Matrix Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Matrix Algebra Matrix Algebra Matrix Algebra • Definitions • Addition and Subtraction • Multiplication • Determinant • Inverse • System of Linear Equations • Quadratic Forms • Partitioning • Differentiation and Integration 2.1 Definitions • Scalar (0D matrix) • Vector ( 1D matrix ) Transpose • Matrix ( 2D matrix ) Transpose 2.1 Definitions, contd • Matrix size, [m x n] or [i x j], ( [row x col] ) – Vector, [m x 1] [m x n] = [4 x 2] • Square matrix, (m=n) [m x m] • Symmetric matrix, B=BT 2.1 Definitions, contd • Diagonal matrix • Identity matrix, (unit matrix), AI=A • Zero matrix 2.2 Addition and Subtraction • Vector • Matrix 2.3 Multiplication - scalar • Scalar – vector multiplication • Scalar – matrix multiplication 2.3 Multiplication - vector • Scalar product, (vector – vector multiplication) [1 x n] [n x 1] = [1 x 1] • Length of vector (cf. Pythagoras' theorem) 2.3 Multiplication - vector • Matrix product a1 a1b1 a1b2 a1b3 T ab = a [b b b ]= a b a b a b 2 1 2 3 2 1 2 2 2 3 a3 a3b1 a3b2 a3b3 [m x 1] [1 x n] = [m x n] 2.3 Multiplication - matrix • Matrix – vector multiplication [m x n] [n x 1] = [m x 1] [3 x 2] [2 x 1] = [3 x 1] • Vector – matrix multiplication [1 x m] [m x n] = [1 x n] 2.3 Multiplication - matrix • Matrix – matrix multiplication [m x n] [n x p] = [m x p] Note! 2.3 Multiplication – matrix, contd • Product of transposed matrices • Distribution law 2.4 Determinant • The determinant may be calculated for any square matrix, [n x n] • Cofactor of matrix, A (i=row, k=column) • Expansion formula 2.4 Determinant, examples Cofactors 1 2 Ac = (−1)(1+1) 4 = 4 A = 11 3 4 c (1+2) A12 = (−1) 2 = −2 Determinant det A =1⋅4 + 2(−4) = −2 Cofactors c = − (1+1) ⋅ − ⋅ = − 1 2 3 B11 ( 1) (5 5 6 8) 23 Bc = (−1)(2+1) (2⋅5 − 3⋅8) = −14 B = 4 5 6 21 c (3+1) 7 8 5 B31 = (−1) (2⋅6 − 3⋅5) = −3 Determinant det B =1(−23) + 4⋅14 + 7(−3) =12 2.5 Inverse Matrix • The inverse A-1 of a square matrix A is defined by • The inverse may be determined by the cofactors, where is the adjoint of A and 2.4 Inverse, examples 1 2 4 − 2 A = adjA = 3 4 − 3 1 − −1 4 2 1 What happens if A = adjA / det A = − 3 1 (−2) det A = 0? 1 2 3 − 23 22 − 3 T = B 4 5 6 adjB = −14 −16 6 7 8 5 − 3 6 − 3 − 23 14 − 3 −1 1 B = adjB / det B = − 22 −16 6 12 − 3 6 − 3 2.6 Systems of Linear Equations -number of equations is equal to number of unknowns • Linear equation system A is a square matrix [n x n], x and b [n x 1] vector b = 0 => Homogeneous system b ≠ 0 => Inhomogeneous system • Assume that det( A ) ≠ 0 2.6 Linear Equations -number of equations is equal to number of unknowns • Homogeneous system b = 0, (trivial solution: x = 0) Eigenvalue problems • Inhomogeneous system b ≠ 0 2.8 Quadratic forms and positive definiteness • If • then the matrix A is positive definite • If A is positive definite, all diagonal elements must be positive 2.9 Partitioning The matrix A may be partitioned as and if A may be written 2.9 Partitioning, contd An equation system can be written with introduce The partitioned equation system is written or 2.10 Differentiation and integration • A matrix A • Differentiation • Integration .
