Derived Geometry and the Integrability Problem for G-Structures

Total Page:16

File Type:pdf, Size:1020Kb

Derived Geometry and the Integrability Problem for G-Structures Derived Geometry and The Integrability Problem for G-Structures by Anthony Ryan McCormick A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics in Pure Mathematics Waterloo, Ontario, Canada, 2017 c Anthony Ryan McCormick 2017 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In this thesis, we study the integrability problem for G-structures. Broadly speaking, this is the problem of determining topological obstructions to the existence of principal G-subbundles of the frame bundle of a manifold, subject to certain differential equations. We begin this investigation by introducing general methods from homological algebra used to obtain cohomological obstructions to the existence of solutions to certain geometric problems. This leads us to a precise analogy be- tween deformation theory and the formal integrability properties of partial differential equations. Along the way, we prove the following differential-geometric analogue of a well-known result from derived algebraic geometry: H∗(N•(S1 ⊗ C¥(M))) =∼ W−∗(M) as well as the identification of the infinitesimal generator of the natural S1-action corresponding to the de Rham differential. As a short corollary we obtain a natural isomorphism ∗ • 1 ¥ ¥ ∼ −∗ H (Hom(N (S ⊗ C (M)), C (M))) = G(M, L TM) leading to a comparison between the standard Gerstenhaber bracket on the left-hand-side of the above equation and the Schouten bracket on the right. These two results are well-known in de- rived algebraic geometry and are folk-lore in differential geometry, where we were unable to find an explicit proof in the literature. In the end, this machinery is used to provide what the author believes is a new perspective on the integrability problem for G-structures. iii Acknowledgements First and foremost I would like to thank my supervisor Spiro Karigiannis for spending so much time answering my questions every week, for going through this monstrosity of a document with a fine-tooth comb, and for running the Geometric Analysis Working Seminar in which I learned so much. I also want to thank Anton Borissov, Henry Liu and Raymond Cheng for running the Geometry Working Seminar as well as the Mirror Symmetry Seminar in the summer of 2016. Much of this the- sis would have been far more difficult for me without some of the intuition for geometry I gained in that seminar. Furthermore, I extend my gratitude to my friends and family for bearing with me in this crazy year. Especially my parents Angelina and Jim, and my sister Michelle. A special thanks to Grant and Ian for organizing boardgame nights, Brandon for organizing trivia nights, Sam and Ilia for Friday, Parham for the office antics, and Osman and Danny for making time spent in some of the grossest apartments bearable, if not enjoyable. Finally, I’d like to thank Benoit Charbonneau for sparking my initial interest in differential geome- try, Jason Bell for teaching me most of the algebra I know, and Andu Nica for showing me how to integrate in infinite dimensions (something which blows my mind to this day). iv Table of Contents 1 Preliminaries 1 1.1 Introduction . .1 1.2 Topology and PDEs . 16 1.3 Homotopical Algebra . 26 1.4 Homological Algebra . 37 2 Algebraic Methods in Differential Geometry 51 2.1 C¥-Rings . 51 2.2 Cofiber and Fiber Sequences . 69 2.3 Chern-Weil Theory and the Derived Loop Space . 82 3 Applications 94 3.1 Prolongation . 94 3.2 Deformation Theory . 99 3.3 Formal Integrability and the Spencer Complex . 110 3.4 The Frölicher-Nijenhuis and Schouten Brackets . 118 Bibliography 123 A Category Theory Review 127 v Chapter 1 Preliminaries Throughout this thesis all of our complexes will be cohomological. Given a complex A, we’ll write A[n] for the complex with A[n]i = Ai+n and differential multiplied by (−1)n. Notational conven- tions are in the appendix. 