevik and Ellen Henriette Suhrke, TRANSACTIONS #2 (Norway 2011) 00:05:42 •!Luna Rousseau/Nathan Israel/Thomas Israel/Kika Nicolela, THE MUD MAN/L'HOMME DE BOUE) (Belgium 2017) 00:010:02 •!Pete Burkeet, MANNEQUIN (USA, 2017) 00:07:58 •!Jeremy J.
    [Show full text]
  • Assistive Humanoid Robot MARKO: Development of the Neck Mechanism
    MATEC Web of Conferences 121, 08005 (2017) DOI: 10.1051/ matecconf/201712108005 MSE 2017 Assistive humanoid robot MARKO: development of the neck mechanism Marko Penčić1,*, Maja Čavić1, Srđan Savić1, Milan Rackov1, Branislav Borovac1, and Zhenli Lu2 1Faculty of Technical Sciences, University of Novi Sad, TrgDositejaObradovića 6, 21000 Novi Sad, Serbia 2School of Electrical Engineering and Automation, Changshu Institute of Technology, Hushan Road 99, 215500 Changshu, People's Republic of China Abstract.The paper presents the development of neck mechanism for humanoid robots. The research was conducted within the project which is developing a humanoid robot Marko that represents assistive apparatus in the physical therapy for children with cerebral palsy.There are two basic ways for the neck realization of the robots. The first is based on low backlash mechanisms that have high stiffness and the second one based on the viscoelastic elements having variable flexibility. We suggest low backlash differential gear mechanism that requires small actuators. Based on the kinematic-dynamic requirements a dynamic model of the robots upper body is formed. Dynamic simulation for several positions of the robot was performed and the driving torques of neck mechanism are determined.Realized neck has 2 DOFs and enables movements in the direction of flexion-extension 100°, rotation ±90° and the combination of these two movements. It consists of a differential mechanism with three spiral bevel gears of which the two are driving and are identical, and the third one which is driven gear to which the robot head is attached. Power transmission and motion from the actuators to the input links of the differential mechanism is realized with two parallel placed gear mechanisms that are identical.Neck mechanism has high carrying capacity and reliability, high efficiency, low backlash that provide high positioning accuracy and repeatability of movements, compact design and small mass and dimensions.
    [Show full text]