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Determinant Notes
    68 UNIT FIVE DETERMINANTS 5.1 INTRODUCTION In unit one the determinant of a 2× 2 matrix was introduced and used in the evaluation of a cross product. In this chapter we extend the definition of a determinant to any size square matrix. The determinant has a variety of applications. The value of the determinant of a square matrix A can be used to determine whether A is invertible or noninvertible. An explicit formula for A–1 exists that involves the determinant of A. Some systems of linear equations have solutions that can be expressed in terms of determinants. 5.2 DEFINITION OF THE DETERMINANT a11 a12 Recall that in chapter one the determinant of the 2× 2 matrix A = was a21 a22 defined to be the number a11a22 − a12 a21 and that the notation det (A) or A was used to represent the determinant of A. For any given n × n matrix A = a , the notation A [ ij ]n×n ij will be used to denote the (n −1)× (n −1) submatrix obtained from A by deleting the ith row and the jth column of A. The determinant of any size square matrix A = a is [ ij ]n×n defined recursively as follows. Definition of the Determinant Let A = a be an n × n matrix. [ ij ]n×n (1) If n = 1, that is A = [a11], then we define det (A) = a11 . n 1k+ (2) If na>=1, we define det(A) ∑(-1)11kk det(A ) k=1 Example If A = []5 , then by part (1) of the definition of the determinant, det (A) = 5.
    [Show full text]
  • Multivector Differentiation and Linear Algebra 0.5Cm 17Th Santaló
    Multivector differentiation and Linear Algebra 17th Santalo´ Summer School 2016, Santander Joan Lasenby Signal Processing Group, Engineering Department, Cambridge, UK and Trinity College Cambridge [email protected], www-sigproc.eng.cam.ac.uk/ s jl 23 August 2016 1 / 78 Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. 2 / 78 Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. 3 / 78 Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. 4 / 78 Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... 5 / 78 Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary 6 / 78 We now want to generalise this idea to enable us to find the derivative of F(X), in the A ‘direction’ – where X is a general mixed grade multivector (so F(X) is a general multivector valued function of X). Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. Then, provided A has same grades as X, it makes sense to define: F(X + tA) − F(X) A ∗ ¶XF(X) = lim t!0 t The Multivector Derivative Recall our definition of the directional derivative in the a direction F(x + ea) − F(x) a·r F(x) = lim e!0 e 7 / 78 Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi.
    [Show full text]
  • Algebra of Linear Transformations and Matrices Math 130 Linear Algebra
    Then the two compositions are 0 −1 1 0 0 1 BA = = 1 0 0 −1 1 0 Algebra of linear transformations and 1 0 0 −1 0 −1 AB = = matrices 0 −1 1 0 −1 0 Math 130 Linear Algebra D Joyce, Fall 2013 The products aren't the same. You can perform these on physical objects. Take We've looked at the operations of addition and a book. First rotate it 90◦ then flip it over. Start scalar multiplication on linear transformations and again but flip first then rotate 90◦. The book ends used them to define addition and scalar multipli- up in different orientations. cation on matrices. For a given basis β on V and another basis γ on W , we have an isomorphism Matrix multiplication is associative. Al- γ ' φβ : Hom(V; W ) ! Mm×n of vector spaces which though it's not commutative, it is associative. assigns to a linear transformation T : V ! W its That's because it corresponds to composition of γ standard matrix [T ]β. functions, and that's associative. Given any three We also have matrix multiplication which corre- functions f, g, and h, we'll show (f ◦ g) ◦ h = sponds to composition of linear transformations. If f ◦ (g ◦ h) by showing the two sides have the same A is the standard matrix for a transformation S, values for all x. and B is the standard matrix for a transformation T , then we defined multiplication of matrices so ((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f(g(h(x))) that the product AB is be the standard matrix for S ◦ T .