1.1 Introduction In this section I’ll be describing the basic motivating problem for this thesis. Our main goal will be to obtain a thorough understanding of the integrability problem for G-structures. To do this, let’s begin by developing an intuitive understanding of what a G-structure is. Let’s think about the universe we live in. A hypothetical high-school student, when asked what an appropriate mathematical model for space is, might respond with R3. Indeed, the 3-dimensional space we live in is often how we first think of the vector space R3. But this is inaccurate. For ex- ample, one could ask this high-school student: where is the point (0, 0, 0) 2 R3 located in space? In which directions do the three standard coordinate axes point? This line of questioning leads us to posit that perhaps space is best represented by an affine R3. So one can choose any point in space and any three independent direction vector emanating from that point and from this one will obtain an identification of space with R3. But this description also falls short. Indeed, using the very same thought process, one could arrive at the conclusion that the surface of the earth is modelled by an affine R2, i.e. that the earth is flat. In this modern era we know this to be false. The point being that while locally the earth does indeed appear to be flat, globally this is not the case. For example, we know that the surface of the earth is compact (a topological property) while affine R2 is not. As such, we cannot assume that space is an affine R3 a priori. Locally it certainly seems to look like one but globally there may be topological non-trivialities. Another way in which space differs from affine R3 is curvature. One measures distance on an affine R3 using the standard Euclidean distance function. Returning to the example of the surface of the earth, we can recall that if one draws a suf- ficiently large triangle on the ground and sums the interior angles, it is possible to obtain a value larger than 180◦. This is not true for affine R3. Although, if one is only allowed to draw triangles on the ground in such a way that by standing at any corner one can see the whole triangle, then the sum of the interior angles should be a reasonably good approximation of 180◦. The point is, the distance function on the surface differs non-trivially from the usual Euclidean distance function. This difference is called the curvature of the distance function. In the same way that we should not have assumed the surface of the earth was flat (had no curvature) we shouldn’t assume space is flat. 1 So we now have two potential ways in which space could differ non-trivially from affine R3: the topology and the curvature. It turns out that these two properties are distinct but are related in subtle ways. Let’s now describe the type of mathematical object we will use to model space. Definition 1.1.1. A smooth manifold is a Hausdorff second countable topological space M together n with an open cover by Ui’s and continuous maps ji : Ui ! R i which are homeomorphisms onto their (open) images such that −1 ji ◦ jj : jj(Ui \ Uj) ! ji(Ui \ Uj) is a diffeomorphism for all i, j such that Ui \ Uj 6= Æ. Furthermore, we will assume that the collec- tion of such pairs (Ui, ji) is maximal and we call this collection a (maximal) atlas. The pairs (Ui, ji) themselves are called charts. A standard fact from differential geometry is that the ni’s appearing in the above definition are locally constant with respect to the topology on M. However, it is possible to have non-connected manifolds for which the ni’s tend to infinity since second-countability allows the number of con- nected components to be countably infinite. We should mention a couple of things regarding the above definition. The assumption that our space be Hausdorff can be thought of as saying that it is possible to distinguish between any two points in space. The second countability assumption is equivalent, for topological spaces satisfying all of the other assumptions in our definition, to having countably many connected components each of which is metrizable. The last point in our definition was that the transition functions between charts (i.e. changes of coordinates) were assumed to be diffeomorphisms. This is essentially saying that the rules of cal- culus work the same in any coordinate chart. An important advantage of this is that it allows one to perform multivariable calculus globally on manifolds by simply doing constructions in each chart. One thing worth observing is that we defined manifolds in dimensions other than just 3. This is because other objects than just space end up being modelled well by manifolds. For example, the surface of the earth is a 2-dimensional manifold, space-time is a 4-dimensional manifold, and the space of possible configurations of a rigid body in space looks like (at least locally) R3 o SO(3). This is a 6-dimensional manifold (and, in fact, a Lie group). The most important example of a higher dimensional manifold for us will be the frame bundle of a manifold. Recall that the whole point of thinking of space-time as a manifold is that it is, in some sense, the most general type of reasonable object for which one can choose a reference frame at each point.
