9 Referências Bilbliográficas
Total Page:16
File Type:pdf, Size:1020Kb
100 9 Referências bilbliográficas 1. WLODARCZAK, G. Rotational Spectroscopy and Astrochemistry Journal of Molecular Structure. 347, 131-142, 1995. 2. DULLEY, W. W.; WILLIAMS, D. A. A. Interstellar Chemistry . Academic Press, 1984. P.1-6 e 22-24. 3. SCHAEFER, L.; Jr. FEGLEY, B Chemistry and Composition of Planetary Atmospheres . Chemical Change Across Space and Time (eds. J. M. Friedrich and L. Zaikowski), ACS Symposium Series, Oxford Univ. Press, submitted. (2007) 4. GREENWOOD, N N.; EARNSHAW A. Chemistry of the Elements . 2nd ed. Oxford:Butterworth-Heinemann, 1997. 5. SWINGS, P.; ROSENFELD, L. Considerations Regarding Interstellar Molecules . Astrophysical Journal, 86, 483-486, 1937. 6. WEINREB, S.; BARRETT, A. H.; MEEKS, M. L.; HENRY, J. C. Radio Observations of OH in the Interstellar Médium. Nature 200, 829-831, 1963. 7. http://www-691.gsfc.nasa.gov/cosmic.ice.lab/interstellar.htm, acessado em 22/12/2008 8. VEPREK, S.; ROOS, J. Dieletric properties of phosphorus nitride films. J. Phys. Chem. Solids . 37, 554-554, 1976. 9. SCHLESINGER, M. E. The thermodinamic properties of Phosphorus and Solid Binary Phosphides. Chem. Rev . 102, 4267-4301, 2002. 10. THORNE, L. R. et al. The chemistry of phosphorus in dense interstellar clouds. Astrophys. J. 280, 139-143, 1984. 11. ZIURYS, L. M. Detection of interstellar PN: the first phosphorus-bearing species observed in molecular clouds. Astrophys. J. 321, L81-L85, 1987. 101 12. TURNER, B. E.; BALLY, J. Detection of interstellar PN: the first identified phosphorus compound in the interstellar medium. Astrophys. J. 321, L75-L79, 1990. 13. SAUMON, D. et al. Molecular abundances in the atmosphere of the T dwarf G1 229B. Astrophys. J. 541, 374-389, 2000. 14. VISCHER, C.; LODDERS, K.; FEGLEY, B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. II. Sulfur and phosphorus. Astrophys. J. 648, 1181-1195, 2006. 15. ROELLIG, T. L. et al. Spitzer Infrared (IRS) observations of M, L, and T dwarfs. Astrophys. J. Suppl. 154, 418-421, 2004. 16. RAWLS, R. L. Interstellar Chemistry. Science and Technology. 80, 28, 31- 37, 2002 17. CURRY, J.; HERZBERG, L.; HERZBERG, G. Spectroscopic evidence for the molecule PN. J. Chem. Phys. 1, 749-750, 1933. 18. HUFFMAN, E. O. et al. Synthesis of phosphorus nitrides. J. Am. Chem. Soc. 76, 6239-6243, 1954. 19. POTTER, R. L.; DISTEFANO, V. N. Thermodynamic Functions of some Phosphorus Componds. J. Phys. Chem. 65, 849-855, 1961. 20. UY, O. M.; KOHL, F.J.; CARLSON, K. D. Dissociation energy of PN and other thermodinamic properties for the vaporization of P 3N5. J. Phys. Chem. 72, 1611-1616, 1968. 21. GINGERICH, K. A. Gaseous phosphorus compounds. III. Mass spectrometric study of the reaction between diatomic nitrogen and phosphorus vapor and dissociation energy of phosphorus mononitride and diatomic phosphorus. J. Phys. Chem. 73, 2734-2741, 1969. 22. WYSE, F. C.; MANSON, E. L.; GORDY, W. Willimeter wave ratational spectrum and moleculr constants of PN. J. Chem. Phys. 57, 1106-1108, 1972. 