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • MATH 304 Linear Algebra Lecture 24: Scalar Product. Vectors: Geometric Approach
    MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B′ A′ A vector is represented by a directed segment. • Directed segment is drawn as an arrow. • Different arrows represent the same vector if • they are of the same length and direction. Vectors: geometric approach v B A v B′ A′ −→AB denotes the vector represented by the arrow with tip at B and tail at A. −→AA is called the zero vector and denoted 0. Vectors: geometric approach v B − A v B′ A′ If v = −→AB then −→BA is called the negative vector of v and denoted v. − Vector addition Given vectors a and b, their sum a + b is defined by the rule −→AB + −→BC = −→AC. That is, choose points A, B, C so that −→AB = a and −→BC = b. Then a + b = −→AC. B b a C a b + B′ b A a C ′ a + b A′ The difference of the two vectors is defined as a b = a + ( b). − − b a b − a Properties of vector addition: a + b = b + a (commutative law) (a + b) + c = a + (b + c) (associative law) a + 0 = 0 + a = a a + ( a) = ( a) + a = 0 − − Let −→AB = a. Then a + 0 = −→AB + −→BB = −→AB = a, a + ( a) = −→AB + −→BA = −→AA = 0. − Let −→AB = a, −→BC = b, and −→CD = c. Then (a + b) + c = (−→AB + −→BC) + −→CD = −→AC + −→CD = −→AD, a + (b + c) = −→AB + (−→BC + −→CD) = −→AB + −→BD = −→AD. Parallelogram rule Let −→AB = a, −→BC = b, −−→AB′ = b, and −−→B′C ′ = a. Then a + b = −→AC, b + a = −−→AC ′.
    [Show full text]
  • Inner Product Spaces
    CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn.
    [Show full text]
  • The Classical Matrix Groups 1 Groups
    The Classical Matrix Groups CDs 270, Spring 2010/2011 The notes provide a brief review of matrix groups. The primary goal is to motivate the lan- guage and symbols used to represent rotations (SO(2) and SO(3)) and spatial displacements (SE(2) and SE(3)). 1 Groups A group, G, is a mathematical structure with the following characteristics and properties: i. the group consists of a set of elements {gj} which can be indexed. The indices j may form a finite, countably infinite, or continous (uncountably infinite) set. ii. An associative binary group operation, denoted by 0 ∗0 , termed the group product. The product of two group elements is also a group element: ∀ gi, gj ∈ G gi ∗ gj = gk, where gk ∈ G. iii. A unique group identify element, e, with the property that: e ∗ gj = gj for all gj ∈ G. −1 iv. For every gj ∈ G, there must exist an inverse element, gj , such that −1 gj ∗ gj = e. Simple examples of groups include the integers, Z, with addition as the group operation, and the real numbers mod zero, R − {0}, with multiplication as the group operation. 1.1 The General Linear Group, GL(N) The set of all N × N invertible matrices with the group operation of matrix multiplication forms the General Linear Group of dimension N. This group is denoted by the symbol GL(N), or GL(N, K) where K is a field, such as R, C, etc. Generally, we will only consider the cases where K = R or K = C, which are respectively denoted by GL(N, R) and GL(N, C).
    [Show full text]
  • Matrix Multiplication. Diagonal Matrices. Inverse Matrix. Matrices
    MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a11 a12 ... a1n a21 a22 ... a2n . .. . am1 am2 ... amn Notation: A = (aij )1≤i≤n, 1≤j≤m or simply A = (aij ) if the dimensions are known. Matrix algebra: linear operations Addition: two matrices of the same dimensions can be added by adding their corresponding entries. Scalar multiplication: to multiply a matrix A by a scalar r, one multiplies each entry of A by r. Zero matrix O: all entries are zeros. Negative: −A is defined as (−1)A. Subtraction: A − B is defined as A + (−B). As far as the linear operations are concerned, the m×n matrices can be regarded as mn-dimensional vectors. Properties of linear operations (A + B) + C = A + (B + C) A + B = B + A A + O = O + A = A A + (−A) = (−A) + A = O r(sA) = (rs)A r(A + B) = rA + rB (r + s)A = rA + sA 1A = A 0A = O Dot product Definition. The dot product of n-dimensional vectors x = (x1, x2,..., xn) and y = (y1, y2,..., yn) is a scalar n x · y = x1y1 + x2y2 + ··· + xnyn = xk yk . Xk=1 The dot product is also called the scalar product. Matrix multiplication The product of matrices A and B is defined if the number of columns in A matches the number of rows in B. Definition. Let A = (aik ) be an m×n matrix and B = (bkj ) be an n×p matrix.