Recommended publications
  • Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory
    Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory by Robert L. Bryant* Table of Contents §0. Introduction §1. The Holonomy of a Torsion-Free Connection §2. The Structure Equations of H3-andG3-structures §3. The Existence Theorems §4. Path Geometries and Exotic Holonomy §5. Twistor Theory and Exotic Holonomy §6. Epilogue §0. Introduction Since its introduction by Elie´ Cartan, the holonomy of a connection has played an important role in differential geometry. One of the best known results concerning hol- onomy is Berger’s classification of the possible holonomies of Levi-Civita connections of Riemannian metrics. Since the appearance of Berger [1955], much work has been done to refine his listofpossible Riemannian holonomies. See the recent works by Besse [1987]or Salamon [1989]foruseful historical surveys and applications of holonomy to Riemannian and algebraic geometry. Less well known is that, at the same time, Berger also classified the possible pseudo- Riemannian holonomies which act irreducibly on each tangent space. The intervening years have not completely resolved the question of whether all of the subgroups of the general linear group on his pseudo-Riemannian list actually occur as holonomy groups of pseudo-Riemannian metrics, but, as of this writing, only one class of examples on his list remains in doubt, namely SO∗(2p) ⊂ GL(4p)forp ≥ 3. Perhaps the least-known aspect of Berger’s work on holonomy concerns his list of the possible irreducibly-acting holonomy groups of torsion-free affine connections. (Torsion- free connections are the natural generalization of Levi-Civita connections in the metric case.) Part of the reason for this relative obscurity is that affine geometry is not as well known or widely usedasRiemannian geometry and global results are generally lacking.
    [Show full text]
  • J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
    J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This course is an introduction to the geometry of smooth if the velocity never vanishes). Then the speed is a (smooth) curves and surfaces in Euclidean space Rn (in particular for positive function of t. (The cusped curve β above is not regular n = 2; 3). The local shape of a curve or surface is described at t = 0; the other examples given are regular.) in terms of its curvatures. Many of the big theorems in the DE The lengthR [ : Länge] of a smooth curve α is defined as subject – such as the Gauss–Bonnet theorem, a highlight at the j j len(α) = I α˙(t) dt. (For a closed curve, of course, we should end of the semester – deal with integrals of curvature. Some integrate from 0 to T instead of over the whole real line.) For of these integrals are topological constants, unchanged under any subinterval [a; b] ⊂ I, we see that deformation of the original curve or surface. Z b Z b We will usually describe particular curves and surfaces jα˙(t)j dt ≥ α˙(t) dt = α(b) − α(a) : locally via parametrizations, rather than, say, as level sets. a a Whereas in algebraic geometry, the unit circle is typically be described as the level set x2 + y2 = 1, we might instead This simply means that the length of any curve is at least the parametrize it as (cos t; sin t). straight-line distance between its endpoints. Of course, by Euclidean space [DE: euklidischer Raum] The length of an arbitrary curve can be defined (following n we mean the vector space R 3 x = (x1;:::; xn), equipped Jordan) as its total variation: with with the standard inner product or scalar product [DE: P Xn Skalarproduktp ] ha; bi = a · b := aibi and its associated norm len(α):= TV(α):= sup α(ti) − α(ti−1) : jaj := ha; ai.
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • Special Holonomy and Two-Dimensional Supersymmetric
    Special Holonomy and Two-Dimensional Supersymmetric σ-Models Vid Stojevic arXiv:hep-th/0611255v1 23 Nov 2006 Submitted for the Degree of Doctor of Philosophy Department of Mathematics King’s College University of London 2006 Abstract d = 2 σ-models describing superstrings propagating on manifolds of special holonomy are characterized by symmetries related to covariantly constant forms that these manifolds hold, which are generally non-linear and close in a field dependent sense. The thesis explores various aspects of the special holonomy symmetries (SHS). Cohomological equations are set up that enable a calculation of potential quantum anomalies in the SHS. It turns out that it’s necessary to linearize the algebras by treating composite currents as generators of additional symmetries. Surprisingly we find that for most cases the linearization involves a finite number of composite currents, with the exception of SU(3) and G2 which seem to allow no finite linearization. We extend the analysis to cases with torsion, and work out the implications of generalized Nijenhuis forms. SHS are analyzed on boundaries of open strings. Branes wrapping calibrated cycles of special holonomy manifolds are related, from the σ-model point of view, to the preser- vation of special holonomy symmetries on string boundaries. Some technical results are obtained, and specific cases with torsion and non-vanishing gauge fields are worked out. Classical W -string actions obtained by gauging the SHS are analyzed. These are of interest both as a gauge theories and for calculating operator product expansions. For many cases there is an obstruction to obtaining the BRST operator due to relations between SHS that are implied by Jacobi identities.