23. KEMENY, A. E. et al. Accurate ab initio study of the energetics of phosphorus nitride: Heat of formation, ionization potential, and electron affinity. J. Chem. Phys. 118, 8290-8295, 2003. 24. WONG, M. W.; RADOM, L. Isoeletronic analogues of PN: Remarkably stable multiply charged cations. J. Phys. Chem. 94, 638-644, 1990. 25. GLASER, R.; HORAN, C. J.; HANEY, P. E. Phosphorus analogues of diazonium ions. 2. Protonation of N 2, PN, and P 2. J. Phys. Chem. 97, 1835- 1844, 1993. 102 26. SCHNICK, W.; LÜCKE, J. Phosphorus nitride P 3N5: Synthesis, spectroscopic, and eletron microscopic invesitigations. J. Chem. Mater. 8, 281-286, 1996. 27. HUSAIN, D.; NORRIS, P. E. Kinetic study of ground-state phosphorus atoms, P(34S3/2) by atomic-absorption spectroscopy in vacuum UV. J. Chem. Soc. Faraday Trans. 2. 73, 415-432, 1977. 28. HUSAIN, D.; NORRIS, P. E. Reactions of phosphorus atoms, P(34S3/2), studied by attenuation of atomic resonance radiation in vacuum UV. J. Chem. Soc. Faraday Trans. 2. 73, 1107-1115, 1977. 29. HUSAIN, D.; SLATER, N. K. H. Time-resolved resonance fluorescence studies of ground-state phosphorus atoms, P[3P3(S-3/2)-S-4]. J. Chem. Soc. Faraday Trans 2. 74, 1627-1643, 1978. 30. CLYNE, M. A. A.; ONO, Y. Kinetic studies of ground-sate phosphorus atoms. J. Chem. Soc. Faraday Trans 2. 78, 1149-1164, 1982. 31. HENSHAW, T. L. et. al. The P(4Su) + N3(2 Πg) reaction: Chemical generation of a new metastable state of PN. J. Phys. Chem. 91, 2838-2842, 1987. 32. MCGONAGLE, D.; IRVINE, W. M.; MINH, Y. C. Nitrogen sulfide (NS) in Star forming regions. Astrochemistry of Cosmic Phenomena. 150, 227-230, 1992. 33. GOTTLIEB, C. A. et al. Detection of interstellar nitrogen sulfide. Ap.J . 200, L147-L149, 1975. 34. MCGONAGLE, D.; IRVINE, W. M.; OHISHI, M. Nitrogen sulfide in quiescent dark clouds . Ap. J. 422, 621-625, 1994. 35. IRVINE, W. M. et al. Detection of Nitrogen sulfide in comet Hale-Bopp. Icarus. 143, 412-414, 2000. 36. DULEY, W. W.; MILLAR, T. J.; WILLIAMS, D. A. Interstellar chemistry of sulphur. Mon. Not. R. astr. Soc. 192, 945-957, 1980. 37. CANAVES, M. V. et al. Nitrogen sulfide in comets Hyakutake (C/1996 B2) and Hale-Bopp (C/1995 O1) Earth, Moon and Planets. 90, 335-347, 2002. 38. http://www.udfa.net 39. LEVINE, I. Quantum Chemistry . 2ed. Allyn and Bacon, Inc., 1974. P.6-12, 142, 148, 158-162, 246-248. 40. BALLHAUSEN, C. J.; HANSEN, A. E. Eletronic Spectra. Annu.Rev. Phys. Chem. 23, 15-38, 1972. 103 41. VIANNA, J. D. M.; FAZZIO, A.; CANUTO, S. Teoria quântica de moléculas e sólidos: simulação computacional. São Paulo: Editora Livraria da Física, 2004. P.35-56, 68-73, 163-166, 193-200, 213-229. 42. SZABO, A.; OSTLUND, N. S. Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory . Dover Publications, Inc. 1996 P. 42, 53-55, 136-138, 231-242. 43. MORGON, N. H.; COUTINHO, K. Métodos de Química Teórica e Modelagem Molecular . São Paulo: Editora Livraria da Física, 2007. P. 1-16, 134-140, 73-84. 44. http://en.wikipedia.org/wiki/Basis_set_(chemistry ), acessado em 29/12/2008. 45. ROOS, B. O.; TAYLOR, P. R.; SIEGBAHN, P. E. M. A complete active space scf method (casscf) using a density-matrix formulated super-ci approach. chem. Phys. 48, 157-173, 1980. 