    [Show full text]
  • Linear Transformations and Determinants Matrix Multiplication As a Linear Transformation
    Linear transformations and determinants Math 40, Introduction to Linear Algebra Monday, February 13, 2012 Matrix multiplication as a linear transformation Primary example of a = matrix linear transformation ⇒ multiplication Given an m n matrix A, × define T (x)=Ax for x Rn. ∈ Then T is a linear transformation. Astounding! Matrix multiplication defines a linear transformation. This new perspective gives a dynamic view of a matrix (it transforms vectors into other vectors) and is a key to building math models to physical systems that evolve over time (so-called dynamical systems). A linear transformation as matrix multiplication Theorem. Every linear transformation T : Rn Rm can be → represented by an m n matrix A so that x Rn, × ∀ ∈ T (x)=Ax. More astounding! Question Given T, how do we find A? Consider standard basis vectors for Rn: Transformation T is 1 0 0 0 completely determined by its . e1 = . ,...,en = . action on basis vectors. 0 0 0 1 Compute T (e1),T(e2),...,T(en). Standard matrix of a linear transformation Question Given T, how do we find A? Consider standard basis vectors for Rn: Transformation T is 1 0 0 0 completely determined by its . e1 = . ,...,en = . action on basis vectors. 0 0 0 1 Compute T (e1),T(e2),...,T(en). Then || | is called the T (e ) T (e ) T (e ) 1 2 ··· n standard matrix for T. || | denoted [T ] Standard matrix for an example Example x 3 2 x T : R R and T y = → y z 1 0 0 1 0 0 T 0 = T 1 = T 0 = 0 1 0 0 0 1 100 2 A = What is T 5 ? 010 − 12 2 2 100 2 A 5 = 5 = ⇒ − 010− 5 12 12 − Composition T : Rn Rm is a linear transformation with standard matrix A Suppose → S : Rm Rp is a linear transformation with standard matrix B.
    [Show full text]
  • Working with 3D Rotations
    Working With 3D Rotations Stan Melax Graphics Software Engineer, Intel Human Brain is wired for Spatial Computation Which shape is the same: a) b) c) “I don’t need to ask A childhood IQ test question for directions” Translations Rotations Agenda ● Rotations and Matrices (hopefully review) ● Combining Rotations ● Matrix and Axis Angle ● Challenges of deep Space (of Rotations) ● Quaternions ● Applications Terminology Clarification Preferred usages of various terms: Linear Angular Object Pose Position (point) Orientation A change in Pose Translation (vector) Rotation Rate of change Linear Velocity Spin also: Direction specifies 2 DOF, Orientation specifies all 3 angular DOF. Rotations Trickier than Translations Translations Rotations a then b == b then a x then y != y then x (non-commutative) ● Programming with rotations also more challenging! 2D Rotation θ Rotate [1 0] by θ about origin 1,1 [ cos(θ) sin(θ) ] θ θ sin cos θ 1,0 2D Rotation θ Rotate [0 1] by θ about origin -1,1 0,1 sin θ [-sin(θ) cos(θ)] θ θ cos 2D Rotation of an arbitrary point Rotate about origin by θ = cos θ + sin θ 2D Rotation of an arbitrary point 푥 Rotate 푦 about origin by θ 푥′, 푦′ 푥′ = 푥 cos θ − 푦 sin θ 푦′ = 푥 sin θ + 푦 cos θ 푦 푥 2D Rotation Matrix 푥 Rotate 푦 about origin by θ 푥′, 푦′ 푥′ = 푥 cos θ − 푦 sin θ 푦′ = 푥 sin θ + 푦 cos θ 푦 푥′ cos θ − sin θ 푥 푥 = 푦′ sin θ cos θ 푦 cos θ − sin θ Matrix is rotation by θ sin θ cos θ 2D Orientation 풚 Yellow grid placed over first grid but at angle of θ cos θ − sin θ sin θ cos θ 풙 Columns of the matrix are the directions of the axes.
    [Show full text]