    [Show full text]
  • Curvatures of Smooth and Discrete Surfaces
    Curvatures of Smooth and Discrete Surfaces John M. Sullivan Abstract. We discuss notions of Gauss curvature and mean curvature for polyhedral surfaces. The discretizations are guided by the principle of preserving integral relations for curvatures, like the Gauss/Bonnet theorem and the mean-curvature force balance equation. Keywords. Discrete Gauss curvature, discrete mean curvature, integral curvature rela- tions. The curvatures of a smooth surface are local measures of its shape. Here we con- sider analogous quantities for discrete surfaces, meaning triangulated polyhedral surfaces. Often the most useful analogs are those which preserve integral relations for curvature, like the Gauss/Bonnet theorem or the force balance equation for mean curvature. For sim- plicity, we usually restrict our attention to surfaces in euclidean three-space E3, although some of the results generalize to other ambient manifolds of arbitrary dimension. This article is intended as background for some of the related contributions to this volume. Much of the material here is not new; some is even quite old. Although some references are given, no attempt has been made to give a comprehensive bibliography or a full picture of the historical development of the ideas. 1. Smooth curves, framings and integral curvature relations A companion article [Sul08] in this volume investigates curves of finite total curvature. This class includes both smooth and polygonal curves, and allows a unified treatment of curvature. Here we briefly review the theory of smooth curves from the point of view we will later adopt for surfaces. The curvatures of a smooth curve γ (which we usually assume is parametrized by its arclength s) are the local properties of its shape, invariant under euclidean motions.
    [Show full text]
  • Riemannian Holonomy and Algebraic Geometry
    Riemannian Holonomy and Algebraic Geometry Arnaud BEAUVILLE Revised version (March 2006) Introduction This survey is devoted to a particular instance of the interaction between Riemannian geometry and algebraic geometry, the study of manifolds with special holonomy. The holonomy group is one of the most basic objects associated with a Riemannian metric; roughly, it tells us what are the geometric objects on the manifold (complex structures, differential forms, ...) which are parallel with respect to the metric (see 1.3 for a precise statement). There are two surprising facts about this group. The first one is that, despite its very general definition, there are few possibilities – this is Berger’s theorem (1.2). The second one is that apart from the generic case in which the holonomy group is SO(n) , all other cases appear to be related in some way to algebraic geometry. Indeed the study of compact manifolds with special holonomy brings into play some special, and quite interesting, classes of algebraic varieties: Calabi-Yau, complex symplectic or complex contact manifolds. I would like to convince algebraic geometers that this interplay is interesting on two accounts: on one hand the general theorems on holonomy give deep results on the geometry of these special varieties; on the other hand Riemannian geometry provides us with good problems in algebraic geometry – see 4.3 for a typical example. I have tried to make these notes accessible to students with little knowledge of Riemannian geometry, and a basic knowledge of algebraic geometry. Two appendices at the end recall the basic results of Riemannian (resp.
    [Show full text]
  • Supersymmetric Cycles in Exceptional Holonomy Manifolds and Calabi-Yau 4-Folds
    LBNL-39156 UC-414 Pre print ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Supersymmetric Cycles in Exceptional Holonomy Manifolds and Calabi-Yau 4-Folds Katrin Becker, Melanie Becker, David R. Morrison, Hirosi Ooguri, Yaron Oz, and Zheng Yin Physics Division August 1996 Submitted to Nuclear Physics B r-' C:Jz I C') I 0 w "'< 10~ (J'1 ~ m DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. LBNL-39156 UC-414 Supersymmetric Cycles in Exceptional Holonomy Manifolds and Calabi-Yau 4-Folds Katrin Becker, 1 Melanie Becker,2 David R.