46. WERNER, H. -J.; KNOWLES, P. J. An efficient internally contracted multiconfiguration-reference configuration interaction method . J. Chem. Phys. 89, 5803-5814, 1988. 47. BAUSCHLICHER, C. W. et. al. Benchmark full configuration-interaction calculations on HF and NH 2. J. Chem. Phys. 85, 1469-1474, 1986. 48. BAUSCHLICHER, C. W. et. al. Benchmark full configuration-interaction – calculations on H 2O, F, and F . J. Chem. Phys. 85, 2779-2783, 1986. 49. BAUSCHLICHER, C. W.;TAYLOR, P. R. A full CL treatment of the 1 A1- 3 B1 separation in methylene. J. Chem. Phys. 85, 6510-6512, 1986. 50. COESTER, F. Bound states of a many-particle system . Nuclear Phys.7, 421-424, 1958. 51. KÜMMEL, H; LÜHRMANN K. H.; ZABOLITZKI, J. G. Many-fermion theory in expS- (or coupled cluster) form. Phys. Rep. 36, 1-63, 1978. 52. PURVIS, G. D.; BARTLETT, R. J. K. A full coupled-cluster singles and doubles model - the inclusion of disconnected triples. Chem. Phys. 76, 1910-1918, 1982. 53. POPLE, J. A.; HEAD-GORDON, N M.; RAGHAVACHARI, K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys.87, 5968-5975, 1987. 54. PALDUS, J. et. al. Correlation problems in atomic and molecular systems. 6. Coupled-cluster approach to apen-shell systems . Physical Review A. 17, 805-815, 1978. 104 55. POPLE, J. A. et. al. Electron correlation theories and their application to study of simple reaction potential surfaces. Int. J. Quant. Chem. 14, 545- 560, 1978. 56. BARTLETT, R. J. et. al. Many-body perturbation-theory, and importance of quadrupole excitations for correlation problem. Int. J. Quant. Chem. 14, 561-581, 1978. 57. FRISCH, A.; FRISCH, M. J.; TRUCKS, G. W. Gaussian 03 User´s Reference . 2nd ed. Gaussian, Inc. 23-27. 2005 58. SCHLEGEL, H. B. Optimization of equilibrium geometries and transition structures. J. Comp. Chem. 3, 214-218, 1982. 59. http://en.wikipedia.org/wiki/BFGS_method ., acessado em 09/01/2009. 60. HARVEY, J. N.; POLI, R. Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev. 32, 1-8, 2003 . 61. ATKINS, P. W.; PAULA, J. Physical chemistry . 7th ed. W. H. Freeman and Company New York. 2002. 395-398. 62. HARVEY, J. N. Understanding the kinetics of spin-forbidden chemical reactions . Phys. Chem. Chem. Phys., 9, 331-343, 2007. 63. HARVEY, J. N.; POLI, R.; SMITH, K. M. Understanding the reactivity of transition metal complexes involving multiple spin states. Coordination Chemistry Reviews. 238-239, 347-361, 2003. 64. LANDAU, L. "Zur Theorie der Energieubertragung. II" . Physics of the Soviet Union 2, 46–51, 1932. 65. ZENER, C. Non-adiabatic Crossing of Energy Levels . Proceedings of the Royal Society of London, Series A 137 (6), 692–702, 1932. 66. STÜCKELBERG, E.C.G. Höhere Terpenverbindungen IV. Synthese des Cadalins. Helv. Phys. Acta 5, 369–422, 1932. 67. ASCHI, M.; HARVEY, J. N. Spin-forbidden dehydrogenation of methoxy cátion: a statistical view. Phys. Chem. Chem. Phys. 1, 5555-5563, 1999. 68. NIKITIN, E. E. Nonadiabatic transitions: What we learned from old masters and how much we owe them. Annu. Rev. Phys. Chem. 50, 1-21, 1999. 69. Gaussian 03, Revision E.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M.