    [Show full text]
  • 3. Introducing Riemannian Geometry
    3. Introducing Riemannian Geometry We have yet to meet the star of the show. There is one object that we can place on a manifold whose importance dwarfs all others, at least when it comes to understanding gravity. This is the metric. The existence of a metric brings a whole host of new concepts to the table which, collectively, are called Riemannian geometry.Infact,strictlyspeakingwewillneeda slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski metric, has some strange minus signs. This is referred to as Lorentzian Geometry and a slightly better name for this section would be “Introducing Riemannian and Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor. The novelties of Lorentzian geometry will become more pronounced later in the course when we explore some of the physical consequences such as horizons. 3.1 The Metric In Section 1, we informally introduced the metric as a way to measure distances between points. It does, indeed, provide this service but it is not its initial purpose. Instead, the metric is an inner product on each vector space Tp(M). Definition:Ametric g is a (0, 2) tensor field that is: Symmetric: g(X, Y )=g(Y,X). • Non-Degenerate: If, for any p M, g(X, Y ) =0forallY T (M)thenX =0. • 2 p 2 p p With a choice of coordinates, we can write the metric as g = g (x) dxµ dx⌫ µ⌫ ⌦ The object g is often written as a line element ds2 and this expression is abbreviated as 2 µ ⌫ ds = gµ⌫(x) dx dx This is the form that we saw previously in (1.4).
    [Show full text]
  • Symbol Table for Manifolds, Tensors, and Forms Paul Renteln
    Symbol Table for Manifolds, Tensors, and Forms Paul Renteln Department of Physics California State University San Bernardino, CA 92407 and Department of Mathematics California Institute of Technology Pasadena, CA 91125 [email protected] August 30, 2015 1 List of Symbols 1.1 Rings, Fields, and Spaces Symbol Description Page N natural numbers 264 Z integers 265 F an arbitrary field 1 R real field or real line 1 n R (real) n space 1 n RP real projective n space 68 n H (real) upper half n-space 167 C complex plane 15 n C (complex) n space 15 1.2 Unary operations Symbol Description Page a¯ complex conjugate 14 X set complement 263 jxj absolute value 16 jXj cardinality of set 264 kxk length of vector 57 [x] equivalence class 264 2 List of Symbols f −1(y) inverse image of y under f 263 f −1 inverse map 264 (−1)σ sign of permutation σ 266 ? hodge dual 45 r (ordinary) gradient operator 73 rX covariant derivative in direction X 182 d exterior derivative 89 δ coboundary operator (on cohomology) 127 δ co-differential operator 222 ∆ Hodge-de Rham Laplacian 223 r2 Laplace-Beltrami operator 242 f ∗ pullback map 95 f∗ pushforward map 97 f∗ induced map on simplices 161 iX interior product 93 LX Lie derivative 102 ΣX suspension 119 @ partial derivative 59 @ boundary operator 143 @∗ coboundary operator (on cochains) 170 [S] simplex generated by set S 141 D vector bundle connection 182 ind(X; p) index of vector field X at p 260 I(f; p) index of f at p 250 1.3 More unary operations Symbol Description Page Ad (big) Ad 109 ad (little) ad 109 alt alternating map
    [Show full text]
  • Holonomy and the Lie Algebra of Infinitesimal Motions of a Riemannian Manifold
    HOLONOMY AND THE LIE ALGEBRA OF INFINITESIMAL MOTIONS OF A RIEMANNIAN MANIFOLD BY BERTRAM KOSTANT Introduction. .1. Let M be a differentiable manifold of class Cx. All tensor fields discussed below are assumed to be of class C°°. Let X be a vector field on M. If X vanishes at a point oCM then X induces, in a natural way, an endomorphism ax of the tangent space F0 at o. In fact if y£ V„ and F is any vector field whose value at o is y, then define axy = [X, Y]„. It is not hard to see that [X, Y]0 does not depend on F so long as the value of F at o is y. Now assume M has an affine connection or as we shall do in this paper, assume M is Riemannian and that it possesses the corresponding affine connection. One may now associate to X an endomorphism ax of F0 for any point oCM which agrees with the above definition and which heuristically indicates how X "winds around o" by defining for vC V0, axv = — VtX, where V. is the symbol of covariant differentiation with respect to v. X is called an infinitesmal motion if the Lie derivative of the metric tensor with respect to X is equal to zero. This is equivalent to the statement that ax is skew-symmetric (as an endomorphism of F0 where the latter is provided with the inner product generated by the metric tensor) for all oCM. §1 contains definitions and formulae which will be used in the remaining sections.
    [Show full text]
  • A Mathematica Package for Doing Tensor Calculations in Differential Geometry User's Manual
    Ricci A Mathematica package for doing tensor calculations in differential geometry User’s Manual Version 1.32 By John M. Lee assisted by Dale Lear, John Roth, Jay Coskey, and Lee Nave 2 Ricci A Mathematica package for doing tensor calculations in differential geometry User’s Manual Version 1.32 By John M. Lee assisted by Dale Lear, John Roth, Jay Coskey, and Lee Nave Copyright c 1992–1998 John M. Lee All rights reserved Development of this software was supported in part by NSF grants DMS-9101832, DMS-9404107 Mathematica is a registered trademark of Wolfram Research, Inc. This software package and its accompanying documentation are provided as is, without guarantee of support or maintenance. The copyright holder makes no express or implied warranty of any kind with respect to this software, including implied warranties of merchantability or fitness for a particular purpose, and is not liable for any damages resulting in any way from its use. Everyone is granted permission to copy, modify and redistribute this software package and its accompanying documentation, provided that: 1. All copies contain this notice in the main program file and in the supporting documentation. 2. All modified copies carry a prominent notice stating who made the last modifi- cation and the date of such modification. 3. No charge is made for this software or works derived from it, with the exception of a distribution fee to cover the cost of materials and/or transmission. John M. Lee Department of Mathematics Box 354350 University of Washington Seattle, WA 98195-4350 E-mail: [email protected] Web: http://www.math.washington.edu/~lee/ CONTENTS 3 Contents 1 Introduction 6 1.1Overview..............................
    [Show full text]
  • Connections with Totally Skew-Symmetric Torsion and Nearly-Kähler Geometry
    Chapter 10 Connections with totally skew-symmetric torsion and nearly-Kähler geometry Paul-Andi Nagy Contents 1 Introduction ....................................... 1 2 Almost Hermitian geometry .............................. 4 2.1 Curvature tensors in the almost Hermitian setting ................ 6 2.2 The Nijenhuis tensor and Hermitian connections ................. 11 2.3 Admissible totally skew-symmetric torsion ................... 14 2.4 Hermitian Killing forms ............................. 16 3 The torsion within the G1 class ............................. 22 3.1 G1-structures ................................... 22 3.2 The class W1 C W4 ................................ 25 3.3 The u.m/-decomposition of curvature ...................... 26 4 Nearly-Kähler geometry ................................ 31 4.1 The irreducible case ................................ 35 5 When the holonomy is reducible ............................ 36 5.1 Nearly-Kähler holonomy systems ........................ 36 5.2 The structure of the form C ........................... 38 5.3 Reduction to a Riemannian holonomy system .................. 41 5.4 Metric properties ................................. 44 5.5 The final classification .............................. 46 6 Concluding remarks .................................. 48 References .......................................... 49 1 Introduction For a given Riemannian manifold .M n;g/, the holonomy group Hol.M; g/ of the metric g contains fundamental geometric information. If the manifold is locally ir- reducible, as it
    [Show full text]